Serbest Formlu İnce Cidarlı AA 5083-H111 Alaşımının Frezelenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğü Üzerine Etkilerini Deneysel ve İstatiksel Değerlendirilmesi
Yıl 2023,
, 512 - 522, 03.05.2023
Barış Özlü
,
Uğurcan Çelik
,
Halil Demir
Öz
Bu çalışmada, kuru işleme koşullarında serbest formlu ince cidarlı AA 5083-H111 alaşımın kaplamasız karbür parmak freze ile işlenmesinde cidar kalınlığının, kesme hızının ve ilerleme miktarının yüzey pürüzlülüğü üzerindeki etkilerinin belirlenmesine odaklanmıştır. Ayrıca en düşük yüzey pürüzlülüğü için optimum kesme parametrelerinin belirlenmesinde Taguchi yöntemi ve regresyon analizi uygulanmıştır. Deney tasarımı Taguchi L32 (21x42) dizinine göre hazırlanmıştır. Deney ve analiz sonuçlarına göre, yüzey pürüzlülüğünü en aza indirmek için optimum kesme parametre seviyeleriA2B1C4 (5 mm cidar kalınlığı, 0,05 mm/diş ilerleme miktarı ve 200 m/dak) belirlenmiştir. ANOVA analiz sonucuna göre yüzey pürüzlülüğü üzerine en etkin kesme parametresi %57,14 ile ilerleme miktarı olduğu tespit edilmiştir. Yüzey pürüzlülüğü için yapılan regresyon analiz sonuçlarında ikinci derece regresyon analiz sonuçları lineer regresyon sonuçlarına göre gerçek değerlere en yakın sonuçları verdiği görülmüştür. özet 250 kelimeyi aşmamalı ve paragraf kullanılmamalıdır.
Teşekkür
Yapılan çalışmada desteklerini esirgemeyen, bünyesinde bulunan ekipmanların kullanılmasına izin veren PLASCAM A.Ş yönetimine teşekkür ederim.
Kaynakça
- Akgün, M., Demir, H. 2021. Optimization of cutting parameters affecting surface roughness in turning of Inconel 625 superalloy by cryogenically treated tungsten carbide inserts. SN Applied Sciences, 3, 277.
https://doi.org/10.1007/s42452-021-04303-2
- Barbosa, C., Dille, J., Delplancke, J. L., Rebello, J. M. A., Acselradc, O. 2006. A microstructural study of flash welded and aged 6061 and 6013 aluminum alloys. Materials Characterization, 57, 187-192.
https://doi.org/10.1016/j.matchar.2006.01.002
- Cagan, S. C., Venkatesh, B. Buldum, B. B. 2020. Investigation of surface roughness and chip morphology of aluminum alloy in dry and minimum quantity lubrication machining. Materials Today: Proceedings, 27, 1122-1126.
https://doi.org/10.1016/j.matpr.2020.01.547
- Cheng, D. J., Xu, F., Xu, S. H., Zhang, C. Y., Zhang, S. W., Kim, S. J. 2020. Minimization of Surface Roughness and Machining Deformation in Milling of Al Alloy Thin-Walled Parts. International Journal of Precision Engineering and Manufacturing, 21, 1597-1613.
https://doi.org/10.1007/s12541-020-00366-0
- Çırakoğlu, F., Özlü, B., Demir, H. 2021. Hardox 450 çeliğinin lazerle delinmesinde kesme parametrelerinin delik kalitesi üzerine etkisinin incelenmesi ve kesme parametrelerinin optimizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8, 913-923.
https://doi.org/10.35193/bseufbd.977412
- Demir, H., Gündüz, S. 2009. The effects of aging on machinability of 6061 aluminium alloy. Materials & Design, 30, 1480-1483.
https://doi.org/10.1016/j.matdes.2008.08.007
- Dutta, A., Das, A., Joshi, S. N. 2017. Optimum process parameters for efficient and quality thin wall machining using firefly algorithm. International Journal of Additive and Subtractive Materials Manufacturing, 1, 3-22.
