Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimization of Li-TFSI Doped TiO2 Electron Transfer Layer in Perovskite Solar Cells

Yıl 2024, , 921 - 930, 20.08.2024
https://doi.org/10.35414/akufemubid.1403743

Öz

Optimized electron transfer layer (ETL) play a crucial role in achieving higher performance in perovskite solar cells (PSCs). The optoelectronic properties of ETL, such as band energy and trap density, significantly influence the performance of PSCs. However, the low electron mobility of commonly used titanium dioxide (TiO2) ETL in PSCs remains a challenge that needs improvement. In this study, lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) salt is added to TiO2-based ETL at different concentrations (x: 0, 5, 10, 15 mg/ml) by spin-coating technique. Photovoltaic and optoelectronic properties of Li-TFSI-modified PSCs were compared with bare PSCs using the FTO/c-TiO2/mp-TiO2:Li-TFSI/CsFAMAPbI2Br/spiro-OMeTAD/Ag cell architecture. The TiO2:Li-TFSI modification shows a significant enhancement in the morphological, structural, and optical properties of the PSCs. The Li-TFSI contribution significantly improved the electron transfer. While bare PSC achieves a power conversion efficiency (PCE) of 18,16%, the 10 mg/ml Li-TFSI-modified PSCs reached the highest PCE of 19,98%. This study signifies a promising step towards the development and commercialization of highly efficient PSCs by optimizing the optoelectronic properties of TiO2 ETL through Li-TFSI salt modification.

Kaynakça

  • Abd Mutalib, M.; Ahmad Ludin, N.; Su’ait, M.S.; Davies, M.; Sepeai, S.; Mat Teridi, M.A.; Mohamad Noh, M.F.; Ibrahim, M.A., 2022. Performance-enhancing sulfur-doped TiO2 photoanodes for perovskite solar cells. Applied Sciences, 12(1), 429. https://doi.org/10.3390/app12010429
  • Afzali, M., Mostafavi, A., & Shamspur, T., 2020. Performance enhancement of perovskite solar cells by rhenium doping in nano-TiO2 compact layer. Organic Electronics, 86, 105907. https://doi.org/10.1016/j.orgel.2020.105907
  • Akin, S., Arora, N., Zakeeruddin, S. M., Grätzel, M., Friend, R. H., & Dar, M. I., 2020. New strategies for defect passivation in high‐efficiency perovskite solar cells. Advanced Energy Materials, 10(13), 1903090. https://doi.org/10.1002/aenm.201903090
  • Akman, E., & Akin, S., 2021. Poly (N, N′‐bis‐4‐butylphenyl‐N, N′‐bisphenyl) benzidine‐based interfacial passivation strategy promoting efficiency and operational stability of perovskite solar cells in regular architecture. Advanced Materials, 33(2), 2006087. https://doi.org/10.1002/adma.202006087
  • Akman, E., Shalan, A. E., Sadegh, F., Akin, S., 2021. Moisture‐resistant FAPbI3 perovskite solar cell with 22.25% power conversion efficiency through pentafluorobenzyl phosphonic acid passivation. Chemistry Sustainability Energy Materials, 14(4), 1176-1183. https://doi.org/10.1002/cssc.202002707
  • Arshad, Z., Shakir, S., Khoja, A. H., Javed, A. H., Anwar, M., Rehman, A., Farrukh, S., 2022. Performance analysis of calcium-doped titania (TiO2) as an effective electron transport layer (ETL) for perovskite solar cells. Energies, 15(4), 1408. https://doi.org/10.3390/en15041408
  • Bu, T., Liu, X., Zhou, Y., Yi, J., Huang, X., Luo, L., Xiao, J., Ku, Z., Peng, Y., Huang, F., Zhong, J., 2017. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy & Environmental Science, 10(12), 2509-2515. https://doi.org/10.1039/C7EE02634J
  • Bidaki, A. Z., Abdizadeh, H., Pourshaban, E., Shadabroo, M. S., & Golobostanfard, M. R., 2022. Comparing the planar and porous Nb-doped TiO2 photoanode of triple cation perovskite solar cells. Materials Science in Semiconductor Processing, 138, 106259. https://doi.org/10.1016/j.mssp.2021.106259
  • Caprioglio, P., Cruz, D. S., Caicedo-Dávila, S., Zu, F., Sutanto, A. A., Peña-Camargo, F., Neher, D., 2021. Bi-functional interfaces by poly (ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy & Environmental Science, 14(8), 4508-4522. https://doi.org/10.1039/D1EE00869B
