Bornova Ovası'nın Havza Yapısının Yoğunluk Parametresi Kullanılarak Analizi
Yıl 2024,
, 136 - 143, 27.02.2024
Yaprak Özdağ
,
Oya Ankaya Pamukçu
Öz
Batı Anadolu etkisinde kaldığı açılma rejimi nedeniyle birçok sedimanter havza yapısı içerir. Çalışma alanını içeren İzmir ili tektonik yapısından dolayı tarihsel ve aletsel dönemde çok sayıda depremin gerçekleştiği bir bölgedir. İzmir iç körfezinin doğusunda yer alan Bornova Ovası üzerinde bulunan yoğun yapılaşma nedeniyle yüksek bir deprem riskine sahiptir. Bu durum 30 Ekim 2020’de gerçekleşen Samos depremi ile açık bir şekilde gözlenmiştir. Bu çalışma kapsamında geçmiş çalışmalardan daha büyük bir alanda mikrogravite saha çalışması gerçekleştirilerek ovanın havza etkisini daha iyi niteleyebilecek, çözünürlüğü yüksek ve geniş bir alanı temsil edecek şekilde bir veri seti elde edilmiştir. Bu kapsamda gerekli ölçüm nokta dağılımı yaklaşık 200-1000 m’lik değişken bir örnekleme aralığı ile yapılmış olup toplam 458 noktalık bir mikrogravite veri seti oluşturulmuştur. Bu çalışma kapsamında Bornova Ovası için oluşturulan rezidüel Bouguer gravite haritası üzerinden 1 profil kesiti alınarak, ters çözüm modellemesi gerçekleştirilmiştir. Gerçekleştirilen ters çözüm modelleme sonucu yoğunluk değerleri ile çalışma alanında gerçekleştirilen derin uzaysal özilişki yönteminden (SPAC) elde edilen sismik hızlardan hesaplanan yoğunluklar karşılaştırılmıştır. Karşılaştırılan 2 farklı yöntem ile elde edilen yoğunluk değerleri arasında yüksek bir uyum gözlenmiştir.
Proje Numarası
2021.KB.FEN.028.
Kaynakça
- Akgün, M., Gönenç, T., Pamukçu, O., Özyalın, Ş., Özdağ, Ö.C. (2013a). Mühendislik Ana Kayasının Belirlenmesine Yönelik Jeofizik Yöntemlerin Bütünleşik Yorumu: İzmir Yeni Kent Merkezi Uygulamaları. Jeofizik Dergisi, 26(2), 67-80. https://doi.org/13.b02/jeofizik-1304-12
- Akgün, M., Gönenç, T., Pamukçu, O. ve Özyalın, Ş. (2013b). Investigation of the relationship between ground and engineering bedrock at northern part of the Gulf of İzmir by borehole data supported geophysical Works. Journal of Earth System Science, 123, 545-564 https://doi.org/10.1007/s12040-014-0414-3
- Arısoy, M. Ö., Dikmen, Ü. (2011). Potensoft: MATLAB-based software for potential field data processing, modeling and mapping. Computers & Geosciences, 37(7), 935-942. https://doi.org/10.1016/j.cageo.2011.02.008
- Asuero, A. G., Sayago, A., González, A. G. (2006). The correlation coefficient: An overview. Critical reviews in analytical chemistry, 36(1), 41-59. https://doi.org/10.1080/10408340500526766
- Baker, K. (2005). Singular value decomposition tutorial. The Ohio State University, 4-24.
- Chen, W. Y., Lı, H., Xue, G. Q., Chen, K., & Zhong, H. S. (2017). 1d Occam İnversion Of Sotem Data And İts Application To 3d Models. Chinese Journal Of Geophysics, 60(9), 3667-3676.
https://doi.org/10.6038/cjg20170930
- Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), 289-300.
https://doi.org/10.1190/1.1442303
- Çetin, K. O., Altun, S., Askan, A., Akgün, M., Sezer, A., Kıncal, C., ... & Karaali, E. (2022). The site effects in Izmir Bay of October 30 2020, M7. 0 Samos earthquake. Soil Dynamics and Earthquake Engineering, 152, 107051.
https://doi.org/10.1016/j.soildyn.2021.107051
- Erbek, E., Öksüm, E., & Dolmaz, M.N. (2020). Orta Anadolu Bölgesi Atmosfer-Kabuk Ara Yüzeyi Kabuk Yoğunluğunun Fraktal Boyutlar İle Belirlenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 8(3), 703-711.
https://doi.org/10.21923/jesd.717021
- Erdoğan, B. (1990). İzmir-Ankara Zonu’nun İzmir ile Seferihisar arasındaki bölgede stratigrafik özellikleri ve tektonik evrimi. TPJP Bülteni, 1-20.
- Karadaş, A. (2014). Holocene Palaeogeographies and Coastline Changes of the Bornova Plain (Izmir). Ege Coğrafya Dergisi, 23(2), 36-52.
- Kayan, İ. (2000). İzmir çevresinin morfotektonik birimleri ve alüvyonal Jeomorfolojisi, Batı Anadolu Depremselliği Sempozyumu, 103, 1-3
- Keçeli, A. (2009). Uygulamalı Jeofizik, TMMOB Jeofizik Mühendisleri Odası Eğitim Yayınları 9, 479.
Li, X., & Chouteau, M. (1999). On density derived from borehole gravity. The Log Analyst, 40(01).
https://doi.org/SPWLA-1999-v40n1a3
- Mukaka, M. M. (2012). A guide to appropriate use of correlation coefficient in medical research. Malawi medical journal, 24(3), 69-71.
- Nuhoğlu, A., Erener, M. F., Hızal, Ç., Kıncal, C., Erdoğan, D. Ş., Özdağ, Ö. C., Sezer, A. (2021). A reconnaissance study in Izmir (Bornova Plain) affected by October 30, 2020 Samos earthquake. International Journal of Disaster Risk Reduction, 63, 102465. https://doi.org/10.1016/j.ijdrr.2021.102465
- Özdağ, Ö. C., Gönenç, T., Akgün, M. (2015). Dynamic amplification factor concept of soil layers: a case study in İzmir (Western Anatolia). Arabian Journal of Geosciences, 8, 10093-10104.
https://doi.org/10.1007/s12517-015-1881-9
- Özdağ, Ö. C., Gönenç, T. (2020). Modeling stratigraphic structure of Menemen Plain-Izmir/Turkey by microgravity, passive seismic methods and examining its behavior under earthquake effect. Journal of Applied Geophysics, 182, 104175. https://doi.org/10.1016/j.jappgeo.2020.104175
- Özdağ, Ö., Akgün, M., Gönenç, T. (2020). Determining bedrock of the northern part of Izmir Bay, western Anatolia, using a combination of microtremor, ESPAC, VES, and microgravity methods. Bollettino di Geofisica Teorica ed Applicata, 61(4). https://doi.org/10.4430/bgta0313
- Özdağ, Ö.C., (2022). Earthquake Based In-Situ Design Spectrum Creation by Using Geophysical Methods: İzmir Bay and Surrounding Area Example. PhD Thesis, Dokuz Eylül University, The School of Natural and Applied Sciences, Türkiye, 117 (In Turkish).
- Pamuk, E., Akgün, M., Özdağ, Ö. C., Gönenç, T. (2017). 2D soil and engineering-seismic bedrock modeling of eastern part of Izmir inner bay/Turkey. Journal of Applied Geophysics, 137, 104-117.
https://doi.org/10.1016/j.jappgeo.2016.12.016
- Pamuk, E., Gönenç, T., Özdağ, Ö. C., & Akgün, M. (2018). 3D bedrock structure of Bornova plain and its surroundings (İzmir/western Turkey). Pure and Applied Geophysics, 175, 325-340.
https://doi.org/10.1007/s00024-017-1681-0
- Pirttijavi M. (2008). User's Guide to Version Grablox 1,6b: Gravity Interpretation and Modelling Software based on a 3-D Block Model, Department of Physics Universitas of Oulu Finland. 3-57
- Ratner, B. (2009). The correlation coefficient: Its values range between+ 1/− 1, or do they?. Journal of targeting, measurement and analysis for marketing, 17(2), 139-142.
https://doi.org/10.1057/jt.2009.5
- Stewart, G. W. (1993). On the early history of the singular value decomposition. SIAM review, 35(4), 551-566.
https://doi.org/10.1137/1035134
- Taylor, R. (1990). Interpretation of the correlation coefficient: a basic review. Journal of diagnostic medical sonography, 6(1), 35-39. https://doi.org/10.1177/875647939000600106
- Uzel, B., Sözbilir, H., Özkaymak, Ç. (2012). Neotectonic evolution of an actively growing superimposed basin in western Anatolia: The inner bay of Izmir, Turkey. Turkish Journal of Earth Sciences, 21(4), 439-471.