- ll, A., Chatelain, J. F., Lalonde, J. F., Balazinski, M., Rimpault, X. 2018. An experimental investigation of the influence of cutting parameters on workpiece internal temperature during Al2024-T3 milling. The International Journal of Advanced Manufacturing Technology, 97, 413-426.
https://doi.org/10.1007/s00170-018-1948-3
- Isaev, A., Grechishnikov, V., Pivkin, P., Kozochkin, M., Ilyuhin, Y., Vorotnikov, A. 2016. Machining of thin-walled parts produced by additive manufacturing technologies. Procedia CIRP, 41, 1023-1026.
https://doi.org/10.1016/j.procir.2015.08.088
- Işık, R., Özlü, B., Demir, H. 2021. St-37 malzemesinin lazer ile kesme işleminde seçilen parametrelerin etkisinin deneysel ve istatiksel olarak incelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 33, 161-171.
https://doi.org/10.35234/fumbd.769716
- Mia, M., Singh, G. R., Gupta, M. K., Sharma, V. V. 2018. Influence of Ranque-Hilsch vortex tube and nitrogen gas assisted MQL in precision turning of Al 6061-T6. Precision Engineering, 53, 289-299.
https://doi.org/10.1016/j.precisioneng.2018.04.011
- Oliveira, E. L., Souza A. F, Diniz, A. E. 2018. Evaluating the influences of the cutting parameters on the surface roughness and form errors in 4-axis milling of thin-walled free-form parts of AISI H13 steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering volume, 40, 334.
https://doi.org/10.1007/s40430-018-1250-1
- Özlü, B., Akgün, M., Demir, H. 2019. AA 6061 Alaşımının tornalanmasında kesme parametrelerinin yüzey pürüzlülüğü üzerine etkisinin analizi ve optimizasyonu. Gazi Mühendislik Bilimleri Dergisi, 5, 151-158.
https://dx.doi.org/10.30855/gmbd.2019.02.04
- Özlü, B. 2021. Experimental and statistical investigation of the effects of cutting parameters on kerf quality and surface roughness in laser cutting of Al 5083 alloy. Surface Review and Letters, 28, 2150093.
https://doi.org/10.1142/S0218625X21500931
- Qin, G., Wang, H., Lin, F., Sun, S., Guo, Y., Wu, T., Wu, Z. 2019. A new approach to deformation control of aeronautical monolithic components for aluminum alloy plates based on stress inverse and stress evaluation. SCIENTIA SINICA Technologica, 50, 85-102.
https://doi.org/10.1007/s12541-020-00366-0
- Qu, S., Zhao, J., Wang, T. 2017. Experimental study and machining parameter optimization in milling thin-walled plates based on NSGA-II. The International Journal of Advanced Manufacturing Technology, 89, 2399-2409.
https://doi.org/10.1007/s00170-016-9265-1
- Shamsuddin, K. A., Ab-Kadir, A. R., Osman, M. H. 2013. A comparison of milling cutting path strategies for thinwalled aluminium alloys fabrication. The International Journal of Engineering & Science, 2, 1-8.
- Şahinoğlu, A., Güllü, A., Dönertaş, M. A. 2017. GGG50 malzemenin torna tezgâhında işlenmesinde kesme parametrelerinin titreşim, ses şiddeti ve yüzey pürüzlülüğü üzerinde etkisinin araştırılması. Sinop Üniversitesi Fen Bilimleri Dergisi, 2, 67-79.
- Uğur, A., Nas, E., Gökkaya, H. 2020. Investigation of the machinability of SiC reinforced MMC materials produced by molten metal stirring and conventional casting technique in die-sinking electrical discharge machine. International Journal of Mechanical Sciences, 186, 105875.
https://doi.org/10.1016/j.ijmecsci.2020.105875
- Vakondios, D., Kyratsis, P., Yaldiz, S., Antoniadis, A. 2012. Influence of milling strategy on the surface roughness in ball end milling of the aluminum alloy Al7075-T6. Measurement, 45, 1480-1488.
https://doi.org/10.1016/j.measurement.2012.03.001
- Vukman, J., Lukic, D., Borojevic, S., Rodic, D., Milosevic, M. 2020. Application of fuzzy logic in the analysis of surface roughness of thin-walled aluminum parts. International Journal of Precision Engineering and Manufacturing, 21, 91-102.