  • Chavan, R. D., Bończak, B., Kruszyńska, J., Mahapatra, A., Ans, M., Nawrocki, J., Prochowicz, D., 2023. Molecular engineering of azahomofullerene-based electron transporting materials for efficient and stable perovskite solar cells. Chemistry of Materials, 35(19), 8309-8320. https://doi.org/10.1002/aenm.201903090
  • Chen, S. H., Chan, S. H., Lin, Y. T., & Wu, M. C., 2019. Enhanced power conversion efficiency of perovskite solar cells based on mesoscopic Ag-doped TiO2 electron transport layer. Applied Surface Science, 469, 18-26. http://doi.org/10.1016/j.apsusc.2018.10.256
  • Chen, H., Liu, T., Zhou, P., Li, S., Ren, J., He, H., Guo, S., 2020. Efficient bifacial passivation with crosslinked thioctic acid for high‐performance methylammonium lead iodide perovskite solar cells. Advanced Materials, 32(6), 1905661. https://doi.org/10.1002/adma.201905661
  • Chen, K. T., Hsu, C. H., Jiang, S. C., Liang, L. S., Gao, P., Qiu, Y., Lien, S. Y., 2022. Effect of annealing temperature on tantalum-doped TiO2 as electron transport layer in perovskite solar cells. IEEE Transactions on Electron Devices, 69(3), 1149-1154. https://doi.org/10.1109/TED.2022.3142652
  • Chen, L., Li, C., Xian, Y., Fu, S., Abudulimu, A., Li, D. B., Yan, Y., 2023. Incorporating potassium citrate to improve the performance of tin‐lead perovskite solar cells. Advanced Energy Materials, 13(32), 2301218. http://doi.org/10.1002/aenm.202301218
  • Cid, C. P., Spada, E. R., & Sartorelli, M. L., 2013. Effect of the cathodic polarization on structural and morphological proprieties of FTO and ITO thin films. Applied Surface Science, 273, 603-606. https://doi.org/10.1016/j.apsusc.2013.02.085
  • Deng, X., Wang, Y., Chen, Y., Cui, Z., & Shi, C., 2019. Yttrium-doped TiO2 compact layers for efficient perovskite solar cells. Journal of Solid State Chemistry, 275, 206-209. https://doi.org/10.1016/j.jssc.2019.04.022
  • Ebiç, M., 2023. Perovskite güneş hücreleri için EMIMBF4 iyonik sıvı katkılı SnO2 elektron transfer tabakasının düşük sıcaklıkta üretimi ve optimizasyonu. Journal of the Institute of Science and Technology,13 (3), 2130-2142. https://doi.org/10.21597/jist.1273053
  • Ebiç, M., Akar, Ş., Akman, E., Özel, F., Akin, S., 2022. SnO2 elektron transfer tabakasının slot-die tekniği ile üretimi ve optimizasyonu. International Journal of Innovative Engineering Applications, 6 (1), 170-182. https://doi.org/10.46460/ijiea.1086169
  • Fuyuki, T., & Matsunami, H., 1986. Electronic properties of the interface between Si and TiO2 deposited at very low temperatures. Japanese Journal of Applied Physics, 25(9R), 1288. https://doi.org/10.1143/JJAP.25.1288
  • Gao, T., Sui, H., Zhu, J., Chen, H., Tang, Q., & He, B., 2023. Enhanced electron extraction using neodymium ions doped TiO2 for all-inorganic CsPbBr3 perovskite solar cells. Journal of Alloys and Compounds, 965, 171496. http://doi.org/10.1016/j.jallcom.2023.171496
  • Ghazanfarpour, S., and Dehaj, M. S., 2023. Improvement of the photovoltaic performance of perovskite solar cells by modification of electron transport layer using Mg-doped TiO2, Cs2Co3, and bilayer Mg-doped TiO2/Cs2Co3. Optical Materials, 144, 114312. http://doi.org/10.1016/j.solener.2020.11.017
  • Gil, B., Yun, A. J., Lim, J., Cho, J., Kim, B., Ryu, S., Park, B., 2023. Design of SnO2 electron transport layer in perovskite solar cells to achieve 2000 h stability under 1 sun illumination and 85°C. Advanced Materials Interfaces, 10(11), 2202148. https://doi.org/10.1002/admi.202202148
  • Giordano, F., Abate, A., Correa Baena, J.P., Saliba, M., Matsui, T., Im, S.H., et al., 2016. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nature Communications. 7, 10379. https://doi.org/10.1038/ncomms10379