https://doi.org/10.3906/yer-0910-11
- Van Loan, C. F. (1976). Generalizing the singular value decomposition. SIAM Journal on numerical Analysis, 13(1), 76-83.https://doi.org/10.1137/0713009
Analyzing Bornova Plain's Basin Structure Using Density Parameter
Yıl 2024,
, 136 - 143, 27.02.2024
Yaprak Özdağ
,
Oya Ankaya Pamukçu
Öz
Due to the tectonic regime it has been subjected to under the influence of Western Anatolia, the area contains numerous sedimentary basin structures. The study area, located within the province of Izmir, is a region where a significant number of historical and instrumental earthquakes have occurred due to its tectonic structure. The Bornova Plain, located east of the inner Gulf of Izmir, is highly susceptible to earthquakes due to dense urbanization. This was clearly observed during the Samos earthquake on October 30, 2020. In this study, a microgravity field survey was conducted in a larger area than previous studies to better characterize the basin effect of the plain and obtain a high-resolution dataset representing a wide area. The necessary measurement point distribution was performed with a variable sampling interval of approximately 200-1000 meters, resulting in a microgravity dataset of 458 points. By taking 1 profile section from the residual Bouguer gravity map created for the Bornova Plain, inverse solution modeling was performed. The density values obtained from the inverse solution modeling were compared with the densities calculated from seismic velocities obtained through the spatial autocorrelation (SPAC) method conducted in the study area. A high consistency was observed between the density values obtained from the two different methods compared.
Destekleyen Kurum
Dokuz Eylül University
Proje Numarası
2021.KB.FEN.028.
Teşekkür
This study constitutes a part of Yaprak ÖZDAĞ's doctoral thesis work in the Department of Geophysical Engineering at Dokuz Eylül University The Graduate School of Natural and Applied Sciences. Additionally, this study has been supported by the DEÜ BAP Project with the reference number 2021.KB.FEN.028.
Kaynakça
- Akgün, M., Gönenç, T., Pamukçu, O., Özyalın, Ş., Özdağ, Ö.C. (2013a). Mühendislik Ana Kayasının Belirlenmesine Yönelik Jeofizik Yöntemlerin Bütünleşik Yorumu: İzmir Yeni Kent Merkezi Uygulamaları. Jeofizik Dergisi, 26(2), 67-80. https://doi.org/13.b02/jeofizik-1304-12
- Akgün, M., Gönenç, T., Pamukçu, O. ve Özyalın, Ş. (2013b). Investigation of the relationship between ground and engineering bedrock at northern part of the Gulf of İzmir by borehole data supported geophysical Works. Journal of Earth System Science, 123, 545-564 https://doi.org/10.1007/s12040-014-0414-3
- Arısoy, M. Ö., Dikmen, Ü. (2011). Potensoft: MATLAB-based software for potential field data processing, modeling and mapping. Computers & Geosciences, 37(7), 935-942. https://doi.org/10.1016/j.cageo.2011.02.008
- Asuero, A. G., Sayago, A., González, A. G. (2006). The correlation coefficient: An overview. Critical reviews in analytical chemistry, 36(1), 41-59. https://doi.org/10.1080/10408340500526766
- Baker, K. (2005). Singular value decomposition tutorial. The Ohio State University, 4-24.
- Chen, W. Y., Lı, H., Xue, G. Q., Chen, K., & Zhong, H. S. (2017). 1d Occam İnversion Of Sotem Data And İts Application To 3d Models. Chinese Journal Of Geophysics, 60(9), 3667-3676.
https://doi.org/10.6038/cjg20170930
- Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), 289-300.
https://doi.org/10.1190/1.1442303
- Çetin, K. O., Altun, S., Askan, A., Akgün, M., Sezer, A., Kıncal, C., ... & Karaali, E. (2022). The site effects in Izmir Bay of October 30 2020, M7. 0 Samos earthquake. Soil Dynamics and Earthquake Engineering, 152, 107051.
https://doi.org/10.1016/j.soildyn.2021.107051
- Erbek, E., Öksüm, E., & Dolmaz, M.N. (2020). Orta Anadolu Bölgesi Atmosfer-Kabuk Ara Yüzeyi Kabuk Yoğunluğunun Fraktal Boyutlar İle Belirlenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 8(3), 703-711.
https://doi.org/10.21923/jesd.717021
- Erdoğan, B. (1990). İzmir-Ankara Zonu’nun İzmir ile Seferihisar arasındaki bölgede stratigrafik özellikleri ve tektonik evrimi. TPJP Bülteni, 1-20.
- Karadaş, A. (2014). Holocene Palaeogeographies and Coastline Changes of the Bornova Plain (Izmir). Ege Coğrafya Dergisi, 23(2), 36-52.
- Kayan, İ. (2000). İzmir çevresinin morfotektonik birimleri ve alüvyonal Jeomorfolojisi, Batı Anadolu Depremselliği Sempozyumu, 103, 1-3
- Keçeli, A. (2009). Uygulamalı Jeofizik, TMMOB Jeofizik Mühendisleri Odası Eğitim Yayınları 9, 479.
Li, X., & Chouteau, M. (1999). On density derived from borehole gravity. The Log Analyst, 40(01).
https://doi.org/SPWLA-1999-v40n1a3
- Mukaka, M. M. (2012). A guide to appropriate use of correlation coefficient in medical research. Malawi medical journal, 24(3), 69-71.
- Nuhoğlu, A., Erener, M. F., Hızal, Ç., Kıncal, C., Erdoğan, D. Ş., Özdağ, Ö. C., Sezer, A. (2021). A reconnaissance study in Izmir (Bornova Plain) affected by October 30, 2020 Samos earthquake. International Journal of Disaster Risk Reduction, 63, 102465. https://doi.org/10.1016/j.ijdrr.2021.102465
- Özdağ, Ö. C., Gönenç, T., Akgün, M. (2015). Dynamic amplification factor concept of soil layers: a case study in İzmir (Western Anatolia). Arabian Journal of Geosciences, 8, 10093-10104.
https://doi.org/10.1007/s12517-015-1881-9
- Özdağ, Ö. C., Gönenç, T. (2020). Modeling stratigraphic structure of Menemen Plain-Izmir/Turkey by microgravity, passive seismic methods and examining its behavior under earthquake effect. Journal of Applied Geophysics, 182, 104175. https://doi.org/10.1016/j.jappgeo.2020.104175
- Özdağ, Ö., Akgün, M., Gönenç, T. (2020). Determining bedrock of the northern part of Izmir Bay, western Anatolia, using a combination of microtremor, ESPAC, VES, and microgravity methods. Bollettino di Geofisica Teorica ed Applicata, 61(4). https://doi.org/10.4430/bgta0313
- Özdağ, Ö.C., (2022). Earthquake Based In-Situ Design Spectrum Creation by Using Geophysical Methods: İzmir Bay and Surrounding Area Example. PhD Thesis, Dokuz Eylül University, The School of Natural and Applied Sciences, Türkiye, 117 (In Turkish).
- Pamuk, E., Akgün, M., Özdağ, Ö. C., Gönenç, T. (2017). 2D soil and engineering-seismic bedrock modeling of eastern part of Izmir inner bay/Turkey. Journal of Applied Geophysics, 137, 104-117.
https://doi.org/10.1016/j.jappgeo.2016.12.016
- Pamuk, E., Gönenç, T., Özdağ, Ö. C., & Akgün, M. (2018). 3D bedrock structure of Bornova plain and its surroundings (İzmir/western Turkey). Pure and Applied Geophysics, 175, 325-340.
https://doi.org/10.1007/s00024-017-1681-0
- Pirttijavi M. (2008). User's Guide to Version Grablox 1,6b: Gravity Interpretation and Modelling Software based on a 3-D Block Model, Department of Physics Universitas of Oulu Finland. 3-57
- Ratner, B. (2009). The correlation coefficient: Its values range between+ 1/− 1, or do they?. Journal of targeting, measurement and analysis for marketing, 17(2), 139-142.
https://doi.org/10.1057/jt.2009.5
- Stewart, G. W. (1993). On the early history of the singular value decomposition. SIAM review, 35(4), 551-566.
https://doi.org/10.1137/1035134
- Taylor, R. (1990). Interpretation of the correlation coefficient: a basic review. Journal of diagnostic medical sonography, 6(1), 35-39. https://doi.org/10.1177/875647939000600106
- Uzel, B., Sözbilir, H., Özkaymak, Ç. (2012). Neotectonic evolution of an actively growing superimposed basin in western Anatolia: The inner bay of Izmir, Turkey. Turkish Journal of Earth Sciences, 21(4), 439-471.
https://doi.org/10.3906/yer-0910-11
- Van Loan, C. F. (1976). Generalizing the singular value decomposition. SIAM Journal on numerical Analysis, 13(1), 76-83.https://doi.org/10.1137/0713009