https://doi.org/10.1007/s12541-019-00229-3
- Wang, S. Q., He, C. L., Li, J. G., Wang, J. 2021. Vibration-free surface finish in the milling of a thin-walled cavity part using a corn starch suspension. Journal of Materials Processing Technology, 290, 116980.
https://doi.org/10.1016/j.jmatprotec.2020.116980
Experimental and Statistical Evaluation of the Effects of Cutting Parameters on Surface Roughness in Milling of Freeform Thin-Walled AA 5083-H111 Alloy
Yıl 2023,
, 512 - 522, 03.05.2023
Barış Özlü
,
Uğurcan Çelik
,
Halil Demir
Öz
In this study, freeform thin-walled AA 5083-H111 alloy under dry machining conditions focused on determining the effects of wall thickness, cutting speed, and feed rate on surface roughness in machining uncoated carbide end mills. In addition, Taguchi method and regression analysis were applied to determine the optimum cutting parameters for the lowest surface roughness. The experimental design was prepared according to the Taguchi L32 (21x42) array. According to the test and analysis results, optimum cutting parameter levels A2B1C4 (5 mm wall thickness, 0.05 mm/tooth feed rate and 200 m/min) were determined to minimize the surface roughness. According to the ANOVA analysis results, it was determined that the most effective cutting parameter on the surface roughness was the feed rate with 57.14%. In the regression analysis results for the surface roughness, it was seen that the second-order regression analysis results gave the closest results to the true values according to the linear regression results.
Kaynakça
- Akgün, M., Demir, H. 2021. Optimization of cutting parameters affecting surface roughness in turning of Inconel 625 superalloy by cryogenically treated tungsten carbide inserts. SN Applied Sciences, 3, 277.
https://doi.org/10.1007/s42452-021-04303-2
- Barbosa, C., Dille, J., Delplancke, J. L., Rebello, J. M. A., Acselradc, O. 2006. A microstructural study of flash welded and aged 6061 and 6013 aluminum alloys. Materials Characterization, 57, 187-192.
https://doi.org/10.1016/j.matchar.2006.01.002
- Cagan, S. C., Venkatesh, B. Buldum, B. B. 2020. Investigation of surface roughness and chip morphology of aluminum alloy in dry and minimum quantity lubrication machining. Materials Today: Proceedings, 27, 1122-1126.
https://doi.org/10.1016/j.matpr.2020.01.547
- Cheng, D. J., Xu, F., Xu, S. H., Zhang, C. Y., Zhang, S. W., Kim, S. J. 2020. Minimization of Surface Roughness and Machining Deformation in Milling of Al Alloy Thin-Walled Parts. International Journal of Precision Engineering and Manufacturing, 21, 1597-1613.
https://doi.org/10.1007/s12541-020-00366-0
- Çırakoğlu, F., Özlü, B., Demir, H. 2021. Hardox 450 çeliğinin lazerle delinmesinde kesme parametrelerinin delik kalitesi üzerine etkisinin incelenmesi ve kesme parametrelerinin optimizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8, 913-923.
https://doi.org/10.35193/bseufbd.977412
- Demir, H., Gündüz, S. 2009. The effects of aging on machinability of 6061 aluminium alloy. Materials & Design, 30, 1480-1483.
https://doi.org/10.1016/j.matdes.2008.08.007
- Dutta, A., Das, A., Joshi, S. N. 2017. Optimum process parameters for efficient and quality thin wall machining using firefly algorithm. International Journal of Additive and Subtractive Materials Manufacturing, 1, 3-22.
