Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis of Rare Earth Element (Gd) Doped ZnO Nanoparticles by Sol-Gel Method and Examination of Their Characteristic Properties

Yıl 2024, , 424 - 433, 29.04.2024
https://doi.org/10.35414/akufemubid.1371091

Öz

In this study, gadolinium (Gd) element, one of the rare earth elements, was doped to the semiconductor zinc oxide (ZnO) material at a rate of 10% per mole and synthesized at the nanoscale according to the sol-gel method. Morphological-chemical properties of the obtained gadolinium-doped zinc oxide (Gd/ZnO) nanoparticles were examined by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), structural properties by X-ray diffraction (XRD), optical band properties by ultraviolet-visible (UV-Vis) spectroscopy and physical properties by particle size analysis. The study aimed to investigate the effect of Gd doping on ZnO and the use of Gd/ZnO nanoparticles in semiconductor technology. Structural study confirmed the wurtzite formation of Gd/ZnO nanoparticles by XRD study. Crystallite size, dislocation density, and microstrain values were calculated from XRD analysis. SEM/EDX analysis showed that Gd doping was successfully synthesized. Using the Tauc Plot method, the direct and indirect band gap values were calculated as 3.06 eV and 2.89 eV, respectively, and the effect of the Gd dopant on the band gap was examined. A red shift was observed with the doping of Gd3+ ions to ZnO. The average particle size distribution of the Gd/ZnO sample was obtained as 209.4 nm. The results obtained were compared with undoped ZnO in the literature. As a result, it was shown that the synthesized Gd/ZnO nanoparticles could be used as nanomaterials in the semiconductor industry, especially in solar cells

Kaynakça

  • Aggarwal, N., Kaur, K., Vasisth, A., Verma, N.K., 2018. Synthesis and characterization of Gd-doped ZnO nanorods. In AIP Conference Proceedings, AIP Publishing, 2050, 1. https://doi.org/10.1063/1.5083602
  • Aggarwal, N., Kaur, K., Vasishth, A., Verma, N.K., 2016. Structural, optical and magnetic properties of Gadolinium-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 27, 13006-13011. https://doi.org/10.1007/s10854-016-5440-2
  • Agarwal, S., Jangir, L.K., Rathore, K.S., Kumar, M., Awasthi, K., 2019. Morphology-dependent structural and optical properties of ZnO nanostructures. Applied Physics A, 125, 1-7. https://doi.org/10.1007/s00339-019-2852-x
  • Aydın Ünal, F., Ünal, M., Ataşer, T., Özçelik, S., 2024. Synthesis, characterization, photocatalytic application of Gd/K co‐doped ZnO. International Journal of Applied Ceramic Technology, 21, 349-357. https://doi.org/10.1111/ijac.14517
  • Bahadur, H., Srivastava, A.K., Haranath, D., Chander, H., Basu, A., Samanta, S.B., Chandra, S., 2007. Nano-structured ZnO films by sol-gel process. Indian Journal of Pure & Applied Physics, 45, 395-399.
  • Baxter, J.B., Aydil, E.S., 2006. Dye-sensitized solarcells based on semiconductor morphologies with ZnO nanowires. Solar Energy Materials and Solar Cells, 90, 607-622. https://doi.org/10.1016/j.solmat.2005.05.010
  • Ben Chobba, M., Messaoud, M., Weththimuni, M.L., Bouaziz, J., Licchelli, M., De Leo, F., Urzì, C., 2019. Preparation and characterization of photocatalytic Gd-doped TiO2 nanoparticles for water treatment. Environmental Science and Pollution Research, 26, 32734-32745. https://doi.org/10.1007/s11356-019-04680-7
  • Bharathi, P., Mohan, M.K., Shalini, V., Harish, S., Navaneethan, M., Archana, J., Hayakawa, Y., 2020. Growth and influence of Gd doping on ZnO nanostructures for enhanced optical, structural properties and gas sensing applications. Applied Surface Science, 499, 143857. https://doi.org/10.1016/j.apsusc.2019.143857
  • Carofiglio, M., Barui, S., Cauda, V., Laurenti, M., 2020. Doped zinc oxide nanoparticles: synthesis, characterization and potential use in nanomedicine. Applied Sciences, 10, 5194. https://doi.org/10.3390/app10155194
  • Chougale, A., Prasad, B., Salunkhe, S., Shinde, D., Kadam, V., Jagtap, C., 2023. Zinc oxide films deposited using the ultrasonic-assisted successive ionic layer adsorption and reaction method for dye sensitized solar cell applications. ES Energy & Environment, 21, 943. https://dx.doi.org/10.30919/esee943
  • Dakhel, A. A., El-Hilo, M., 2010. Ferromagnetic nanocrystalline Gd-doped ZnO powder synthesized by coprecipitation. Journal of Applied Physics, 107, 123905. https://doi.org/10.1063/1.3448026
  • Devi, P.G., Velu, A.S., 2016. Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method. Journal of Theoretical and Applied Physics, 10, 233-240. https://doi.org/10.1007/s40094-016-0221-0
  • Dongol, M., El-Denglawey, A., Abd El Sadek, M.S., Yahia, I.S., 2015. Thermal annealing effect on the structural and the optical properties of Nano CdTe films. Optik, 126, 1352-1357. https://doi.org/10.1016/j.ijleo.2015.04.048
  • Esakki, E.S., Vivek, P., Sundar, S.M., 2023. Influence on the efficiency of dye-sensitized solar cell using Cd doped ZnO via solvothermal method. Inorganic Chemistry Communications, 147, 110213. https://doi.org/10.1016/j.inoche.2022.110213
  • Gartner, M., Stroescu, H., Mitrea, D., Nicolescu, M., 2023. Various applications of ZnO thin films obtained by chemical routes in the last decade. Molecules, 28, 4674. https://doi.org/10.3390/molecules28124674
  • Gençyılmaz, O., Karakaya, S., Ferhunde, A.T.A.Y., Akyüz, İ., 2012. Co katkılı ZnO ince filmlerinin üretimi ve karakterizasyonu. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14, 15-24.
