Araştırma Makalesi
BibTex RIS Kaynak Göster

Uyarı-Cevap Akrilamid/Sodyum Metakrilat/Kaolin Yarı-İç İçe Geçmiş Polimer Ağ Kompozit Hidrojellerinin Karakterizasyonu

Yıl 2023, , 984 - 990, 31.08.2023
https://doi.org/10.35414/akufemubid.1247090

Öz

Kendi kendini onarma, uyarı-cevap yeteneği, su sorpsiyonu kapasitesi ve şekil hafızası avantajları ile hidrojeller yaygın bir şekilde kullanılmaktadır. Ancak hidrojellerin su sorpsiyonuna ek olarak mekanik ve termal özelliklerini de geliştirmek amacıyla yeni stratejiler geliştirilmiştir. Bu çalışmada sodyum metakrilat miktarının optimizasyonu yapılarak serbest radikal polimerizasyonu ile akrilamit/sodyum temelli uyarı-cevap hidrojelleri sentezlenmiştir. Hidrojel ağına optimum miktarda polietilen glikol 400 (PEG-400) eklenmesi ile yarı-iç içe geçmiş polimer ağ (semi-IPN) hidrojelleri hazırlanmıştır. Kaolin ilavesi ile semi-IPN kompozit hidrojellerinin farklı pH ve sıcaklık etkisi altında şişme özellikleri incelenmiştir. Semi-IPN kompozit hidrojelinin pH 7 ve 25 °C’de maksimum şişme yüzdesi 24214% olarak belirlenmiştir. Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) analizleri hidrojel örneklerinin başarılı bir şekilde sentezlendiğini ortaya çıkarmıştır. Hidrojel örneklerinin morfolojik yapısı taramalı elektron mikroskobu (SEM) analizleri ile incelenmiştir. Hem hidrojelin tabakalı yapısında suyun ilerleyişi hem de suyun gözeneklere difüzyonu, semi-IPN kompozit hidrojelini akrilamit/sodyum metakrilat temelli hidrojel ile karşılaştırıldığında daha çok şişen bir malzeme yapmıştır.

Kaynakça

  • Boztepe, C., Künkül, A., Yüceer, M., 2020. Application of artificial intelligence in modeling of the doxorubicin release behavior of pH and temperature responsive poly(NIPAAm-co-AAc)-PEG IPN hydrogel. Journal of Drug Delivery Science and Technology, 57, 101603.
  • Dai, H., Huang, H., 2017 Synthesis, characterization and properties of pineapple peel cellulose-g-acrylic acid hydrogel loaded with kaolin and sepia ink. Cellulose, 24(1), 69-84.
  • Dogu, Y., Okay, O., 2006 Swelling–deswelling kinetics of poly(N-isopropylacrylamide) hydrogels formed in PEG solutions. Journal of Applied Polymer Science, 99(1), 37-44.
  • Dragan, E. S., Apopei, D. F., 2011. Synthesis and swelling behavior of pH-sensitive semi-interpenetrating polymer network composite hydrogels based on native and modified potatoes starch as potential sorbent for cationic dyes. Chemical Engineering Journal, 178, 252-263.
  • Hennink, W. E., van Nostrum, C. F., 2012. Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 64, 223-236.
  • Hoffman, A. S., 2012. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18-23. Hu, S., Zhi, Y., Shan, S., Ni, Y., 2022. Research progress of smart response composite hydrogels based on nanocellulose. Carbohydrate Polymers, 275, 118741.
  • Huang, H., Yang, Q., Zhang, L., Huang, C., Liang, Y., 2022. Polyacrylamide modified kaolin enhances adsorption of sodium alginate/carboxymethyl chitosan hydrogel beads for copper ions. Chemical Engineering Research and Design, 180, 296-305.
  • Huang, L., Li, C., Yuan, W., Shi, G., 2013. Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide hydrogels. Nanoscale, 5(9), 3780-3786.
  • Kalagasidis Krušić, M., Milosavljević, N., Debeljković, A., Üzüm, Ö. B., Karadağ, E., 2012. Removal of Pb2+ Ions from Water by Poly(Acrylamide-co-Sodium Methacrylate) Hydrogels. Water, Air, & Soil Pollution, 223(7), 4355-4368.
  • Kaşgöz, H., Durmuş, A., Kaşgöz, A., 2008. Enhanced swelling and adsorption properties of AAm-AMPSNa/clay hydrogel nanocomposites for heavy metal ion removal. Polymers for Advanced Technologies, 19(3), 213-220.
  • Khan, S., Ullah, A., Ullah, K., Rehman, N.-u., 2016. Insight into hydrogels. Designed Monomers and Polymers, 19(5), 456-478.
  • Laftah, W. A., Hashim, S., Ibrahim, A. N., 2011. Polymer Hydrogels: A Review. Polymer-Plastics Technology and Engineering, 50(14), 1475-1486.
  • Mahinroosta, M., Jomeh Farsangi, Z., Allahverdi, A., Shakoori, Z., 2018. Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. Materials Today Chemistry, 8, 42-55.
  • Mohan, Y. M., Murthy, P. S. K., Sreeramulu, J., Raju, K. M., 2005. Swelling behavior of semi-interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(acrylamide-co-sodium methacrylate). Journal of Applied Polymer Science, 98(1), 302-314.
  • Murali Mohan, Y., Keshava Murthy, P. S., Mohana Raju, K., 2005. Synthesis, characterization and effect of reaction parameters on swelling properties of acrylamide–sodium methacrylate superabsorbent copolymers. Reactive and Functional Polymers, 63(1), 11-26.
  • Murali Mohan, Y., Keshava Murthy, P. S., Mohana Raju, K., 2006. Preparation and swelling behavior of macroporous poly(acrylamide-co-sodium methacrylate) superabsorbent hydrogels. Journal of Applied Polymer Science, 101(5), 3202-3214.
  • Nie, J., Lu, W., Ma, J., Yang, L., Wang, Z., Qin, A., et al., 2015. Orientation in multi-layer chitosan hydrogel: morphology, mechanism and design principle. Scientific Reports, 5(1), 7635.
  • Pereira, A. G. B., Rodrigues, F. H. A., Paulino, A. T., Martins, A. F., Fajardo, A. R., 2021. Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: A review. Journal of Cleaner Production, 284, 124703.
  • Pourjavadi, A., Ayyari, M., Amini-Fazl, M. S., 2008. Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. European Polymer Journal, 44(4), 1209-1216.
  • Pourjavadi, A., Ghasemzadeh, H., Soleyman, R., 2007a. Synthesis, characterization, and swelling behavior of alginate-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites. Journal of Applied Polymer Science, 105(5), 2631-2639.
  • Pourjavadi, A., Hosseinzadeh, H., Mahdavinia, G. R., Zohuriaan-Mehr, M. J., 2007b. Carrageenan-g-Poly(sodium Acrylate)/Kaolin Superabsorbent Hydrogel Composites: Synthesis, Characterisation and Swelling Behaviour. Polymers and Polymer Composites, 15(1), 43-51.
  • Shirsath, S. R., Patil, A. P., Patil, R., Naik, J. B., Gogate, P. R., Sonawane, S. H., 2013. Removal of Brilliant Green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: A comparative study. Ultrasonics Sonochemistry, 20(3), 914-923.
  • Sirousazar, M., Kokabi, M., Hassan, Z. M., Bahramian, A. R., 2012. Mineral kaolinite clay for preparation of nanocomposite hydrogels. Journal of Applied Polymer Science, 125(S1), E122-E130.
  • Sivakumar, R., Lee, N. Y., 2022. Adsorptive removal of organic pollutant methylene blue using polysaccharide-based composite hydrogels. Chemosphere, 286, 131890.
  • Sujan, M. I., Sarkar, S. D., Sultana, S., Bushra, L., Tareq, R., Roy, C. K., 2020. Bi-functional silica nanoparticles for simultaneous enhancement of mechanical strength and swelling capacity of hydrogels. RSC Advances, 10(11), 6213-6222.
  • Tanan, W., Panichpakdee, J., Saengsuwan, S., 2019. Novel biodegradable hydrogel based on natural polymers: Synthesis, characterization, swelling/reswelling and biodegradability. European Polymer Journal, 112, 678-687.
  • Ullah, F., Othman, M. B., Javed, F., Ahmad, Z., Md Akil, H., 2015. Classification, processing and application of hydrogels: A review. Materials Science and Engineering C: Materials Biological Applications, 57, 414-33.
  • Üzüm, Ö. B., Karadağ, E., 2011. Dye Sorption and Water Uptake Properties of Crosslinked Acrylamide/Sodium Methacrylate Copolymers and Semi-Interpenetrating Polymer Networks Composed of PEG. Separation Science and Technology, 46(3), 489-499.
  • Üzüm, Ö. B., Karadağ, E., 2012. Behavior of semi IPN hydrogels composed of PEG and AAm/SMA copolymers in swelling and uptake of Janus Green B from aqueous solutions. Journal of Applied Polymer Science, 125(5), 3318-3328.
  • Wang, J., Lin, L., Cheng, Q., Jiang, L., 2012. A Strong Bio-Inspired Layered PNIPAM–Clay Nanocomposite Hydrogel. Angewandte Chemie International Edition, 51(19), 4676-4680.
  • Wang, Y., Xia, Y., Xiang, P., Dai, Y., Gao, Y., Xu, H., 2022. Protein-assisted freeze-tolerant hydrogel with switchable performance toward customizable flexible sensor. Chemical Engineering Journal, 428, 131171.
  • Xu, Z., Li, J., Zhou, H., Jiang, X., Yang, C., Wang, F., 2016. Morphological and swelling behavior of cellulose nanofiber (CNF)/poly(vinyl alcohol) (PVA) hydrogels: poly(ethylene glycol) (PEG) as porogen. RSC Advances, 6(49), 43626-43633.

Characterization of Stimuli-Responsive Acrylamide/Sodium Methacrylate/Kaolin Semi-Interpenetrating Polymer Network Composite Hydrogels

Yıl 2023, , 984 - 990, 31.08.2023
https://doi.org/10.35414/akufemubid.1247090

Öz

With the advantages of their self-healing, stimuli-response ability, water sorption capacity and shape memory, hydrogels have been commonly utilized. However, new strategies have been developed to enhance mechanical and thermal properties of hydrogels in addition to increase their water sorption. In this study, stimuli-responsive acrylamide/sodium methacrylate based hydrogels were synthesized with the optimization of sodium methacrylate amount by free radical polymerization. With the incorporation of optimum amount of polyethylene glycol 400 (PEG-400) into the hydrogel network, semi-interpenetrating polymer network (semi-IPN) hydrogels were prepared. With the addition of kaolin, swelling properties of the semi-IPN composite hydrogels were investigated in water under the effect of different pH and temperature. Maximum swelling percent of the semi-IPN composite hydrogels was determined as 24214% at pH 7 and 25 °C. Fourier transform infrared spectroscopy (FTIR) analyses revealed that hydrogel samples were successfully synthesized. Morphological structure of hydrogel samples was examined by scanning electron microscopy (SEM) analyses. Both of the water motion through the hydrogel layered structure and water diffusion into the pores made the semi-IPN composite hydrogel more swollen material compared to the acrylamide/sodium methacrylate based hydrogel.

Kaynakça

  • Boztepe, C., Künkül, A., Yüceer, M., 2020. Application of artificial intelligence in modeling of the doxorubicin release behavior of pH and temperature responsive poly(NIPAAm-co-AAc)-PEG IPN hydrogel. Journal of Drug Delivery Science and Technology, 57, 101603.
  • Dai, H., Huang, H., 2017 Synthesis, characterization and properties of pineapple peel cellulose-g-acrylic acid hydrogel loaded with kaolin and sepia ink. Cellulose, 24(1), 69-84.
  • Dogu, Y., Okay, O., 2006 Swelling–deswelling kinetics of poly(N-isopropylacrylamide) hydrogels formed in PEG solutions. Journal of Applied Polymer Science, 99(1), 37-44.
  • Dragan, E. S., Apopei, D. F., 2011. Synthesis and swelling behavior of pH-sensitive semi-interpenetrating polymer network composite hydrogels based on native and modified potatoes starch as potential sorbent for cationic dyes. Chemical Engineering Journal, 178, 252-263.
  • Hennink, W. E., van Nostrum, C. F., 2012. Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 64, 223-236.
  • Hoffman, A. S., 2012. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18-23. Hu, S., Zhi, Y., Shan, S., Ni, Y., 2022. Research progress of smart response composite hydrogels based on nanocellulose. Carbohydrate Polymers, 275, 118741.
  • Huang, H., Yang, Q., Zhang, L., Huang, C., Liang, Y., 2022. Polyacrylamide modified kaolin enhances adsorption of sodium alginate/carboxymethyl chitosan hydrogel beads for copper ions. Chemical Engineering Research and Design, 180, 296-305.
  • Huang, L., Li, C., Yuan, W., Shi, G., 2013. Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide hydrogels. Nanoscale, 5(9), 3780-3786.
  • Kalagasidis Krušić, M., Milosavljević, N., Debeljković, A., Üzüm, Ö. B., Karadağ, E., 2012. Removal of Pb2+ Ions from Water by Poly(Acrylamide-co-Sodium Methacrylate) Hydrogels. Water, Air, & Soil Pollution, 223(7), 4355-4368.
  • Kaşgöz, H., Durmuş, A., Kaşgöz, A., 2008. Enhanced swelling and adsorption properties of AAm-AMPSNa/clay hydrogel nanocomposites for heavy metal ion removal. Polymers for Advanced Technologies, 19(3), 213-220.
  • Khan, S., Ullah, A., Ullah, K., Rehman, N.-u., 2016. Insight into hydrogels. Designed Monomers and Polymers, 19(5), 456-478.
  • Laftah, W. A., Hashim, S., Ibrahim, A. N., 2011. Polymer Hydrogels: A Review. Polymer-Plastics Technology and Engineering, 50(14), 1475-1486.
  • Mahinroosta, M., Jomeh Farsangi, Z., Allahverdi, A., Shakoori, Z., 2018. Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. Materials Today Chemistry, 8, 42-55.
  • Mohan, Y. M., Murthy, P. S. K., Sreeramulu, J., Raju, K. M., 2005. Swelling behavior of semi-interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(acrylamide-co-sodium methacrylate). Journal of Applied Polymer Science, 98(1), 302-314.
  • Murali Mohan, Y., Keshava Murthy, P. S., Mohana Raju, K., 2005. Synthesis, characterization and effect of reaction parameters on swelling properties of acrylamide–sodium methacrylate superabsorbent copolymers. Reactive and Functional Polymers, 63(1), 11-26.
  • Murali Mohan, Y., Keshava Murthy, P. S., Mohana Raju, K., 2006. Preparation and swelling behavior of macroporous poly(acrylamide-co-sodium methacrylate) superabsorbent hydrogels. Journal of Applied Polymer Science, 101(5), 3202-3214.
  • Nie, J., Lu, W., Ma, J., Yang, L., Wang, Z., Qin, A., et al., 2015. Orientation in multi-layer chitosan hydrogel: morphology, mechanism and design principle. Scientific Reports, 5(1), 7635.
  • Pereira, A. G. B., Rodrigues, F. H. A., Paulino, A. T., Martins, A. F., Fajardo, A. R., 2021. Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: A review. Journal of Cleaner Production, 284, 124703.
  • Pourjavadi, A., Ayyari, M., Amini-Fazl, M. S., 2008. Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. European Polymer Journal, 44(4), 1209-1216.
  • Pourjavadi, A., Ghasemzadeh, H., Soleyman, R., 2007a. Synthesis, characterization, and swelling behavior of alginate-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites. Journal of Applied Polymer Science, 105(5), 2631-2639.
  • Pourjavadi, A., Hosseinzadeh, H., Mahdavinia, G. R., Zohuriaan-Mehr, M. J., 2007b. Carrageenan-g-Poly(sodium Acrylate)/Kaolin Superabsorbent Hydrogel Composites: Synthesis, Characterisation and Swelling Behaviour. Polymers and Polymer Composites, 15(1), 43-51.
  • Shirsath, S. R., Patil, A. P., Patil, R., Naik, J. B., Gogate, P. R., Sonawane, S. H., 2013. Removal of Brilliant Green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: A comparative study. Ultrasonics Sonochemistry, 20(3), 914-923.
  • Sirousazar, M., Kokabi, M., Hassan, Z. M., Bahramian, A. R., 2012. Mineral kaolinite clay for preparation of nanocomposite hydrogels. Journal of Applied Polymer Science, 125(S1), E122-E130.
  • Sivakumar, R., Lee, N. Y., 2022. Adsorptive removal of organic pollutant methylene blue using polysaccharide-based composite hydrogels. Chemosphere, 286, 131890.
  • Sujan, M. I., Sarkar, S. D., Sultana, S., Bushra, L., Tareq, R., Roy, C. K., 2020. Bi-functional silica nanoparticles for simultaneous enhancement of mechanical strength and swelling capacity of hydrogels. RSC Advances, 10(11), 6213-6222.
  • Tanan, W., Panichpakdee, J., Saengsuwan, S., 2019. Novel biodegradable hydrogel based on natural polymers: Synthesis, characterization, swelling/reswelling and biodegradability. European Polymer Journal, 112, 678-687.
  • Ullah, F., Othman, M. B., Javed, F., Ahmad, Z., Md Akil, H., 2015. Classification, processing and application of hydrogels: A review. Materials Science and Engineering C: Materials Biological Applications, 57, 414-33.
  • Üzüm, Ö. B., Karadağ, E., 2011. Dye Sorption and Water Uptake Properties of Crosslinked Acrylamide/Sodium Methacrylate Copolymers and Semi-Interpenetrating Polymer Networks Composed of PEG. Separation Science and Technology, 46(3), 489-499.
  • Üzüm, Ö. B., Karadağ, E., 2012. Behavior of semi IPN hydrogels composed of PEG and AAm/SMA copolymers in swelling and uptake of Janus Green B from aqueous solutions. Journal of Applied Polymer Science, 125(5), 3318-3328.
  • Wang, J., Lin, L., Cheng, Q., Jiang, L., 2012. A Strong Bio-Inspired Layered PNIPAM–Clay Nanocomposite Hydrogel. Angewandte Chemie International Edition, 51(19), 4676-4680.
  • Wang, Y., Xia, Y., Xiang, P., Dai, Y., Gao, Y., Xu, H., 2022. Protein-assisted freeze-tolerant hydrogel with switchable performance toward customizable flexible sensor. Chemical Engineering Journal, 428, 131171.
  • Xu, Z., Li, J., Zhou, H., Jiang, X., Yang, C., Wang, F., 2016. Morphological and swelling behavior of cellulose nanofiber (CNF)/poly(vinyl alcohol) (PVA) hydrogels: poly(ethylene glycol) (PEG) as porogen. RSC Advances, 6(49), 43626-43633.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Gülcihan Güzel Kaya 0000-0003-2753-7724

