Konuşmacı tanıma sistemleri özellikle i-vektörlerin performansı sebebiyle son on yılda önemli gelişmeler elde etmiştir. Bu gelişmelere rağmen eğitim ve test verileri arasındaki uyumsuzluk tanıma performansını önemli ölçüde etkilemektedir. Bu çalışmada, model kompanzasyon yöntemleri i-vektör çıkarımı şemasına eklenerek toplanabilir gürültülere karşı gürbüzlüğü artıracak bir çözüm sunulmaktadır. Durağan gürültüler için model kompanzasyon teknikleri oldukça gürbüz sistemler üretir. Paralel Model Kompanzasyonu ve Vektör Taylor Serileri en gelişmiş model kompanzasyon tekniklerinden kabul edilmektedir. Bu metotlar birinci dereceden istatistiklere uygulanarak toplanabilir gürültülerden kaynaklanan uyumsuzluğu azaltacak gürültülü tüm değişkenlik uzayı eğitimi amaçlanmıştır. Tüm değişkenlik matrisin eğitimi, i-vektör boyutunun azaltılması, i-vektörlerin puanlanması gibi geleneksel i-vektör şemasının diğer tüm parçaları değişmeden kalmaktadır. Önerilen yöntem, 6 dB’lik adımlarla -6 dB’den 18 dB’ye kadar çeşitli sinyal-gürültü oranlarına (SNR) sahip dört farklı gürültü tipi ile test edilmiştir. Her iki yöntemle de en düşük SNR seviyelerinde bile eşit hata oranlarında yüksek azalmalar elde edilmiştir. Önerilen yaklaşım eşik hata oranında ortalama olarak %50’den fazla göreceli azalma sağlamıştır.
Paralel model kompanzasyonu Gürbüz konuşmacı tanıma Vektör Taylor serileri I-vektör
Speaker recognition systems achieved significant improvements over the last decade, especially due to the performance of the i-vectors. Despite the achievements, mismatch between training and test data affects the recognition performance considerably. In this paper, a solution is offered to increase robustness against additive noises by inserting model compensation techniques within the i-vector extraction scheme. For stationary noises, the model compensation techniques produce highly robust systems. Parallel Model Compensation and Vector Taylor Series are considered as state-of-the-art model compensation techniques. Applying these methods to the first order statistics, a noisy total variability space training is aimed, which will reduce the mismatch resulted by additive noises. All other parts of the conventional i-vector scheme remain unchanged, such as total variability matrix training, reducing the i-vector dimensionality, scoring the i-vectors. The proposed method was tested with four different noise types with several signal to noise ratios (SNR) from -6 dB to 18 dB with 6 dB steps. High reductions in equal error rates were achieved with both methods, even at the lowest SNR levels. On average, the proposed approach produced more than 50% relative reduction in equal error rate.
Parallel model compensation Robust speaker recognition Vector Taylor series I-vector
Birincil Dil | İngilizce |
---|---|
Konular | Elektrik Mühendisliği |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 1 Mart 2023 |
Gönderilme Tarihi | 24 Haziran 2022 |
Yayımlandığı Sayı | Yıl 2023 |
Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.