  • Geng, Y., Xie, Z.Y., Yang, W., Xu, S.S., Sun, Q.Q., Ding, S.J., Zhang, D.W., 2013. Structural, optical, and electrical properties of Hf-doped ZnO films deposited by atomic layer deposition. Surface and Coatings Technology, 232, 41-45. https://doi.org/10.1016/j.surfcoat.2013.04.050
  • Goel, S., Sinha, N., Yadav, H., Godara, S., Joseph, A. J., Kumar, B., 2017. Ferroelectric Gd-doped ZnO nanostructures: enhanced dielectric, ferroelectric and piezoelectric properties. Materials Chemistry and Physics, 202, 56-64. https://doi.org/10.1016/j.matchemphys.2017.08.067
  • Goktas, A., Modanlı, S., Tumbul, A., Kilic, A., 2022. Facile synthesis and characterization of ZnO, ZnO: Co, and ZnO/ZnO: Co nano rod-like homojunction thin films: Role of crystallite/grain size and microstrain in photocatalytic performance. Journal of Alloys and Compounds, 893, 162334. https://doi.org/10.1016/j.jallcom.2021.162334
  • Goktas, S. And Goktas, A., 2021. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. Journal of Alloys and Compounds, 863, 158734. https://doi.org/10.1016/j.jallcom.2021.158734
  • Gora, M.K., Kumar, A., Choudhary, B.L., Dolia, S.N., Kumar, S., Singhal, R.K., 2023. Electronic, structural and optical properties of Gd-doped ZnO powder synthesized by solid-state reaction method. Bangladesh Journal of Scientific and Industrial Research, 58, 53-64. https://doi.org/10.3329/bjsir.v58i1.63634
  • Gora, M.K., Kumar, A., Kumar, S., Maheshwari, P.K., Patidar, D., Dolia, S.N., Singhal, R.K., 2022. Electronic, optical and magnetic properties of Cu-doped ZnO, a possible system for eco-friendly and energy-efficient spintronic applications. Environmental Science and Pollution Research, 30, 98632-98646. https://doi.org/10.1007/s11356-022-22767-6
  • Guetni, I., Belaiche, M., Ahmani Ferdi, C., Elansary, M., Bsoul, I., 2020. New investigation of nanosized co-doped Gd-Sm anatase TiO2 structural, magnetic, optical, and first-principles study. Applied Physics A, 126, 1-16. https://doi.org/10.1007/s00339-020-03919-2
  • Ibupoto, Z.H., Khun, K., Eriksson, M., AlSalhi, M., Atif, M., Ansari, A., Willander, M., 2013. Hydrothermal growth of vertically aligned ZnO nanorods using a biocomposite seed layer of ZnO nanoparticles. Materials, 6, 3584-3597. https://doi.org/10.3390/ma6083584
  • Isik, M. and Gasanly, N.M., 2019. Gd-doped ZnO nanoparticles: synthesis, structural and thermoluminescence properties. Journal of Luminescence, 207, 220-225. https://doi.org/10.1016/j.jlumin.2018.11.022
  • Kalam, A., Al-Sehemi, A. G., Ashrafuzzaman, M., Allami, S. A. S., Sharif, A. M., Yadav, P., Du, G., 2023. Synthesis of gadolinium doped ZnO nanomaterials using the modified-solvothermal method and studied the effect of gadolinium on the structural, morphological, and optical properties. Journal of Inorganic and Organometallic Polymers and Materials, 33, 3076–3086. https://doi.org/10.1007/s10904-023-02745-2
  • Kant, N., and Singh, P., 2022. Review of next generation photovoltaic solar cell technology and comparative materialistic development. Materials Today: Proceedings, 56, 3460-3470. https://doi.org/10.1016/j.matpr.2021.11.116
  • Katiyar, A., Kumar, N., Srivastava, A., 2018. Optical properties of ZnO nanoparticles synthesized by co-precipitation method using LiOH. Materials Today: Proceedings, 5, 9144-9147. https://doi.org/10.1016/j.matpr.2017.10.034
  • Kayani, Z. N., Sahar, M., Riaz, S., Naseem, S., Saddiqe, Z., 2020. Enhanced magnetic, antibacteral and optical properties of Sm doped ZnO thin films: role of Sm doping. Optical Materials, 108, 110457. https://doi.org/10.1016/j.optmat.2020.110457
  • Kim, K. H., Utashiro, K., Jin, Z., Abe, Y., Kawamura, M., 2013. Dye-sensitized solar cells with sol-gel solution processed ga-doped ZnO passivation layer. International Journal of Electrochemical Science, 8, 5183-5190. https://doi.org/10.1016/S1452-3981(23)14672-4
  • Kurtaran, S., (2021). Kimyasal püskürtme tekniği ile üretilen PbS ince filmin karakterizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8, 770-777.
