Araştırma Makalesi
BibTex RIS Kaynak Göster

On the Second Integral Homology of Bruck-Reilly Extensions of Monoids

Yıl 2024, , 260 - 265, 29.04.2024
https://doi.org/10.35414/akufemubid.1343106

Öz

Let M be a monoid and let θ be an endomorphism on M. Then the set N^0×M×N^0 where N^0 is the set of non-negative integers, is a monoid together with the binary operation

(m,a,n)(p,b,q)=(m-n+r,(aθ^(r-n) ) (bθ^(r-p) ),q-p+r)

where r=max{n,p} and θ^0 is the identity map on M, which is called the Bruck-Reilly extension of M determined by θ and denoted by BR(M,θ). In this paper, we show that the second integral homology of Bruck-Reilly extension of a finite monoid M is

H_2 (BR(M,θ))=H_2 (M)×Z^k

for some k∈N.

Kaynakça

  • Araujo, I.M. and Ruskuc, N., 2001. Finite presentability of Bruck-Reilly extensions of groups. J. Algebra, 242(1), 20-30.
  • Ayık, H., Campbell, C.M., O’Connor, J.J. and Ruskuc, N., 2000. Minimal presentations and efficiency of semigroups. Semigroup Forum, 60, 231-242.
  • Ayık, H., Campbell, C.M., O’Connor, J.J. and Ruskuc, N., 2000. On the efficiency of finite simple semigroups. Turk J. Math, 24, 129-146.
  • Ayık, H., Campbell, C.M., O’Connor, J.J. and Ruskuc, N., 2000. The semigroup efficiency of groups and monoids. Mathematical Proceedings of the Royal Irish Academy, 100A(2), 171-176.
  • Ayık, H., Campbell, C.M. and O’Connor, J.J., 2007. On the efficiency of the direct products of Monogenic Monoids. Algebra Colloq., 14, 279-284.
  • Bruck, R. H., 1958. A Survey of Binary Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 20. Reihe: Gruppentheorie, Springer, Berlin.
  • Bugay, L., 2010. Yarıgrupların Bruck-Reilly genişlemelerinin sonlu takdim edilebilirliği. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, 109.
  • Carvalho, C.A., 2005. On Bruck-Reilly extensions of rectangular bands, zero semigroups and free monoids. Southeast Asian Bull. Math., 29(3), 423-431.
  • Carvalho, C.A. and Ruskuc, N, 2006. Finite presentability of Bruck-Reilly extensions of semilattices. Communications in Algebra, 34(9), 3301-3313.
  • Carvalho, C.A. and Ruskuc, N, 2007. Finite presentability of Bruck-Reilly extensions of Clifford monoids. Journal of Algebra and Its Applications, 6(5), 801-814.
  • Carvalho, C.A., 2009. Bruck-Reilly extensions of direct products of monoids and completely (0)-simple semigroups. Semigroup Forum, 79, 145-158.
  • Carvalho, C.A., 2009. On Presentations of Bruck-Reilly extensions. Communications in Algebra, 34, 2871-2886.
  • Çevik, A.S, 2003. Minimal but inefficient presentations of the semi-direct products of some monoids. Semigroup Forum, 66, 1-17.
  • Çevik, A.S, 2003. The p-Cockcroft propertyof the semi-direct products of monoids. Internat. J. Algebra Comput., 13, 1-16.
  • Guba, V.S. and Pride, S.J., 1996. Low dimensional (co)homology of free Burnside monoids. Journal Pure Appl. Algebra, 108, 61-79.
  • Howie, J. M. and Ruskuc, N., 1994. Construction and presentations for monnoids. Communications in Algebra, 22(15), 6209-6224.
  • Howie, J. M., 1995. Fundamentals of Semigroup Theory. New York, Oxford University Press.
  • Johnson, D.L., 1990. Presentations of Groups. Cambridge Univ. Press, Cambridge.
  • Karpuz, E. G., 2015. Gröbner-Shirshov Bases of Some Semigroup Constructions. Algebra Colloquium, 22(1), 35-46.
  • Munn, W.D., 1970. On simple inverse semigroups. Semigroup Forum, 1(1), 63-74.
  • Reilly, N. R., 1966. Bisimple w-semigroups. Proc. Glasgow Math. Assoc., 7, 160-167.
  • Ruskuc, N., 1995. Semigroup presentations. Ph. D. Thesis, University of St Andrews, 256.
  • Squier,C., 1987. Word problems and a homological finiteness condition for monoids. Journal Pure Appl. Algebra, 49, 79-97.
  • Yamamura, A., 2001. Presentations of Bruck-Reilly extensions and decision problems. Semigroup Forum, 62(1), 79-97.
  • Yağcı, M., Bugay, L. and Ayık, H., 2015. On the second homology of the Schützenberger Product of monoids. Turk J. Math., 39, 763-772.
  • Yağcı, M., 2018. Yarıgrupların ikinci homolojisi ve etkinlik. Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, 73.

