Araştırma Makalesi
BibTex RIS Kaynak Göster

Biyokompozit membran ile yağlı atık suların saflaştırılması

Yıl 2022, , 1443 - 1450, 28.12.2022
https://doi.org/10.35414/akufemubid.1147928

Öz

Bu çalışmada, biyobozunur polilaktik asit polimerinin yağ-su ayırımındaki performansı incelenmiştir. Çalışma kapsamında membranlar hazırlanmış ve vakum filtrasyon işlemi uygulanmıştır. Membranın yağ ve suya olan ilgisi, yağ ve su içindeki şişme testleriyle belirlenmiştir. Membranın hidrofilitesini arttırmak ve performansını iyileştirmek için içine halosit nanotüp (HNT) eklenmiş ve nanokompozit haline getirilmiştir. Membranın yüzey morfolojisi taramalı elektron mikroskobuyla (SEM) ile belirlenmiştir. Çalışmada halosit nanotüp oranının (%0-20), yağ/su şişme oranlarına (adsorpsiyon oranına), membrandan geçen sıvı akısına ve yağ reddine etkisi belirlenmiştir. Çalışmada model yağ olarak soya yağı seçilmiştir. Soya yağı-su emülsiyonu hazırlanarak ayırım testleri yapılmıştır. Elde edilen sonuçlara göre soya yağı ayırımında %5 HNT katkısında %97.2 saflıkta su alt akımdan elde edilmiştir. Yüksek ayırımın yanında 1714.3 üzerinde saatte litre bazında su akısı elde edilmiştir.