- ll, A., Chatelain, J. F., Lalonde, J. F., Balazinski, M., Rimpault, X. 2018. An experimental investigation of the influence of cutting parameters on workpiece internal temperature during Al2024-T3 milling. The International Journal of Advanced Manufacturing Technology, 97, 413-426.
https://doi.org/10.1007/s00170-018-1948-3
- Isaev, A., Grechishnikov, V., Pivkin, P., Kozochkin, M., Ilyuhin, Y., Vorotnikov, A. 2016. Machining of thin-walled parts produced by additive manufacturing technologies. Procedia CIRP, 41, 1023-1026.
https://doi.org/10.1016/j.procir.2015.08.088
- Işık, R., Özlü, B., Demir, H. 2021. St-37 malzemesinin lazer ile kesme işleminde seçilen parametrelerin etkisinin deneysel ve istatiksel olarak incelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 33, 161-171.
https://doi.org/10.35234/fumbd.769716
- Mia, M., Singh, G. R., Gupta, M. K., Sharma, V. V. 2018. Influence of Ranque-Hilsch vortex tube and nitrogen gas assisted MQL in precision turning of Al 6061-T6. Precision Engineering, 53, 289-299.
https://doi.org/10.1016/j.precisioneng.2018.04.011
- Oliveira, E. L., Souza A. F, Diniz, A. E. 2018. Evaluating the influences of the cutting parameters on the surface roughness and form errors in 4-axis milling of thin-walled free-form parts of AISI H13 steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering volume, 40, 334.
https://doi.org/10.1007/s40430-018-1250-1
- Özlü, B., Akgün, M., Demir, H. 2019. AA 6061 Alaşımının tornalanmasında kesme parametrelerinin yüzey pürüzlülüğü üzerine etkisinin analizi ve optimizasyonu. Gazi Mühendislik Bilimleri Dergisi, 5, 151-158.
https://dx.doi.org/10.30855/gmbd.2019.02.04
- Özlü, B. 2021. Experimental and statistical investigation of the effects of cutting parameters on kerf quality and surface roughness in laser cutting of Al 5083 alloy. Surface Review and Letters, 28, 2150093.
https://doi.org/10.1142/S0218625X21500931
- Qin, G., Wang, H., Lin, F., Sun, S., Guo, Y., Wu, T., Wu, Z. 2019. A new approach to deformation control of aeronautical monolithic components for aluminum alloy plates based on stress inverse and stress evaluation. SCIENTIA SINICA Technologica, 50, 85-102.
https://doi.org/10.1007/s12541-020-00366-0
- Qu, S., Zhao, J., Wang, T. 2017. Experimental study and machining parameter optimization in milling thin-walled plates based on NSGA-II. The International Journal of Advanced Manufacturing Technology, 89, 2399-2409.
https://doi.org/10.1007/s00170-016-9265-1
- Shamsuddin, K. A., Ab-Kadir, A. R., Osman, M. H. 2013. A comparison of milling cutting path strategies for thinwalled aluminium alloys fabrication. The International Journal of Engineering & Science, 2, 1-8.
- Şahinoğlu, A., Güllü, A., Dönertaş, M. A. 2017. GGG50 malzemenin torna tezgâhında işlenmesinde kesme parametrelerinin titreşim, ses şiddeti ve yüzey pürüzlülüğü üzerinde etkisinin araştırılması. Sinop Üniversitesi Fen Bilimleri Dergisi, 2, 67-79.
- Uğur, A., Nas, E., Gökkaya, H. 2020. Investigation of the machinability of SiC reinforced MMC materials produced by molten metal stirring and conventional casting technique in die-sinking electrical discharge machine. International Journal of Mechanical Sciences, 186, 105875.
https://doi.org/10.1016/j.ijmecsci.2020.105875
- Vakondios, D., Kyratsis, P., Yaldiz, S., Antoniadis, A. 2012. Influence of milling strategy on the surface roughness in ball end milling of the aluminum alloy Al7075-T6. Measurement, 45, 1480-1488.
https://doi.org/10.1016/j.measurement.2012.03.001
- Vukman, J., Lukic, D., Borojevic, S., Rodic, D., Milosevic, M. 2020. Application of fuzzy logic in the analysis of surface roughness of thin-walled aluminum parts. International Journal of Precision Engineering and Manufacturing, 21, 91-102.
https://doi.org/10.1007/s12541-019-00229-3
- Wang, S. Q., He, C. L., Li, J. G., Wang, J. 2021. Vibration-free surface finish in the milling of a thin-walled cavity part using a corn starch suspension. Journal of Materials Processing Technology, 290, 116980.
https://doi.org/10.1016/j.jmatprotec.2020.116980