  • Ma, X. and Wang, Z., 2012. The optical properties of rare earth Gd doped ZnO nanocrystals, Materials Science in Semiconductor Processing. 15, 227-231. https://doi.org/10.1016/j.mssp.2011.05.013
  • Manikandan, A., Manikandan, E., Meenatchi, B., Vadivel, S., Jaganathan, S.K., Ladchumananandasivam, R., Aanand, J. S., 2017. Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies. Journal of Alloys and Compounds, 723, 1155-1161. https://doi.org/10.1016/j.jallcom.2017.06.336
  • Manikandan, B., Endo, T., Kaneko, S., Murali, K.R., John, R., (2018). Properties of sol gel synthesized ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 29, 9474-9485. https://doi.org/10.1007/s10854-018-8981-8
  • Mavazzan, A., Kamble, R.R., Mendhe, A., Sankapal, B.R., Bayannavar, P.K., Madar, S.F., Nadoni, V.B., 2023. Synthesis of phenothiazine dyes featuring coumarin unit and CdS NWs as photoanodes for efficient dye-sensitized solar cells. Physica B: Condensed Matter, 668, 415253. https://doi.org/10.1016/j.physb.2023.415253
  • Mazhdi, M., Tafreshi, M.J., 2018. The effects of gadolinium doping on the structural, morphological, optical, and photoluminescence properties of zinc oxide nanoparticles prepared by co-precipitation method. Applied Physics A, 124, 1-8. https://doi.org/10.1007/s00339-018-2291-0
  • Mazhdi, M., Tafreshi, M.J., 2020. The investigation of scintillation properties of gadolinium doped zinc oxide nanoparticles for nuclear radiation detection. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 959, 163604. https://doi.org/10.1016/j.nima.2020.163604
  • Muthu Kumaran, S., Gopalakrishnan, R., 2012. Structural, optical and photoluminescence properties of Zn1−xCexO (x = 0, 0.05 and 0.1) nanoparticles by sol–gel method annealed under Ar atmosphere, Journal of Sol-Gel Science and Technology, 62, 193–200. https://doi.org/10.1007/s10971-012-2708-8
  • Obeid, M.M., Jappor, H.R., Al-Marzoki, K., Al-Hydary, I.A., Edrees, S.J., Shukur, M.M., 2019. Unraveling the effect of Gd doping on the structural, optical, and magnetic properties of ZnO based diluted magnetic semiconductor nanorods. RSC Advances, 9, 33207-33221. https://doi.org/10.1039/C9RA04750F
  • Poornaprakash, B., Chalapathi, U., Babu, S., Park, S.H., 2017. Structural, morphological, optical, and magnetic properties of Gd-doped and (Gd, Mn) co-doped ZnO nanoparticles. Physica E: Low-dimensional Systems and Nanostructures, 93, 111-115. https://doi.org/10.1016/j.physe.2017.06.007
  • Salih, A.T., Najim, A. A., Muhi, M.A., Gbashi, K.R., 2017. Single-material multilayer ZnS as anti-reflective coating for solar cell applications. Optics Communications, 388, 84-89. https://doi.org/10.1016/j.optcom.2016.12.035
  • Satyavathi, K., Rao, M.S., Nagabhaskararao, Y., Cole, S., 2017. Synthesis, characterization of undoped and doped Zn3(PO4)2 ZnO nanopowders by sol–gel method. Journal of Materials Science: Materials in Electronics, 28, 12226-12238. https://doi.org/10.1007/s10854-017-7038-8
  • Selvaraj, S., Mohan, M.K., Navaneethan, M., Ponnusamy, S., Muthamizhchelvan, C., 2019. Synthesis and photocatalytic activity of Gd doped ZnO nanoparticles for enhanced degradation of methylene blue under visible light. Materials Science in Semiconductor Processing, 103, 104622. https://doi.org/10.1016/j.mssp.2019.104622
  • Shaat, S., Zayed, H., Musleh, H., Shurrab, N., Issa, A., Asad, J., Al Dahoudi, N., 2017. Inexpensive organic dyes-sensitized zinc oxide nanoparticles photoanode for solar cells devices. Journal of Photonics for Energy, 7, 025504-025504. https://doi.org/10.1117/1.JPE.7.025504
  • Shabbir, A., Khan, Z.S., Pervaiz, H., Haseeb, H.M., 2023. Rare-earth ion-doped zinc oxide as a viable photoanode material for dye-sensitized solar cells: optoelectrical and wettability aspects. Engineering Proceedings, 46, 19. https://doi.org/10.3390/engproc2023046019
  • Sharma, D.K., Shukla, S., Sharma, K.K., and Kumar, V., 2022. A review on ZnO: Fundamental properties and applications. Materials Today: Proceedings, 49, 3028-3035. https://doi.org/10.1016/j.matpr.2020.10.238
  • Solak, E.K., Irmak, E., 2023. Advances in organic photovoltaic cells: a comprehensive review of materials, technologies, and performance. RSC Advances, 13, 12244-12269. https://doi.org/10.1039/D3RA01454A
  • Supin, K.K., PM, P.N., Vasundhara, M., 2023. Enhanced photocatalytic activity in ZnO nanoparticles developed using novel Lepidagathis ananthapuramensis leaf extract. RSC Advances, 13, 1497-1515. https://doi.org/10.1039/D2RA06967A
  • Toma, M., Selyshchev, O., Havryliuk, Y., Pop, A., Zahn, D.R., 2022. Optical and structural characteristics of rare earth-doped ZnO nanocrystals prepared in colloidal solution. Photochem, 2, 515-527. https://doi.org/10.3390/photochem2030036
  • Tyona, M.D., Osujia, R.U., Ezema, F.I., 2013. A review of zinc oxide photoanode films for dye-sensitized solar cells based on zinc oxide nanostructures. Advances in Nano Research, 1, 43. https://doi.org/10.12989/anr.2013.1.1.043
  • Unal, F.A., Ok, S., Unal, M., Topal, S., Cellat, K., Şen, F., 2020. Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells. Journal of Molecular Liquids, 299, 112177. https://doi.org/10.1016/j.molliq.2019.112177
  • Yathisha, R.O., Arthoba Nayaka, Y., Manjunatha, P., Purushothama, H.T., Vinay, M.M., Basavarajappa, K. V., 2019. Study on the effect of Zn2+ doping on optical and electrical properties of CuO nanoparticles, Physica E: Low-dimensional Systems and Nanostructures, 108, 257–268. https://doi.org/10.1016/j.physe.2018.12.021
  • Zhao, Z., Morel, D.L. and Ferekides, C.S., 2002. Electrical and optical properties of thin-doped CdO films deposited by atmospheric metalorganic chemical vapour deposition, Thin Solid Films, 413, 203-211. https://doi.org/10.1016/S0040-6090(02)00344-9

Nadir Toprak Elementi (Gd) Katkılı ZnO Nanoparçacıkların Sol-Jel Yöntemi ile Sentezlenmesi ve Karakteristik Özelliklerinin İncelenmesi

Yıl 2024, , 424 - 433, 29.04.2024
https://doi.org/10.35414/akufemubid.1371091

Öz

Bu çalışmada yarı iletken çinko oksit (ZnO) malzemesine nadir toprak elementlerinden biri olan gadolinyum (Gd) elementi molce %10 oranında katkılanarak sol-jel yöntemine göre nanoboyutta sentezlendi. Elde edilen gadolinyum katkılı çinko oksit (Gd/ZnO) nanoparçacıkların morfolojik-kimyasal özellikleri taramalı elektron mikroskobu/enerji dağılımlı X-ışını spektroskopisi (SEM/EDX), yapısal özellikleri X-ışını kırınımı (XRD), optik bant özellikleri ultraviyole görünür (UV-Vis) spektroskopisi ve fiziksel özellikleri parçacık boyutu analiziyle karakterize edildi. Çalışmada Gd katkılamanın ZnO üzerine etkisi ve Gd/ZnO nanoparçacığının yarı iletken teknolojisinde kullanımının araştırılması amaçlandı. Yapısal çalışma Gd/ZnO nanoparçacıklarının wurtzite oluşumunu XRD çalışması ile doğruladı. XRD analizinden kristalit boyutu, dislokasyon yoğunluğu ve mikro gerinim değerleri hesaplandı. SEM/EDX analizi Gd katkılamanın başarılı bir şekilde sentezlendiğini gösterdi. Tauc Plot metodu ile direkt ve indirekt bant aralığı değerleri sırasıyla 3.06 eV ve 2.89 eV olarak hesaplanarak Gd katkı maddesinin bant aralığı üzerindeki etkisi incelendi. Gd3+ iyonlarının ZnO yapısına katkılanmasıyla kırmızıya kayma gözlendi. Gd/ZnO örneğinin ortalama parçacık boyutu dağılımı 209.4 nm olarak elde edildi. Elde edilen sonuçlar literatürdeki katkısız ZnO ile karşılaştırıldı. Sonuç olarak, sentezlenen Gd/ZnO nanoparçacıkların yarıiletken endüstrisinde nanomalzeme olarak, özellikle de güneş pillerinde kullanım alanı bulabileceğini gösterdi.