Hüseyin Deveci 0000-0002-1103-7234

Erken Görünüm Tarihi 29 Ağustos 2023
Yayımlanma Tarihi 31 Ağustos 2023
Gönderilme Tarihi 3 Şubat 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Güzel Kaya, G., & Deveci, H. (2023). Characterization of Stimuli-Responsive Acrylamide/Sodium Methacrylate/Kaolin Semi-Interpenetrating Polymer Network Composite Hydrogels. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(4), 984-990. https://doi.org/10.35414/akufemubid.1247090
AMA Güzel Kaya G, Deveci H. Characterization of Stimuli-Responsive Acrylamide/Sodium Methacrylate/Kaolin Semi-Interpenetrating Polymer Network Composite Hydrogels. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ağustos 2023;23(4):984-990. doi:10.35414/akufemubid.1247090
Chicago Güzel Kaya, Gülcihan, ve Hüseyin Deveci. “Characterization of Stimuli-Responsive Acrylamide/Sodium Methacrylate/Kaolin Semi-Interpenetrating Polymer Network Composite Hydrogels”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, sy. 4 (Ağustos 2023): 984-90. https://doi.org/10.35414/akufemubid.1247090.
EndNote Güzel Kaya G, Deveci H (01 Ağustos 2023) Characterization of Stimuli-Responsive Acrylamide/Sodium Methacrylate/Kaolin Semi-Interpenetrating Polymer Network Composite Hydrogels. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 4 984–990.
IEEE G. Güzel Kaya ve H. Deveci, “Characterization of Stimuli-Responsive Acrylamide/Sodium Methacrylate/Kaolin Semi-Interpenetrating Polymer Network Composite Hydrogels”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 4, ss. 984–990, 2023, doi: 10.35414/akufemubid.1247090.
ISNAD Güzel Kaya, Gülcihan - Deveci, Hüseyin. “Characterization of Stimuli-Responsive Acrylamide/Sodium Methacrylate/Kaolin Semi-Interpenetrating Polymer Network Composite Hydrogels”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/4 (Ağustos 2023), 984-990. https://doi.org/10.35414/akufemubid.1247090.
JAMA Güzel Kaya G, Deveci H. Characterization of Stimuli-Responsive Acrylamide/Sodium Methacrylate/Kaolin Semi-Interpenetrating Polymer Network Composite Hydrogels. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:984–990.
MLA Güzel Kaya, Gülcihan ve Hüseyin Deveci. “Characterization of Stimuli-Responsive Acrylamide/Sodium Methacrylate/Kaolin Semi-Interpenetrating Polymer Network Composite Hydrogels”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 4, 2023, ss. 984-90, doi:10.35414/akufemubid.1247090.
Vancouver Güzel Kaya G, Deveci H. Characterization of Stimuli-Responsive Acrylamide/Sodium Methacrylate/Kaolin Semi-Interpenetrating Polymer Network Composite Hydrogels. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(4):984-90.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.