  • Han, C., Zhu, X., Martin, J. S., Lin, Y., Spears, S., & Yan, Y., 2020. Recent progress in engineering metal halide perovskites for efficient visible‐light‐driven photocatalysis. Chemistry Sustainability Energy Materials, 13(16), 4005-4025. https://doi.org/10.1002/cssc.202000953
  • Hui, W., Yang, Y., Xu, Q., Gu, H., Feng, S., Su, Z., Zhang, M., Wang, J., Li, X., Fang, J., Xia, F., Huang, W., 2020. Red‐carbon‐quantum‐dot‐doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells. Advanced Materials, 32(4), 1906374. https://doi.org/10.1002/adma.201906374
  • Ilyassov, B., Ibrayev, N., & Nuraje, N., 2015. Hierarchically assembled nanostructures and their photovoltaic properties. Materials Science in Semiconductor Processing, 40, 885-889. http://doi.org/10.1016/j.mssp.2015.07.087
  • Iraj, M., Kolahdouz, M., Asl-Soleimani, E., Esmaeili, E., and Kolahdouz, Z., 2016. TiO2 nanotube formation by Ti film anodization and their transport properties for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 27, 6496-6501. https://doi.org/10.1007/s10854-016-4591-5
  • Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., Ye, Q., Lİ, X., Yin, Z., You, J., 2019. Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 13(7), 500. https://doi.org/10.1038/s41566-019-0398-2
  • Jin, J., Li, H., Bi, W., Chen, C., Zhang, B., Xu, L., Biao, Dong., Song, H., Dai, Q., 2020. Efficient and stable perovskite solar cells through e-beam preparation of cerium doped TiO2 electron transport layer, ultraviolet conversion layer CsPbBr3 and the encapsulation layer Al2O3. Solar Energy, 198, 187-193. https://doi.org/10.1016/j.solener.2020.01.048
  • Kavan, L., Tétreault, N., Moehl, T., & Grätzel, M., 2014. Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells. The Journal of Physical Chemistry C, 118(30), 16408-16418. http://doi.org/10.1021/jp4103614
  • Krishna, A., Zhang, H., Zhou, Z., Gallet, T., Dankl, M., Ouellette, O., Hagfeldt, A., 2021. Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. Energy & Environmental Science, 14(10), 5552-5562. https://doi.org/10.1039/D1EE02454J
  • Kruszyńska, J., Ostapko, J., Ozkaya, V., Surucu, B., Szawcow, O., Nikiforow, K., Holdynski, M., Tavakoli, M., Yadav, P., Satapathi, S., Akin, S., Prochowicz, D., 2022. Atomic layer engineering of aluminum‐doped zinc oxide films for efficient and stable perovskite solar cells. Advanced Materials Interfaces, 9(17), 2200575. https://doi.org/10.1002/admi.202200575
  • Liu, D., Li, S., Zhang, P., Wang, Y., Zhang, R., Sarvari, H., et al., 2017. Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer. Nano Energy 31, 462–468. https://doi.org/10.1016/j.nanoen.2016.11.028
  • Li, X., Chen, Y., Li, L., & Huang, J., 2018. Perovskite thin film consisting with one-dimensional nanowires. Materials, 11(9), 1759. https://doi.org/10.3390%2Fma11091759
  • Ma, Z., Huang, D., Liu, Q., Yan, G., Xiao, Z., Chen, D., Huang, Y., 2022. Excess PbI2 evolution for triple-cation based perovskite solar cells with 21.9% efficiency. Journal of Energy Chemistry, 66, 152-160. https://doi.org/10.1016/j.jechem.2021.07.030
  • Mali, S. S., Patil, J. V., Kim, H., & Hong, C. K., 2019. Gallium cationic incorporated compact TiO2 as an efficient electron-transporting layer for stable perovskite solar cells, Matter 1, 1–13. https://doi.org/10.1016/j.matt.2019.04.001
  • Min, H., Lee, D. Y., Kim, J., Kim, G., Lee, K. S., Kim, J., Paik, J. M., Kim, K. Y., Kim, K., Kim, M., Shin, T., Il Seok, S., 2021. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 598(7881), 444-450. https://doi.org/10.1038/s41586-021-03964-8
  • Moshfeghi, E., and Entezari, M. H., 2022. Enhancement of the photovoltaic performance of perovskite solar cells via sono‐synthesis of Al‐doped TiO2 as the electron transport layer. International Journal of Energy Research, 46(15), 23465-23479. https://doi.org/10.1002/er.8643.