Teşekkür

Analiz desteği için Fotonik Uygulama ve Araştırma Merkezi ile Prof. Dr. Süleyman Özçelik’e teşekkür ederim.

Kaynakça

  • Aggarwal, N., Kaur, K., Vasisth, A., Verma, N.K., 2018. Synthesis and characterization of Gd-doped ZnO nanorods. In AIP Conference Proceedings, AIP Publishing, 2050, 1. https://doi.org/10.1063/1.5083602
  • Aggarwal, N., Kaur, K., Vasishth, A., Verma, N.K., 2016. Structural, optical and magnetic properties of Gadolinium-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 27, 13006-13011. https://doi.org/10.1007/s10854-016-5440-2
  • Agarwal, S., Jangir, L.K., Rathore, K.S., Kumar, M., Awasthi, K., 2019. Morphology-dependent structural and optical properties of ZnO nanostructures. Applied Physics A, 125, 1-7. https://doi.org/10.1007/s00339-019-2852-x
  • Aydın Ünal, F., Ünal, M., Ataşer, T., Özçelik, S., 2024. Synthesis, characterization, photocatalytic application of Gd/K co‐doped ZnO. International Journal of Applied Ceramic Technology, 21, 349-357. https://doi.org/10.1111/ijac.14517
  • Bahadur, H., Srivastava, A.K., Haranath, D., Chander, H., Basu, A., Samanta, S.B., Chandra, S., 2007. Nano-structured ZnO films by sol-gel process. Indian Journal of Pure & Applied Physics, 45, 395-399.
  • Baxter, J.B., Aydil, E.S., 2006. Dye-sensitized solarcells based on semiconductor morphologies with ZnO nanowires. Solar Energy Materials and Solar Cells, 90, 607-622. https://doi.org/10.1016/j.solmat.2005.05.010
  • Ben Chobba, M., Messaoud, M., Weththimuni, M.L., Bouaziz, J., Licchelli, M., De Leo, F., Urzì, C., 2019. Preparation and characterization of photocatalytic Gd-doped TiO2 nanoparticles for water treatment. Environmental Science and Pollution Research, 26, 32734-32745. https://doi.org/10.1007/s11356-019-04680-7
  • Bharathi, P., Mohan, M.K., Shalini, V., Harish, S., Navaneethan, M., Archana, J., Hayakawa, Y., 2020. Growth and influence of Gd doping on ZnO nanostructures for enhanced optical, structural properties and gas sensing applications. Applied Surface Science, 499, 143857. https://doi.org/10.1016/j.apsusc.2019.143857
  • Carofiglio, M., Barui, S., Cauda, V., Laurenti, M., 2020. Doped zinc oxide nanoparticles: synthesis, characterization and potential use in nanomedicine. Applied Sciences, 10, 5194. https://doi.org/10.3390/app10155194
  • Chougale, A., Prasad, B., Salunkhe, S., Shinde, D., Kadam, V., Jagtap, C., 2023. Zinc oxide films deposited using the ultrasonic-assisted successive ionic layer adsorption and reaction method for dye sensitized solar cell applications. ES Energy & Environment, 21, 943. https://dx.doi.org/10.30919/esee943
  • Dakhel, A. A., El-Hilo, M., 2010. Ferromagnetic nanocrystalline Gd-doped ZnO powder synthesized by coprecipitation. Journal of Applied Physics, 107, 123905. https://doi.org/10.1063/1.3448026
  • Devi, P.G., Velu, A.S., 2016. Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method. Journal of Theoretical and Applied Physics, 10, 233-240. https://doi.org/10.1007/s40094-016-0221-0
  • Dongol, M., El-Denglawey, A., Abd El Sadek, M.S., Yahia, I.S., 2015. Thermal annealing effect on the structural and the optical properties of Nano CdTe films. Optik, 126, 1352-1357. https://doi.org/10.1016/j.ijleo.2015.04.048
  • Esakki, E.S., Vivek, P., Sundar, S.M., 2023. Influence on the efficiency of dye-sensitized solar cell using Cd doped ZnO via solvothermal method. Inorganic Chemistry Communications, 147, 110213. https://doi.org/10.1016/j.inoche.2022.110213
  • Gartner, M., Stroescu, H., Mitrea, D., Nicolescu, M., 2023. Various applications of ZnO thin films obtained by chemical routes in the last decade. Molecules, 28, 4674. https://doi.org/10.3390/molecules28124674
  • Gençyılmaz, O., Karakaya, S., Ferhunde, A.T.A.Y., Akyüz, İ., 2012. Co katkılı ZnO ince filmlerinin üretimi ve karakterizasyonu. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14, 15-24.