Monoidlerin Bruck-Reilly Genişlemelerinin İkinci Tamsayı Homolojisi

Yıl 2024, , 260 - 265, 29.04.2024
https://doi.org/10.35414/akufemubid.1343106

Öz

M bir monoid ve θ, M üzerinde bir endomorfizm olsun. N^0 negatif olmayan tamsayıların kümesi, r=max{n,p} ve θ^0, M üzerinde birim dönüşüm olmak üzere N^0×M×N^0 kümesi

(m,a,n)(p,b,q)=(m-n+r,(aθ^(r-n) ) (bθ^(r-p) ),q-p+r)

ikili işlemi ile birlikte bir monoid tanımlar. Bu monoide θ nin belirlediği M nin Bruck-Reilly genişlemesi denir ve BR(M,θ) ile gösterilir. Bu çalışmada, bir sonlu M monoidinin Bruck-Reilly genişlemesinin ikinci tamsayı homolojisinin, öyle bir k∈N için

H_2 (BR(M,θ))=H_2 (M)×Z^k

olduğu gösterilmiştir.

Kaynakça

  • Araujo, I.M. and Ruskuc, N., 2001. Finite presentability of Bruck-Reilly extensions of groups. J. Algebra, 242(1), 20-30.
  • Ayık, H., Campbell, C.M., O’Connor, J.J. and Ruskuc, N., 2000. Minimal presentations and efficiency of semigroups. Semigroup Forum, 60, 231-242.
  • Ayık, H., Campbell, C.M., O’Connor, J.J. and Ruskuc, N., 2000. On the efficiency of finite simple semigroups. Turk J. Math, 24, 129-146.
  • Ayık, H., Campbell, C.M., O’Connor, J.J. and Ruskuc, N., 2000. The semigroup efficiency of groups and monoids. Mathematical Proceedings of the Royal Irish Academy, 100A(2), 171-176.
  • Ayık, H., Campbell, C.M. and O’Connor, J.J., 2007. On the efficiency of the direct products of Monogenic Monoids. Algebra Colloq., 14, 279-284.
  • Bruck, R. H., 1958. A Survey of Binary Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 20. Reihe: Gruppentheorie, Springer, Berlin.
  • Bugay, L., 2010. Yarıgrupların Bruck-Reilly genişlemelerinin sonlu takdim edilebilirliği. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, 109.
  • Carvalho, C.A., 2005. On Bruck-Reilly extensions of rectangular bands, zero semigroups and free monoids. Southeast Asian Bull. Math., 29(3), 423-431.
  • Carvalho, C.A. and Ruskuc, N, 2006. Finite presentability of Bruck-Reilly extensions of semilattices. Communications in Algebra, 34(9), 3301-3313.
  • Carvalho, C.A. and Ruskuc, N, 2007. Finite presentability of Bruck-Reilly extensions of Clifford monoids. Journal of Algebra and Its Applications, 6(5), 801-814.
  • Carvalho, C.A., 2009. Bruck-Reilly extensions of direct products of monoids and completely (0)-simple semigroups. Semigroup Forum, 79, 145-158.
  • Carvalho, C.A., 2009. On Presentations of Bruck-Reilly extensions. Communications in Algebra, 34, 2871-2886.
  • Çevik, A.S, 2003. Minimal but inefficient presentations of the semi-direct products of some monoids. Semigroup Forum, 66, 1-17.
  • Çevik, A.S, 2003. The p-Cockcroft propertyof the semi-direct products of monoids. Internat. J. Algebra Comput., 13, 1-16.
  • Guba, V.S. and Pride, S.J., 1996. Low dimensional (co)homology of free Burnside monoids. Journal Pure Appl. Algebra, 108, 61-79.
  • Howie, J. M. and Ruskuc, N., 1994. Construction and presentations for monnoids. Communications in Algebra, 22(15), 6209-6224.
  • Howie, J. M., 1995. Fundamentals of Semigroup Theory. New York, Oxford University Press.
  • Johnson, D.L., 1990. Presentations of Groups. Cambridge Univ. Press, Cambridge.
  • Karpuz, E. G., 2015. Gröbner-Shirshov Bases of Some Semigroup Constructions. Algebra Colloquium, 22(1), 35-46.
  • Munn, W.D., 1970. On simple inverse semigroups. Semigroup Forum, 1(1), 63-74.
  • Reilly, N. R., 1966. Bisimple w-semigroups. Proc. Glasgow Math. Assoc., 7, 160-167.
  • Ruskuc, N., 1995. Semigroup presentations. Ph. D. Thesis, University of St Andrews, 256.
  • Squier,C., 1987. Word problems and a homological finiteness condition for monoids. Journal Pure Appl. Algebra, 49, 79-97.
  • Yamamura, A., 2001. Presentations of Bruck-Reilly extensions and decision problems. Semigroup Forum, 62(1), 79-97.
  • Yağcı, M., Bugay, L. and Ayık, H., 2015. On the second homology of the Schützenberger Product of monoids. Turk J. Math., 39, 763-772.
  • Yağcı, M., 2018. Yarıgrupların ikinci homolojisi ve etkinlik. Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, 73.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Melek Yağcı 0000-0002-0457-156X

Erken Görünüm Tarihi 14 Nisan 2024
Yayımlanma Tarihi 29 Nisan 2024
Gönderilme Tarihi 15 Ağustos 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Yağcı, M. (2024). Monoidlerin Bruck-Reilly Genişlemelerinin İkinci Tamsayı Homolojisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(2), 260-265. https://doi.org/10.35414/akufemubid.1343106
AMA Yağcı M. Monoidlerin Bruck-Reilly Genişlemelerinin İkinci Tamsayı Homolojisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Nisan 2024;24(2):260-265. doi:10.35414/akufemubid.1343106
Chicago Yağcı, Melek. “Monoidlerin Bruck-Reilly Genişlemelerinin İkinci Tamsayı Homolojisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, sy. 2 (Nisan 2024): 260-65. https://doi.org/10.35414/akufemubid.1343106.
EndNote Yağcı M (01 Nisan 2024) Monoidlerin Bruck-Reilly Genişlemelerinin İkinci Tamsayı Homolojisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 2 260–265.
IEEE M. Yağcı, “Monoidlerin Bruck-Reilly Genişlemelerinin İkinci Tamsayı Homolojisi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 2, ss. 260–265, 2024, doi: 10.35414/akufemubid.1343106.
ISNAD Yağcı, Melek. “Monoidlerin Bruck-Reilly Genişlemelerinin İkinci Tamsayı Homolojisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/2 (Nisan 2024), 260-265. https://doi.org/10.35414/akufemubid.1343106.
JAMA Yağcı M. Monoidlerin Bruck-Reilly Genişlemelerinin İkinci Tamsayı Homolojisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:260–265.
MLA Yağcı, Melek. “Monoidlerin Bruck-Reilly Genişlemelerinin İkinci Tamsayı Homolojisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 2, 2024, ss. 260-5, doi:10.35414/akufemubid.1343106.
Vancouver Yağcı M. Monoidlerin Bruck-Reilly Genişlemelerinin İkinci Tamsayı Homolojisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(2):260-5.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.