  • Nagaraj, G., Mohammed, M. K., Shekargoftar, M., Sasikumar, P., Sakthivel, P., Ravi, G., Shalan, A. E., 2021. High-performance perovskite solar cells using the graphene quantum dot–modified SnO2/ZnO photoelectrode. Materials Today Energy, 22, 100853. https://doi.org/10.1016/j.mtener.2021.100853.
  • Nguyen, T. M. H., & Bark, C. W., 2020. Synthesis of cobalt-doped TiO2 based on metal–organic frameworks as an effective electron transport material in perovskite solar cells. ACS Omega, 5(5), 2280-2286. https://doi.org/10.1021/acsomega.9b03507
  • Ozkaya, V., Sadegh, F., Unal, M., Alkan, B., Ebic, M., Ozturk, T., Yilmaz, M., Akin, S., 2023. Eco-friendly boost for perovskite photovoltaics: harnessing cellulose-modified SnO2 as a high-performance electron transporting material. ACS Applied Materials & Interfaces, 15(49), 57338-57349. https://doi.org/10.1021/acsami.3c12698
  • Patel, K., Prochowicz, D., Akin, S., Kalam, A., Tavakoli, M. M., & Yadav, P., 2023. Applications of carbon‐based materials for improving the performance and stability of perovskite solar cells. Energy Technology, 11(10), 2300228. https://doi.org/10.1002/ente.202300228
  • Sadegh, F., Akin, S., Moghadam, M., Mirkhani, V., Ruiz‒Preciado, M. A., Wang, Z., Tavakoli, Graetzel, M., Hagfeldt, A., M., Tress, W., 2020. Highly efficient, stable and hysteresis‒less planar perovskite solar cell based on chemical bath treated Zn2SnO4 electron transport layer. Nano Energy, 75, 105038. https://doi.org/10.1016/j.nanoen.2020.105038
  • Sadegh, F., Akman, E., Prochowicz, D., Tavakoli, M. M., Yadav, P., & Akin, S., 2022. Facile NaF treatment achieves 20% efficient ETL-free perovskite solar cells. ACS Applied Materials & Interfaces, 14(34), 38631-38641. https://doi.org/10.1021/acsami.2c06110
  • Sadegh, F., Ebic, M., Prochowicz, D., Ans, M., Kruszyńska, J., Satapathi, S., Moghadam, M., Yadav, P., Akin, S., 2023. Acetate-based ionic liquid engineering for efficient and stable CsPbI2Br perovskite solar cells with an unprecedented fill factor over 83%. Materials Today Physics, 40, 101301. https://doi.org/10.1016/j.mtphys.2023.101301
  • Shi, X., Ding, Y., Zhou, S., Zhang, B., Cai, M., Yao, J., Nazeeruddin, M. K., 2019. Enhanced interfacial binding and electron extraction using boron‐doped TiO2 for highly efficient hysteresis‐free perovskite solar cells. Advanced Science, 6(21), 1901213. https://doi.org/10.1002/advs.201901213
  • Su, T. S., & Wei, T. C., 2020. Co‐electrodeposition of Sn‐doped TiO2 electron‐transporting layer for perovskite solar cells. Physica Status Solidi (a), 217(1), 1900491. http://doi.org/10.1002/pssa.201900491
  • Tien, C. H., Lai, H. Y., & Chen, L. C., 2023. Methylammonium halide salt interfacial modification of perovskite quantum dots/triple-cation perovskites enable efficient solar cells. Scientific Reports, 13(1), 5387. https://doi.org/10.1038/s41598-023-32697-z
  • Qureshi, A. A., Javed, H. M. A., Javed, S., Bashir, A., Usman, M., Akram, A., Raza, S. A., 2021. Incorporation of Zr-doped TiO2 nanoparticles in electron transport layer for efficient planar perovskite solar cells. Surfaces and Interfaces, 25, 101299. https://doi.org/10.1016/j.surfin.2021.101299
  • Wang, H., Li, Y., Ba, X., Huang, L., & Yu, Y., 2015. TiO2 thin films with rutile phase prepared by DC magnetron co-sputtering at room temperature: Effect of Cu incorporation. Applied Surface Science, 345, 49-56. https://doi.org/10.1016/j.apsusc.2015.03.106