  • Geng, Y., Xie, Z.Y., Yang, W., Xu, S.S., Sun, Q.Q., Ding, S.J., Zhang, D.W., 2013. Structural, optical, and electrical properties of Hf-doped ZnO films deposited by atomic layer deposition. Surface and Coatings Technology, 232, 41-45. https://doi.org/10.1016/j.surfcoat.2013.04.050
  • Goel, S., Sinha, N., Yadav, H., Godara, S., Joseph, A. J., Kumar, B., 2017. Ferroelectric Gd-doped ZnO nanostructures: enhanced dielectric, ferroelectric and piezoelectric properties. Materials Chemistry and Physics, 202, 56-64. https://doi.org/10.1016/j.matchemphys.2017.08.067
  • Goktas, A., Modanlı, S., Tumbul, A., Kilic, A., 2022. Facile synthesis and characterization of ZnO, ZnO: Co, and ZnO/ZnO: Co nano rod-like homojunction thin films: Role of crystallite/grain size and microstrain in photocatalytic performance. Journal of Alloys and Compounds, 893, 162334. https://doi.org/10.1016/j.jallcom.2021.162334
  • Goktas, S. And Goktas, A., 2021. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. Journal of Alloys and Compounds, 863, 158734. https://doi.org/10.1016/j.jallcom.2021.158734
  • Gora, M.K., Kumar, A., Choudhary, B.L., Dolia, S.N., Kumar, S., Singhal, R.K., 2023. Electronic, structural and optical properties of Gd-doped ZnO powder synthesized by solid-state reaction method. Bangladesh Journal of Scientific and Industrial Research, 58, 53-64. https://doi.org/10.3329/bjsir.v58i1.63634
  • Gora, M.K., Kumar, A., Kumar, S., Maheshwari, P.K., Patidar, D., Dolia, S.N., Singhal, R.K., 2022. Electronic, optical and magnetic properties of Cu-doped ZnO, a possible system for eco-friendly and energy-efficient spintronic applications. Environmental Science and Pollution Research, 30, 98632-98646. https://doi.org/10.1007/s11356-022-22767-6
  • Guetni, I., Belaiche, M., Ahmani Ferdi, C., Elansary, M., Bsoul, I., 2020. New investigation of nanosized co-doped Gd-Sm anatase TiO2 structural, magnetic, optical, and first-principles study. Applied Physics A, 126, 1-16. https://doi.org/10.1007/s00339-020-03919-2
  • Ibupoto, Z.H., Khun, K., Eriksson, M., AlSalhi, M., Atif, M., Ansari, A., Willander, M., 2013. Hydrothermal growth of vertically aligned ZnO nanorods using a biocomposite seed layer of ZnO nanoparticles. Materials, 6, 3584-3597. https://doi.org/10.3390/ma6083584
  • Isik, M. and Gasanly, N.M., 2019. Gd-doped ZnO nanoparticles: synthesis, structural and thermoluminescence properties. Journal of Luminescence, 207, 220-225. https://doi.org/10.1016/j.jlumin.2018.11.022
  • Kalam, A., Al-Sehemi, A. G., Ashrafuzzaman, M., Allami, S. A. S., Sharif, A. M., Yadav, P., Du, G., 2023. Synthesis of gadolinium doped ZnO nanomaterials using the modified-solvothermal method and studied the effect of gadolinium on the structural, morphological, and optical properties. Journal of Inorganic and Organometallic Polymers and Materials, 33, 3076–3086. https://doi.org/10.1007/s10904-023-02745-2
  • Kant, N., and Singh, P., 2022. Review of next generation photovoltaic solar cell technology and comparative materialistic development. Materials Today: Proceedings, 56, 3460-3470. https://doi.org/10.1016/j.matpr.2021.11.116
  • Katiyar, A., Kumar, N., Srivastava, A., 2018. Optical properties of ZnO nanoparticles synthesized by co-precipitation method using LiOH. Materials Today: Proceedings, 5, 9144-9147. https://doi.org/10.1016/j.matpr.2017.10.034
  • Kayani, Z. N., Sahar, M., Riaz, S., Naseem, S., Saddiqe, Z., 2020. Enhanced magnetic, antibacteral and optical properties of Sm doped ZnO thin films: role of Sm doping. Optical Materials, 108, 110457. https://doi.org/10.1016/j.optmat.2020.110457
  • Kim, K. H., Utashiro, K., Jin, Z., Abe, Y., Kawamura, M., 2013. Dye-sensitized solar cells with sol-gel solution processed ga-doped ZnO passivation layer. International Journal of Electrochemical Science, 8, 5183-5190. https://doi.org/10.1016/S1452-3981(23)14672-4
  • Kurtaran, S., (2021). Kimyasal püskürtme tekniği ile üretilen PbS ince filmin karakterizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8, 770-777.
  • Ma, X. and Wang, Z., 2012. The optical properties of rare earth Gd doped ZnO nanocrystals, Materials Science in Semiconductor Processing. 15, 227-231. https://doi.org/10.1016/j.mssp.2011.05.013
  • Manikandan, A., Manikandan, E., Meenatchi, B., Vadivel, S., Jaganathan, S.K., Ladchumananandasivam, R., Aanand, J. S., 2017. Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies. Journal of Alloys and Compounds, 723, 1155-1161. https://doi.org/10.1016/j.jallcom.2017.06.336
  • Manikandan, B., Endo, T., Kaneko, S., Murali, K.R., John, R., (2018). Properties of sol gel synthesized ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 29, 9474-9485. https://doi.org/10.1007/s10854-018-8981-8
  • Mavazzan, A., Kamble, R.R., Mendhe, A., Sankapal, B.R., Bayannavar, P.K., Madar, S.F., Nadoni, V.B., 2023. Synthesis of phenothiazine dyes featuring coumarin unit and CdS NWs as photoanodes for efficient dye-sensitized solar cells. Physica B: Condensed Matter, 668, 415253. https://doi.org/10.1016/j.physb.2023.415253
  • Mazhdi, M., Tafreshi, M.J., 2018. The effects of gadolinium doping on the structural, morphological, optical, and photoluminescence properties of zinc oxide nanoparticles prepared by co-precipitation method. Applied Physics A, 124, 1-8. https://doi.org/10.1007/s00339-018-2291-0
  • Mazhdi, M., Tafreshi, M.J., 2020. The investigation of scintillation properties of gadolinium doped zinc oxide nanoparticles for nuclear radiation detection. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 959, 163604. https://doi.org/10.1016/j.nima.2020.163604
  • Muthu Kumaran, S., Gopalakrishnan, R., 2012. Structural, optical and photoluminescence properties of Zn1−xCexO (x = 0, 0.05 and 0.1) nanoparticles by sol–gel method annealed under Ar atmosphere, Journal of Sol-Gel Science and Technology, 62, 193–200. https://doi.org/10.1007/s10971-012-2708-8
  • Obeid, M.M., Jappor, H.R., Al-Marzoki, K., Al-Hydary, I.A., Edrees, S.J., Shukur, M.M., 2019. Unraveling the effect of Gd doping on the structural, optical, and magnetic properties of ZnO based diluted magnetic semiconductor nanorods. RSC Advances, 9, 33207-33221. https://doi.org/10.1039/C9RA04750F
  • Poornaprakash, B., Chalapathi, U., Babu, S., Park, S.H., 2017. Structural, morphological, optical, and magnetic properties of Gd-doped and (Gd, Mn) co-doped ZnO nanoparticles. Physica E: Low-dimensional Systems and Nanostructures, 93, 111-115. https://doi.org/10.1016/j.physe.2017.06.007
  • Salih, A.T., Najim, A. A., Muhi, M.A., Gbashi, K.R., 2017. Single-material multilayer ZnS as anti-reflective coating for solar cell applications. Optics Communications, 388, 84-89. https://doi.org/10.1016/j.optcom.2016.12.035
  • Satyavathi, K., Rao, M.S., Nagabhaskararao, Y., Cole, S., 2017. Synthesis, characterization of undoped and doped Zn3(PO4)2 ZnO nanopowders by sol–gel method. Journal of Materials Science: Materials in Electronics, 28, 12226-12238. https://doi.org/10.1007/s10854-017-7038-8
  • Selvaraj, S., Mohan, M.K., Navaneethan, M., Ponnusamy, S., Muthamizhchelvan, C., 2019. Synthesis and photocatalytic activity of Gd doped ZnO nanoparticles for enhanced degradation of methylene blue under visible light. Materials Science in Semiconductor Processing, 103, 104622. https://doi.org/10.1016/j.mssp.2019.104622
  • Shaat, S., Zayed, H., Musleh, H., Shurrab, N., Issa, A., Asad, J., Al Dahoudi, N., 2017. Inexpensive organic dyes-sensitized zinc oxide nanoparticles photoanode for solar cells devices. Journal of Photonics for Energy, 7, 025504-025504. https://doi.org/10.1117/1.JPE.7.025504
  • Shabbir, A., Khan, Z.S., Pervaiz, H., Haseeb, H.M., 2023. Rare-earth ion-doped zinc oxide as a viable photoanode material for dye-sensitized solar cells: optoelectrical and wettability aspects. Engineering Proceedings, 46, 19. https://doi.org/10.3390/engproc2023046019
  • Sharma, D.K., Shukla, S., Sharma, K.K., and Kumar, V., 2022. A review on ZnO: Fundamental properties and applications. Materials Today: Proceedings, 49, 3028-3035. https://doi.org/10.1016/j.matpr.2020.10.238
  • Solak, E.K., Irmak, E., 2023. Advances in organic photovoltaic cells: a comprehensive review of materials, technologies, and performance. RSC Advances, 13, 12244-12269. https://doi.org/10.1039/D3RA01454A
  • Supin, K.K., PM, P.N., Vasundhara, M., 2023. Enhanced photocatalytic activity in ZnO nanoparticles developed using novel Lepidagathis ananthapuramensis leaf extract. RSC Advances, 13, 1497-1515. https://doi.org/10.1039/D2RA06967A
  • Toma, M., Selyshchev, O., Havryliuk, Y., Pop, A., Zahn, D.R., 2022. Optical and structural characteristics of rare earth-doped ZnO nanocrystals prepared in colloidal solution. Photochem, 2, 515-527. https://doi.org/10.3390/photochem2030036
  • Tyona, M.D., Osujia, R.U., Ezema, F.I., 2013. A review of zinc oxide photoanode films for dye-sensitized solar cells based on zinc oxide nanostructures. Advances in Nano Research, 1, 43. https://doi.org/10.12989/anr.2013.1.1.043
  • Unal, F.A., Ok, S., Unal, M., Topal, S., Cellat, K., Şen, F., 2020. Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells. Journal of Molecular Liquids, 299, 112177. https://doi.org/10.1016/j.molliq.2019.112177
  • Yathisha, R.O., Arthoba Nayaka, Y., Manjunatha, P., Purushothama, H.T., Vinay, M.M., Basavarajappa, K. V., 2019. Study on the effect of Zn2+ doping on optical and electrical properties of CuO nanoparticles, Physica E: Low-dimensional Systems and Nanostructures, 108, 257–268. https://doi.org/10.1016/j.physe.2018.12.021
  • Zhao, Z., Morel, D.L. and Ferekides, C.S., 2002. Electrical and optical properties of thin-doped CdO films deposited by atmospheric metalorganic chemical vapour deposition, Thin Solid Films, 413, 203-211. https://doi.org/10.1016/S0040-6090(02)00344-9
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Fatma Aydın Ünal 0000-0002-0031-0047

Erken Görünüm Tarihi 14 Nisan 2024
Yayımlanma Tarihi 29 Nisan 2024
Gönderilme Tarihi 4 Ekim 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Aydın Ünal, F. (2024). Nadir Toprak Elementi (Gd) Katkılı ZnO Nanoparçacıkların Sol-Jel Yöntemi ile Sentezlenmesi ve Karakteristik Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(2), 424-433. https://doi.org/10.35414/akufemubid.1371091
AMA Aydın Ünal F. Nadir Toprak Elementi (Gd) Katkılı ZnO Nanoparçacıkların Sol-Jel Yöntemi ile Sentezlenmesi ve Karakteristik Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Nisan 2024;24(2):424-433. doi:10.35414/akufemubid.1371091
Chicago Aydın Ünal, Fatma. “Nadir Toprak Elementi (Gd) Katkılı ZnO Nanoparçacıkların Sol-Jel Yöntemi Ile Sentezlenmesi Ve Karakteristik Özelliklerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, sy. 2 (Nisan 2024): 424-33. https://doi.org/10.35414/akufemubid.1371091.
EndNote Aydın Ünal F (01 Nisan 2024) Nadir Toprak Elementi (Gd) Katkılı ZnO Nanoparçacıkların Sol-Jel Yöntemi ile Sentezlenmesi ve Karakteristik Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 2 424–433.
IEEE F. Aydın Ünal, “Nadir Toprak Elementi (Gd) Katkılı ZnO Nanoparçacıkların Sol-Jel Yöntemi ile Sentezlenmesi ve Karakteristik Özelliklerinin İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 2, ss. 424–433, 2024, doi: 10.35414/akufemubid.1371091.
ISNAD Aydın Ünal, Fatma. “Nadir Toprak Elementi (Gd) Katkılı ZnO Nanoparçacıkların Sol-Jel Yöntemi Ile Sentezlenmesi Ve Karakteristik Özelliklerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/2 (Nisan 2024), 424-433. https://doi.org/10.35414/akufemubid.1371091.
JAMA Aydın Ünal F. Nadir Toprak Elementi (Gd) Katkılı ZnO Nanoparçacıkların Sol-Jel Yöntemi ile Sentezlenmesi ve Karakteristik Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:424–433.
MLA Aydın Ünal, Fatma. “Nadir Toprak Elementi (Gd) Katkılı ZnO Nanoparçacıkların Sol-Jel Yöntemi Ile Sentezlenmesi Ve Karakteristik Özelliklerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 2, 2024, ss. 424-33, doi:10.35414/akufemubid.1371091.
Vancouver Aydın Ünal F. Nadir Toprak Elementi (Gd) Katkılı ZnO Nanoparçacıkların Sol-Jel Yöntemi ile Sentezlenmesi ve Karakteristik Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(2):424-33.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.