Destekleyen Kurum

Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırmalar Proje Birimi

Proje Numarası

FBA-2021-3598

Kaynakça

  • Al-Anzi, B. S., & Siang, O. C. 2017. Recent developments of carbon based nanomaterials and membranes for oily wastewater treatment. RSC Advances, 7(34), 20981-20994. Chen, W., Peng, J., Su, Y., Zheng, L., Wang, L., & Jiang, Z. 2009. Separation of oil/water emulsion using Pluronic F127 modified polyethersulfone ultrafiltration membranes. Separation and Purification Technology, 66(3), 591-597.
  • Dmitrieva, E. S., Anokhina, T. S., Novitsky, E. G., Volkov, V. V., Borisov, I. L., & Volkov, A. V. 2022. Polymeric Membranes for Oil-Water Separation: A Review. Polymers, 14(5), 980.
  • Dong, Y., Marshall, J., Haroosh, H. J., Mohammadzadehmoghadam, S., Liu, D., Qi, X., & Lau, K. T. 2015. Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: Influence of HNT content and modification. Composites Part A: Applied Science and Manufacturing, 76, 28-36.
  • Fane, A. G., Wang, R., & Hu, M. X. 2015. Synthetic membranes for water purification: status and future. Angewandte Chemie International Edition, 54(11), 3368-3386.
  • Foroughirad, S., Haddadi-Asl, V., Khosravi, A., & Salami-Kalajahi, M. 2020. Synthesis of magnetic nanoparticles-decorated halloysite nanotubes/poly([2(acryloyloxy)ethyl]trimethylammonium chloride) hybrid nanoparticles for removal of Sunset Yellow from water. Journal of Polymer Research, 27(10), 1–10.
  • Hamad, K., Kaseem, M., Ayyoob, M., Joo, J., & Deri, F. 2018. Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science, 85, 83-127.
  • Ilyas, R. A., Sapuan, S. M., Harussani, M. M., Hakimi, M. Y. A. Y., Haziq, M. Z. M., Atikah, M. S. N. & Asrofi, M. 2021. Polylactic acid (PLA) biocomposite: Processing, additive manufacturing and advanced applications. Polymers, 13(8), 1326.
  • Liu, W., Cui, M., Shen, Y., Zhu, G., Luo, L., Li, M., & Li, J. 2019. Waste cigarette filter as nanofibrous membranes for on-demand immiscible oil/water mixtures and emulsions separation. Journal of colloid and interface science, 549, 114-122.
  • Liu, Y., Zhang, F., Zhu, W., Su, D., Sang, Z., Yan, X., & Dou, S. X. 2020. A multifunctional hierarchical porous SiO2/GO membrane for high efficiency oil/water separation and dye removal. Carbon, 160, 88-97.
  • Nayak, K., Kumar, A., & Tripathi, B. P. 2022. Molecular grafting and zwitterionization based antifouling and underwater superoleophobic PVDF membranes for oil/water separation. Journal of Membrane Science, 643, 120038.
  • Nofar, M., Sacligil, D., Carreau, P. J., Kamal, M. R., & Heuzey, M. C. 2019. Poly (lactic acid) blends: Processing, properties and applications. International Journal Of Biological Macromolecules, 125, 307-360.
  • Ouyang, J., Mu, D., Zhang, Y., & Yang, H. 2018. Mineralogy and physico-chemical data of two newly discovered halloysite in China and their contrasts with some typical minerals. Minerals, 8(3), 108.
  • Pereira, V., dos Santos Paz, I., Gomes, A. L., Leite, L. A., Fechine, P. B. A., & de sá Moreira de S. Filho, M. 2021. Effects of acid activation on the halloysite nanotubes for curcumin incorporation and release. Applied Clay Science, 200, 105953.
  • Sun, Y., Zong, Y., Yang, N., Zhang, N., Jiang, B., Zhang, L., & Xiao, X. 2020. Surface hydrophilic modification of PVDF membranes based on tannin and zwitterionic substance towards effective oil-in-water emulsion separation. Separation and Purification Technology, 234, 116015.
  • Venault, A., Chiang, C. H., Chang, H. Y., Hung, W. S., & Chang, Y. 2018. Graphene oxide/PVDF VIPS membranes for switchable, versatile and gravity-driven separation of oil and water. Journal of Membrane Science, 565, 131-144.
  • Wu, M., Mu, P., Li, B., Wang, Q., Yang, Y., & Li, J. 2020. Pine powders-coated PVDF multifunctional membrane for highly efficient switchable oil/water emulsions separation and dyes adsorption. Separation and Purification Technology, 248, 117028.
  • Yu, L., Han, M., & He, F. 2017. A review of treating oily wastewater. Arabian Journal of Chemistry, 10, S1913-S1922.
  • Yu, L., Wang, H., Zhang, Y., Zhang, B., & Liu, J. 2016. Recent advances in halloysite nanotube derived composites for water treatment. Environmental Science: Nano, 3(1), 28-44.
  • Yue, X., Li, Z., Zhang, T., Yang, D., & Qiu, F. 2019. Design and fabrication of superwetting fiber-based membranes for oil/water separation applications. Chemical Engineering Journal, 364, 292-309.
  • Zhang, N., Yang, N., Zhang, L., Jiang, B., Sun, Y., Ma, J., & Peng, F. 2020. Facile hydrophilic modification of PVDF membrane with Ag/EGCG decorated micro/nanostructural surface for efficient oil-in-water emulsion separation. Chemical Engineering Journal, 402, 126200.
  • Zhang, X., Wei, C., Ma, S., Zhang, C., Li, Y., Chen, D., ... & Huang, X. 2021. Janus poly (vinylidene fluoride)-graft-(TiO2 nanoparticles and PFDS) membranes with loose architecture and asymmetric wettability for efficient switchable separation of surfactant-stabilized oil/water emulsions. Journal of Membrane Science, 640, 119837.
  • Zhao, X., Su, Y., Liu, Y., Li, Y., & Jiang, Z. 2016. Free-standing graphene oxide-palygorskite nanohybrid membrane for oil/water separation. ACS Applied Materials & Interfaces, 8(12), 8247-8256.
  • Zhu, F., Su, J., Zhao, Y., Hussain, M., Yasin, S., Yu, B., & Han, J. 2019. Influence of halloysite nanotubes on poly (lactic acid) melt-blown nonwovens compatibilized by dual-monomer melt-grafted poly (lactic acid). Textile Research Journal, 89, 4173-4185

Oily water separation by using biocomposite membrane

Yıl 2022, , 1443 - 1450, 28.12.2022
https://doi.org/10.35414/akufemubid.1147928

Öz

In this study, the performance of biodegradable polylactic acid polymer in oil-water separation was investigated. Within the scope of the study, membranes were prepared and vacuum filtration process was applied. The affinity of the membrane for oil and water was determined by swelling tests in oil and water.In order to increase the hydrophilicity of the membrane and improve its performance, haloside nanotube (HNT) was added and turned into nanocomposite. The surface morphology of the membrane was determined by scanning electron microscopy (SEM). In the study, the effects of halocyte nanotube ratio (0-20%) on oil/water swelling ratios (adsorption ratio), fluid flux through the membrane and oil rejection were determined. Soybean oil was chosen as the model oil in the study. Separation tests were carried out by preparing soybean oil-water emulsion. According to the results obtained, 97.2% pure water was obtained from the bottom stream with the addition of 5% HNT by weight in the soybean oil separation. Besides the high separation, the water flow on the basis of liters per hour was obtained over 1714.3 LMH.

Proje Numarası

FBA-2021-3598

Kaynakça

  • Al-Anzi, B. S., & Siang, O. C. 2017. Recent developments of carbon based nanomaterials and membranes for oily wastewater treatment. RSC Advances, 7(34), 20981-20994. Chen, W., Peng, J., Su, Y., Zheng, L., Wang, L., & Jiang, Z. 2009. Separation of oil/water emulsion using Pluronic F127 modified polyethersulfone ultrafiltration membranes. Separation and Purification Technology, 66(3), 591-597.
  • Dmitrieva, E. S., Anokhina, T. S., Novitsky, E. G., Volkov, V. V., Borisov, I. L., & Volkov, A. V. 2022. Polymeric Membranes for Oil-Water Separation: A Review. Polymers, 14(5), 980.
  • Dong, Y., Marshall, J., Haroosh, H. J., Mohammadzadehmoghadam, S., Liu, D., Qi, X., & Lau, K. T. 2015. Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: Influence of HNT content and modification. Composites Part A: Applied Science and Manufacturing, 76, 28-36.
  • Fane, A. G., Wang, R., & Hu, M. X. 2015. Synthetic membranes for water purification: status and future. Angewandte Chemie International Edition, 54(11), 3368-3386.
  • Foroughirad, S., Haddadi-Asl, V., Khosravi, A., & Salami-Kalajahi, M. 2020. Synthesis of magnetic nanoparticles-decorated halloysite nanotubes/poly([2(acryloyloxy)ethyl]trimethylammonium chloride) hybrid nanoparticles for removal of Sunset Yellow from water. Journal of Polymer Research, 27(10), 1–10.
  • Hamad, K., Kaseem, M., Ayyoob, M., Joo, J., & Deri, F. 2018. Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science, 85, 83-127.
  • Ilyas, R. A., Sapuan, S. M., Harussani, M. M., Hakimi, M. Y. A. Y., Haziq, M. Z. M., Atikah, M. S. N. & Asrofi, M. 2021. Polylactic acid (PLA) biocomposite: Processing, additive manufacturing and advanced applications. Polymers, 13(8), 1326.
  • Liu, W., Cui, M., Shen, Y., Zhu, G., Luo, L., Li, M., & Li, J. 2019. Waste cigarette filter as nanofibrous membranes for on-demand immiscible oil/water mixtures and emulsions separation. Journal of colloid and interface science, 549, 114-122.
  • Liu, Y., Zhang, F., Zhu, W., Su, D., Sang, Z., Yan, X., & Dou, S. X. 2020. A multifunctional hierarchical porous SiO2/GO membrane for high efficiency oil/water separation and dye removal. Carbon, 160, 88-97.
  • Nayak, K., Kumar, A., & Tripathi, B. P. 2022. Molecular grafting and zwitterionization based antifouling and underwater superoleophobic PVDF membranes for oil/water separation. Journal of Membrane Science, 643, 120038.
  • Nofar, M., Sacligil, D., Carreau, P. J., Kamal, M. R., & Heuzey, M. C. 2019. Poly (lactic acid) blends: Processing, properties and applications. International Journal Of Biological Macromolecules, 125, 307-360.
  • Ouyang, J., Mu, D., Zhang, Y., & Yang, H. 2018. Mineralogy and physico-chemical data of two newly discovered halloysite in China and their contrasts with some typical minerals. Minerals, 8(3), 108.
  • Pereira, V., dos Santos Paz, I., Gomes, A. L., Leite, L. A., Fechine, P. B. A., & de sá Moreira de S. Filho, M. 2021. Effects of acid activation on the halloysite nanotubes for curcumin incorporation and release. Applied Clay Science, 200, 105953.
  • Sun, Y., Zong, Y., Yang, N., Zhang, N., Jiang, B., Zhang, L., & Xiao, X. 2020. Surface hydrophilic modification of PVDF membranes based on tannin and zwitterionic substance towards effective oil-in-water emulsion separation. Separation and Purification Technology, 234, 116015.
  • Venault, A., Chiang, C. H., Chang, H. Y., Hung, W. S., & Chang, Y. 2018. Graphene oxide/PVDF VIPS membranes for switchable, versatile and gravity-driven separation of oil and water. Journal of Membrane Science, 565, 131-144.
  • Wu, M., Mu, P., Li, B., Wang, Q., Yang, Y., & Li, J. 2020. Pine powders-coated PVDF multifunctional membrane for highly efficient switchable oil/water emulsions separation and dyes adsorption. Separation and Purification Technology, 248, 117028.
  • Yu, L., Han, M., & He, F. 2017. A review of treating oily wastewater. Arabian Journal of Chemistry, 10, S1913-S1922.
  • Yu, L., Wang, H., Zhang, Y., Zhang, B., & Liu, J. 2016. Recent advances in halloysite nanotube derived composites for water treatment. Environmental Science: Nano, 3(1), 28-44.
  • Yue, X., Li, Z., Zhang, T., Yang, D., & Qiu, F. 2019. Design and fabrication of superwetting fiber-based membranes for oil/water separation applications. Chemical Engineering Journal, 364, 292-309.
  • Zhang, N., Yang, N., Zhang, L., Jiang, B., Sun, Y., Ma, J., & Peng, F. 2020. Facile hydrophilic modification of PVDF membrane with Ag/EGCG decorated micro/nanostructural surface for efficient oil-in-water emulsion separation. Chemical Engineering Journal, 402, 126200.
  • Zhang, X., Wei, C., Ma, S., Zhang, C., Li, Y., Chen, D., ... & Huang, X. 2021. Janus poly (vinylidene fluoride)-graft-(TiO2 nanoparticles and PFDS) membranes with loose architecture and asymmetric wettability for efficient switchable separation of surfactant-stabilized oil/water emulsions. Journal of Membrane Science, 640, 119837.
  • Zhao, X., Su, Y., Liu, Y., Li, Y., & Jiang, Z. 2016. Free-standing graphene oxide-palygorskite nanohybrid membrane for oil/water separation. ACS Applied Materials & Interfaces, 8(12), 8247-8256.
  • Zhu, F., Su, J., Zhao, Y., Hussain, M., Yasin, S., Yu, B., & Han, J. 2019. Influence of halloysite nanotubes on poly (lactic acid) melt-blown nonwovens compatibilized by dual-monomer melt-grafted poly (lactic acid). Textile Research Journal, 89, 4173-4185
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Filiz Uğur Nigiz 0000-0003-0509-8425

Proje Numarası FBA-2021-3598
Yayımlanma Tarihi 28 Aralık 2022
Gönderilme Tarihi 24 Temmuz 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Uğur Nigiz, F. (2022). Biyokompozit membran ile yağlı atık suların saflaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(6), 1443-1450. https://doi.org/10.35414/akufemubid.1147928
AMA Uğur Nigiz F. Biyokompozit membran ile yağlı atık suların saflaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Aralık 2022;22(6):1443-1450. doi:10.35414/akufemubid.1147928
Chicago Uğur Nigiz, Filiz. “Biyokompozit Membran Ile yağlı atık suların saflaştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, sy. 6 (Aralık 2022): 1443-50. https://doi.org/10.35414/akufemubid.1147928.
EndNote Uğur Nigiz F (01 Aralık 2022) Biyokompozit membran ile yağlı atık suların saflaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 6 1443–1450.
IEEE F. Uğur Nigiz, “Biyokompozit membran ile yağlı atık suların saflaştırılması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 6, ss. 1443–1450, 2022, doi: 10.35414/akufemubid.1147928.
ISNAD Uğur Nigiz, Filiz. “Biyokompozit Membran Ile yağlı atık suların saflaştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/6 (Aralık 2022), 1443-1450. https://doi.org/10.35414/akufemubid.1147928.
JAMA Uğur Nigiz F. Biyokompozit membran ile yağlı atık suların saflaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:1443–1450.
MLA Uğur Nigiz, Filiz. “Biyokompozit Membran Ile yağlı atık suların saflaştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 6, 2022, ss. 1443-50, doi:10.35414/akufemubid.1147928.
Vancouver Uğur Nigiz F. Biyokompozit membran ile yağlı atık suların saflaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(6):1443-50.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.