  • Wang, S., Liu, B., Zhu, Y., Ma, Z., Liu, B., Miao, X., Ma, R., Wang, C., 2018. Enhanced performance of TiO2-based perovskite solar cells with Ru-doped TiO2 electron transport layer. Solar Energy, 169, 335-342. http://doi.org/10.1016/j.solener.2018.05.005
  • Wang, H., Zhao, C., Yin, L., Li, X., Tu, X., Lim, E. G., Zhao, C. Z., 2021. W-doped TiO2 as electron transport layer for high performance solution-processed perovskite solar cells. Applied Surface Science, 563, 150298. http://doi.org/10.1016/j.apsusc.2021.150298
  • Wu, Y., Zhu, H., Yu, B. B., Akin, S., Liu, Y., Shen, Z., Pan, L., Cai, H., 2022. Interface modification to achieve high-efficiency and stable perovskite solar cells. Chemical Engineering Journal, 433, 134613. http://doi.org/10.1016/j.cej.2022.134613
  • Xia, R., Wang, S., Wang, X., Dong, W., & Fang, X. 2016., Fabrication of hierarchical anatase TiO2 nanostructure for dye-sensitized solar cells. Journal of Nanoscience and Nanotechnology, 16(6), 5810-5814. https://doi.org/10.1166/jnn.2016.12053
  • Valadi, K., Gharibi, S., Taheri-Ledari, R., Akin, S., Maleki, A., & Shalan, A. E., 2021. Metal oxide electron transport materials for perovskite solar cells: a review. Environmental Chemistry Letters, 19(3), 2185-2207. http://doi.org/10.1007/s10311-020-01171-x
  • Venkatachalam, P., Kalaivani, T., & Krishnakumar, N., 2019. Perovskite sensitized erbium doped TiO2 photoanode solar cells with enhanced photovoltaic performance. Optical Materials, 94, 1-8. https://doi.org/10.1016/j.optmat.2019.05.039
  • Ye, Q., Zhao, Y., Mu, S., Ma, F., Gao, F., Chu, Z., Yin, Z., Gao, P., Zhang, X., You, J., 2019. Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Advanced materials, 31(49), 1905143. https://doi.org/10.1002/adma.201905143
  • Zhang, H., Shi, J., Xu, X., Zhu, L., Luo, Y., Li, D., & Meng, Q., 2016. Mg-doped TiO2 boosts the efficiency of planar perovskite solar cells to exceed 19%. Journal of Materials Chemistry A, 4(40), 15383-15389. https://doi.org/10.1039/C6TA06879K
  • Zhang, Z., Gao, Y., Li, Z., Qiao, L., Xiong, Q., Deng, L., Gao, P., 2021. Marked passivation effect of naphthalene‐1, 8‐dicarboximides in high‐performance perovskite solar cells. Advanced Materials, 33(31), 2008405. https://doi.org/10.1002/adma.202008405
  • Zhao, Y., Tan, H., Yuan, H., Yang, Z., Fan, J. Z., Kim, J., Voznyy, O., Gong, X., Quan, L., Tan, C. S., Hofkens, J., Yu, D., Zhao, Q., Sargent, E. H., 2018. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature Communications, 9(1), 1607. https://doi.org/10.1038/s41467-018-04029-7
  • Zhao, N., & Wang, J., 2024. Solar full spectrum management in low and medium temperature light-driven chemical hydrogen synthesis-A review. Renewable and Sustainable Energy Reviews, 196, 114368. http://doi.org/10.1016/j.rser.2024.114368

Perovskit Güneş Hücrelerinde Li-TFSI Katkılı TiO2 Elektron Transfer Tabakasının Optimizasyonu

Yıl 2024, , 921 - 930, 20.08.2024
https://doi.org/10.35414/akufemubid.1403743

Öz

Perovskit güneş hücrelerinin (PGH) performansını arttırmak için optimize edilmiş elektron transfer tabakaları (ETT) kritik bir rol oynamaktadır. ETT'nin optoelektronik özellikleri, bant enerjisi ve tuzak yoğunluğu, PGH'nin performansını belirleyici bir şekilde etkilemektedir. Ancak, genellikle PGH'lerinde kullanılan titanyum dioksit (TiO2) ETT'nin düşük elektron hareketliliği iyileştirilmesi gereken bir sorundur. Bu çalışmada, farklı konsantrasyonlarda (x: 0, 5, 10, 15 mg/ml) lityum bis(triflorometansülfonil)imid (Li-TFSI) tuzu döndürerek-kaplama tekniği ile TiO2 tabanlı ETT'ye katkılanmıştır. TiO2:Li-TFSI katkısının morfolojik, yapısal ve optik özellikler üzerindeki etkileri araştırılmıştır. FTO/c-TiO2/mp-TiO2:Li-TFSI/CsFAMAPbI2Br/spiro-OMeTAD/Ag hücre mimarisi kullanılarak elde edilen Li-TFSI katkılı PGH'nin fotovoltaik ve optoelektronik özellikleri katkısız hücreler ile karşılaştırılmıştır. Li-TFSI katkısı, hücrelerdeki elektron transferini önemli ölçüde iyileştirmiştir. Saf PGH'de %18,16'lık bir güç dönüşüm verimliliği (GDV) elde edilirken, 10 mg/ml Li-TFSI katkılı PGH'de %19,98'lik en yüksek GDV değeri elde edilmiştir. Bu çalışma, Li-TFSI katkısıyla TiO2 ETT'nin optoelektronik özelliklerinin optimize edildiği ve yüksek verimli PGH'lerin geliştirilmesi için umut vadeden bir çalışma olarak değerlendirilmektedir.

Kaynakça

  • Abd Mutalib, M.; Ahmad Ludin, N.; Su’ait, M.S.; Davies, M.; Sepeai, S.; Mat Teridi, M.A.; Mohamad Noh, M.F.; Ibrahim, M.A., 2022. Performance-enhancing sulfur-doped TiO2 photoanodes for perovskite solar cells. Applied Sciences, 12(1), 429. https://doi.org/10.3390/app12010429
  • Afzali, M., Mostafavi, A., & Shamspur, T., 2020. Performance enhancement of perovskite solar cells by rhenium doping in nano-TiO2 compact layer. Organic Electronics, 86, 105907. https://doi.org/10.1016/j.orgel.2020.105907
  • Akin, S., Arora, N., Zakeeruddin, S. M., Grätzel, M., Friend, R. H., & Dar, M. I., 2020. New strategies for defect passivation in high‐efficiency perovskite solar cells. Advanced Energy Materials, 10(13), 1903090. https://doi.org/10.1002/aenm.201903090
  • Akman, E., & Akin, S., 2021. Poly (N, N′‐bis‐4‐butylphenyl‐N, N′‐bisphenyl) benzidine‐based interfacial passivation strategy promoting efficiency and operational stability of perovskite solar cells in regular architecture. Advanced Materials, 33(2), 2006087. https://doi.org/10.1002/adma.202006087
  • Akman, E., Shalan, A. E., Sadegh, F., Akin, S., 2021. Moisture‐resistant FAPbI3 perovskite solar cell with 22.25% power conversion efficiency through pentafluorobenzyl phosphonic acid passivation. Chemistry Sustainability Energy Materials, 14(4), 1176-1183. https://doi.org/10.1002/cssc.202002707
  • Arshad, Z., Shakir, S., Khoja, A. H., Javed, A. H., Anwar, M., Rehman, A., Farrukh, S., 2022. Performance analysis of calcium-doped titania (TiO2) as an effective electron transport layer (ETL) for perovskite solar cells. Energies, 15(4), 1408. https://doi.org/10.3390/en15041408
  • Bu, T., Liu, X., Zhou, Y., Yi, J., Huang, X., Luo, L., Xiao, J., Ku, Z., Peng, Y., Huang, F., Zhong, J., 2017. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy & Environmental Science, 10(12), 2509-2515. https://doi.org/10.1039/C7EE02634J
  • Bidaki, A. Z., Abdizadeh, H., Pourshaban, E., Shadabroo, M. S., & Golobostanfard, M. R., 2022. Comparing the planar and porous Nb-doped TiO2 photoanode of triple cation perovskite solar cells. Materials Science in Semiconductor Processing, 138, 106259. https://doi.org/10.1016/j.mssp.2021.106259
  • Caprioglio, P., Cruz, D. S., Caicedo-Dávila, S., Zu, F., Sutanto, A. A., Peña-Camargo, F., Neher, D., 2021. Bi-functional interfaces by poly (ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy & Environmental Science, 14(8), 4508-4522. https://doi.org/10.1039/D1EE00869B
  • Chavan, R. D., Bończak, B., Kruszyńska, J., Mahapatra, A., Ans, M., Nawrocki, J., Prochowicz, D., 2023. Molecular engineering of azahomofullerene-based electron transporting materials for efficient and stable perovskite solar cells. Chemistry of Materials, 35(19), 8309-8320. https://doi.org/10.1002/aenm.201903090
  • Chen, S. H., Chan, S. H., Lin, Y. T., & Wu, M. C., 2019. Enhanced power conversion efficiency of perovskite solar cells based on mesoscopic Ag-doped TiO2 electron transport layer. Applied Surface Science, 469, 18-26. http://doi.org/10.1016/j.apsusc.2018.10.256
  • Chen, H., Liu, T., Zhou, P., Li, S., Ren, J., He, H., Guo, S., 2020. Efficient bifacial passivation with crosslinked thioctic acid for high‐performance methylammonium lead iodide perovskite solar cells. Advanced Materials, 32(6), 1905661. https://doi.org/10.1002/adma.201905661
  • Chen, K. T., Hsu, C. H., Jiang, S. C., Liang, L. S., Gao, P., Qiu, Y., Lien, S. Y., 2022. Effect of annealing temperature on tantalum-doped TiO2 as electron transport layer in perovskite solar cells. IEEE Transactions on Electron Devices, 69(3), 1149-1154. https://doi.org/10.1109/TED.2022.3142652
  • Chen, L., Li, C., Xian, Y., Fu, S., Abudulimu, A., Li, D. B., Yan, Y., 2023. Incorporating potassium citrate to improve the performance of tin‐lead perovskite solar cells. Advanced Energy Materials, 13(32), 2301218. http://doi.org/10.1002/aenm.202301218
  • Cid, C. P., Spada, E. R., & Sartorelli, M. L., 2013. Effect of the cathodic polarization on structural and morphological proprieties of FTO and ITO thin films. Applied Surface Science, 273, 603-606. https://doi.org/10.1016/j.apsusc.2013.02.085
  • Deng, X., Wang, Y., Chen, Y., Cui, Z., & Shi, C., 2019. Yttrium-doped TiO2 compact layers for efficient perovskite solar cells. Journal of Solid State Chemistry, 275, 206-209. https://doi.org/10.1016/j.jssc.2019.04.022
  • Ebiç, M., 2023. Perovskite güneş hücreleri için EMIMBF4 iyonik sıvı katkılı SnO2 elektron transfer tabakasının düşük sıcaklıkta üretimi ve optimizasyonu. Journal of the Institute of Science and Technology,13 (3), 2130-2142. https://doi.org/10.21597/jist.1273053
  • Ebiç, M., Akar, Ş., Akman, E., Özel, F., Akin, S., 2022. SnO2 elektron transfer tabakasının slot-die tekniği ile üretimi ve optimizasyonu. International Journal of Innovative Engineering Applications, 6 (1), 170-182. https://doi.org/10.46460/ijiea.1086169
  • Fuyuki, T., & Matsunami, H., 1986. Electronic properties of the interface between Si and TiO2 deposited at very low temperatures. Japanese Journal of Applied Physics, 25(9R), 1288. https://doi.org/10.1143/JJAP.25.1288
  • Gao, T., Sui, H., Zhu, J., Chen, H., Tang, Q., & He, B., 2023. Enhanced electron extraction using neodymium ions doped TiO2 for all-inorganic CsPbBr3 perovskite solar cells. Journal of Alloys and Compounds, 965, 171496. http://doi.org/10.1016/j.jallcom.2023.171496
  • Ghazanfarpour, S., and Dehaj, M. S., 2023. Improvement of the photovoltaic performance of perovskite solar cells by modification of electron transport layer using Mg-doped TiO2, Cs2Co3, and bilayer Mg-doped TiO2/Cs2Co3. