Araştırma Makalesi
BibTex RIS Kaynak Göster

Filament Eritme Yöntemiyle Üretilen PA12 ile Ticari PA12’nin Morfolojik, Termal ve Mekanik Özelliklerinin Karşılaştırılması

Yıl 2023, , 1019 - 1028, 31.08.2023
https://doi.org/10.35414/akufemubid.1228239

Öz

Polimer malzemeler, dünya ekonomisinin çeşitli alanlarında yaygın olarak kullanılmakta ve özellikleri hızla gelişmektedir. Eklemeli imalat (Eİ) gibi yeni teknolojilerin ortaya çıkışı, polimer malzemeler ve kompozitler için daha yüksek performans ve işlevsellik gibi ihtiyaçlar doğurmuştur. Polimer toz malzemeler, Eİ teknolojilerinde en çok kullanılan sarf malzemelerindendir ve ağırlıklı olarak seçici lazer sinterleme (SLS) teknolojisinde kullanılır. SLS, birbirini izleyen toz hammadde katmanlarını 3 boyutlu (3B) bilgisayar destekli tasarım modeline göre seçici olarak sinterleyerek 3B katı bileşenleri üreten bir toz yatağında füzyon işlemidir. Bu çalışmada; Poliamid 12 (PA12), fiber eritme yöntemi kullanılarak toz halinde üretilmiş ve masaüstü SLS sistemlerde kullanılmak üzere optimize edilmiştir. Yapılan çalışmada PA12, eriyik eğirme cihazında farklı çaplarda fiber iplikler haline getirilmiştir. Elde edilen fiber iplikler kesilerek ısıtıcılı balon karıştırıcı içinde Polietilen Oksit (PEO) ile termal işleme tabi tutulmuş ve küresel forma yakın tozlar elde edilmiştir. Kurutma ve eleme işlemlerinden geçirilen bu tozlarla, açık parametreye sahip bir SLS (Seçici lazer sinterleme) 3B yazıcıda baskı alınmıştır. Toz numunelerine diferansiyel taramalı kalorimetri (DSC), taramalı elektron mikroskobisi (SEM) ve elek analizi yapılmıştır. Baskı numunelerine ise; çekme, sertlik, darbe, yoğunluk, ergime akış indeksi (EAİ), vicat yumuşama sıcaklığı testleri yapılmıştır ve numunelerin mikroyapı incelemesi için SEM analizi kullanılmıştır. Numunelerin testlerin sonuçları incelenerek ticari ve üretilen PA12’nin özellikleri karşılaştırılmıştır.

Destekleyen Kurum

Marmara Üniversitesi Bilimsel Araştırma Projeleri Birimi (BAPKO)

Proje Numarası

FYL-2022-10566

Kaynakça

  • Bai, P. and Li, Y., 2011. Preparation and properties of nylon composite powder by selective laser sintering. Advanced Materials Research, 152-153, 326-329.
  • Caulfield, B., McHugh, P.E. and Lohfeld, S., 2007. Dependence of mechanical properties of polyamide components on build parameters in the SLS process. Journal of Materials Processing Technology, 182, 477-488.
  • Choudhari, C.M. and Patil, V.D., 2016. Product development and its comparative analysis by SLA, SLS and FDM rapid prototyping processes. IOP Conference Series: Materials Science and Engineering. 149, 1-8.
  • Fanselow, S., Emamjomeh, S.E., Wirth, K.E., Schmidt, J. and Peukert, W., 2016. Production of spherical wax and polyolefin microparticles by melt emulsification for additive manufacturing. Chemical Engineering Science, 141, 282-292.
  • Feng, L., Wang, Y. and Wie, Q., 2019. PA12 Powder recycled from SLS for FDM. Polymers. 11, 727-742.
  • Floersheim, R.B., Hou, G. and Firestone, K., 2009, CFPC material characteristics and SLS prototyping process, Rapid Prototyping Journal, 15(5), 339-345.
  • Gomes, P.C., Piñeiro, O.G., Alves, A.C. and Carneiro, O.S., 2022. On the reuse of sls polyamide 12 powder. Materials. 15(16).
  • Goodridge, R.D., Tuck, C.J. and Hague, R.J.M., 2012 Laser sintering of polyamides and other polymers. Progress in Materials Science. 57(2), 229-267.
  • Kleijnen, R.G., Schmid, M. and Wegener, K., 2019. Production and processing of a sphericalpolybutylene terephthalate powder for laser sintering. Applied Science, 9, 1308-1325.
  • Ming, L.W. and Gibson I., 1999. Possibility of colouring SLS prototypes using the ink-jet method. Rapid Prototyping Journal. 5(4), 152-153.
  • Obsta, P., Launhardta, M., Drummera, D., Osswaldb, P.V. and Osswald, T.A., 2018. Failure criterion for PA12 SLS additive manufactured parts. Additive Manufacturing, 21, 619-627.
  • Salazar, A., Rico, A., Rodríguez, J., Segurado Escudero, J., Seltzer, R. and Cutillas, M.E.F., 2014. Fatigue crack growth of SLS polyamide 12: Effect of reinforcement and temperature. Composites: Part B, 59, 285-292.
  • Salmoria, G.V., Paggi, R.A., Lago, A. and Beal, V.E., 2011. Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering. Polymer Testing, 30(6), 611-615.
  • Salmoria, G.V., Leite, J.L., Vieira, L.F., Pires, A.T.N. and Roesler, C.R.M., 2012. Mechanical properties of PA6/PA12 blend specimens prepared by selective laser sintering. Polymer Testing, 31, 411-416.
  • Schmid, M., Amado, A. and Wegener, K., 2015. Polymer powders for selective laser sintering (SLS). AIP Conference Proceedings, 1664, 160009-160014.
  • Schmidta, J., Sachsa, M., Blümela, C., Winzera, B., Tonia, F., Wirtha, K.E. and Peukerta, W., 2015. A novel process chain for the production of spherical SLS polymer powders with good flowability. Procedia Engineering, 102, 550-556.
  • Wang, G., Wang, P., Zhen, Z., Zhang, W. and Ji, J., 2015. Preparation of PA12 microspheres with adjustable morphology and size for use in SLS processing. Materials&Design, 87, 656-662
  • Wang, Y., Xu, Z., Wu, D. and Bai, J., 2020. Current status and prospects of polymer powder 3D printing technologies. Materials, 13, 2406-2425.
  • Williams, J.D. and Deckard, C.R., 1998, Advances in modeling the effects of selected parameters on the SLS process. Rapid Prototyping Journal, 4(2), 90-100.
  • Yuan, S., Shen, F., Chua, C.K. and Zhou, K., 2019. Polymeric composites for powder-based additive manufacturing: Materials and applications. Progress in Polymer Science, 91, 141-168
  • Zhou, Y., Xi, S., Huang, Y., Kong, M., Yang, Q. and Li, G., 2020. Preparation of near-spherical PA12 particles for selective laser sintering via Plateau-Rayleigh instability of molten fibers. Materials&Design, 190.

Comparison of Morphological, Thermal and Mechanical Properties of PA12 Produced by Filament Melting Method and Commercial PA12

Yıl 2023, , 1019 - 1028, 31.08.2023
https://doi.org/10.35414/akufemubid.1228239

Öz

Polymer materials are widely used in various fields of the world economy and their properties are developing rapidly. The emergence of new technologies such as additive manufacturing (AM) has created needs such as higher performance and functionality for polymer materials and composites. Polymer powder materials are one of the most used consumables in EI technologies and are mainly used in selective laser sintering (SLS) technology. SLS is a powder bed fusion process that produces 3D solid components by selectively sintering successive layers of powder raw materials according to a 3D (3D) computer aided design model. In this study, Polyamide 12 (PA12) pellets were pulverized by fiber melting method and optimized for use in desktop SLS systems. In the study, PA12 was turned into fiber yarns of different diameters in the melt spinning device. The fiber yarns obtained were cut and subjected to thermal treatment with Polyethylene Oxide (PEO) in a heated balloon mixer and powders close to spherical form were obtained. These powders, which have undergone drying and sieving processes, were printed on an SLS (Selective laser sintering) 3D printer with open parameter. Differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and sieve analysis were performed on powder samples. For printing samples; tensile, hardness, impact, density, melt flow index (EAI), vicat softening temperature tests were performed and SEM analysis was used for microstructural examination of the samples. The results of the tests of the samples were examined and the properties of commercial and produced PA12 were compared.

Proje Numarası

FYL-2022-10566

Kaynakça

  • Bai, P. and Li, Y., 2011. Preparation and properties of nylon composite powder by selective laser sintering. Advanced Materials Research, 152-153, 326-329.
  • Caulfield, B., McHugh, P.E. and Lohfeld, S., 2007. Dependence of mechanical properties of polyamide components on build parameters in the SLS process. Journal of Materials Processing Technology, 182, 477-488.
  • Choudhari, C.M. and Patil, V.D., 2016. Product development and its comparative analysis by SLA, SLS and FDM rapid prototyping processes. IOP Conference Series: Materials Science and Engineering. 149, 1-8.
  • Fanselow, S., Emamjomeh, S.E., Wirth, K.E., Schmidt, J. and Peukert, W., 2016. Production of spherical wax and polyolefin microparticles by melt emulsification for additive manufacturing. Chemical Engineering Science, 141, 282-292.
  • Feng, L., Wang, Y. and Wie, Q., 2019. PA12 Powder recycled from SLS for FDM. Polymers. 11, 727-742.
  • Floersheim, R.B., Hou, G. and Firestone, K., 2009, CFPC material characteristics and SLS prototyping process, Rapid Prototyping Journal, 15(5), 339-345.
  • Gomes, P.C., Piñeiro, O.G., Alves, A.C. and Carneiro, O.S., 2022. On the reuse of sls polyamide 12 powder. Materials. 15(16).
  • Goodridge, R.D., Tuck, C.J. and Hague, R.J.M., 2012 Laser sintering of polyamides and other polymers. Progress in Materials Science. 57(2), 229-267.
  • Kleijnen, R.G., Schmid, M. and Wegener, K., 2019. Production and processing of a sphericalpolybutylene terephthalate powder for laser sintering. Applied Science, 9, 1308-1325.
  • Ming, L.W. and Gibson I., 1999. Possibility of colouring SLS prototypes using the ink-jet method. Rapid Prototyping Journal. 5(4), 152-153.
  • Obsta, P., Launhardta, M., Drummera, D., Osswaldb, P.V. and Osswald, T.A., 2018. Failure criterion for PA12 SLS additive manufactured parts. Additive Manufacturing, 21, 619-627.
  • Salazar, A., Rico, A., Rodríguez, J., Segurado Escudero, J., Seltzer, R. and Cutillas, M.E.F., 2014. Fatigue crack growth of SLS polyamide 12: Effect of reinforcement and temperature. Composites: Part B, 59, 285-292.
  • Salmoria, G.V., Paggi, R.A., Lago, A. and Beal, V.E., 2011. Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering. Polymer Testing, 30(6), 611-615.
  • Salmoria, G.V., Leite, J.L., Vieira, L.F., Pires, A.T.N. and Roesler, C.R.M., 2012. Mechanical properties of PA6/PA12 blend specimens prepared by selective laser sintering. Polymer Testing, 31, 411-416.
  • Schmid, M., Amado, A. and Wegener, K., 2015. Polymer powders for selective laser sintering (SLS). AIP Conference Proceedings, 1664, 160009-160014.
  • Schmidta, J., Sachsa, M., Blümela, C., Winzera, B., Tonia, F., Wirtha, K.E. and Peukerta, W., 2015. A novel process chain for the production of spherical SLS polymer powders with good flowability. Procedia Engineering, 102, 550-556.
  • Wang, G., Wang, P., Zhen, Z., Zhang, W. and Ji, J., 2015. Preparation of PA12 microspheres with adjustable morphology and size for use in SLS processing. Materials&Design, 87, 656-662
  • Wang, Y., Xu, Z., Wu, D. and Bai, J., 2020. Current status and prospects of polymer powder 3D printing technologies. Materials, 13, 2406-2425.
  • Williams, J.D. and Deckard, C.R., 1998, Advances in modeling the effects of selected parameters on the SLS process. Rapid Prototyping Journal, 4(2), 90-100.
  • Yuan, S., Shen, F., Chua, C.K. and Zhou, K., 2019. Polymeric composites for powder-based additive manufacturing: Materials and applications. Progress in Polymer Science, 91, 141-168
  • Zhou, Y., Xi, S., Huang, Y., Kong, M., Yang, Q. and Li, G., 2020. Preparation of near-spherical PA12 particles for selective laser sintering via Plateau-Rayleigh instability of molten fibers. Materials&Design, 190.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Karekterizasyonu
Bölüm Makaleler
Yazarlar

Serbay Bektaş 0000-0002-6777-3265

Münir Taşdemir 0000-0001-8635-7251

Proje Numarası FYL-2022-10566
Erken Görünüm Tarihi 29 Ağustos 2023
Yayımlanma Tarihi 31 Ağustos 2023
Gönderilme Tarihi 2 Ocak 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Bektaş, S., & Taşdemir, M. (2023). Filament Eritme Yöntemiyle Üretilen PA12 ile Ticari PA12’nin Morfolojik, Termal ve Mekanik Özelliklerinin Karşılaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(4), 1019-1028. https://doi.org/10.35414/akufemubid.1228239
AMA Bektaş S, Taşdemir M. Filament Eritme Yöntemiyle Üretilen PA12 ile Ticari PA12’nin Morfolojik, Termal ve Mekanik Özelliklerinin Karşılaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ağustos 2023;23(4):1019-1028. doi:10.35414/akufemubid.1228239
Chicago Bektaş, Serbay, ve Münir Taşdemir. “Filament Eritme Yöntemiyle Üretilen PA12 Ile Ticari PA12’nin Morfolojik, Termal Ve Mekanik Özelliklerinin Karşılaştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, sy. 4 (Ağustos 2023): 1019-28. https://doi.org/10.35414/akufemubid.1228239.
EndNote Bektaş S, Taşdemir M (01 Ağustos 2023) Filament Eritme Yöntemiyle Üretilen PA12 ile Ticari PA12’nin Morfolojik, Termal ve Mekanik Özelliklerinin Karşılaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 4 1019–1028.
IEEE S. Bektaş ve M. Taşdemir, “Filament Eritme Yöntemiyle Üretilen PA12 ile Ticari PA12’nin Morfolojik, Termal ve Mekanik Özelliklerinin Karşılaştırılması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 4, ss. 1019–1028, 2023, doi: 10.35414/akufemubid.1228239.
ISNAD Bektaş, Serbay - Taşdemir, Münir. “Filament Eritme Yöntemiyle Üretilen PA12 Ile Ticari PA12’nin Morfolojik, Termal Ve Mekanik Özelliklerinin Karşılaştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/4 (Ağustos 2023), 1019-1028. https://doi.org/10.35414/akufemubid.1228239.
JAMA Bektaş S, Taşdemir M. Filament Eritme Yöntemiyle Üretilen PA12 ile Ticari PA12’nin Morfolojik, Termal ve Mekanik Özelliklerinin Karşılaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:1019–1028.
MLA Bektaş, Serbay ve Münir Taşdemir. “Filament Eritme Yöntemiyle Üretilen PA12 Ile Ticari PA12’nin Morfolojik, Termal Ve Mekanik Özelliklerinin Karşılaştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 4, 2023, ss. 1019-28, doi:10.35414/akufemubid.1228239.
Vancouver Bektaş S, Taşdemir M. Filament Eritme Yöntemiyle Üretilen PA12 ile Ticari PA12’nin Morfolojik, Termal ve Mekanik Özelliklerinin Karşılaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(4):1019-28.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.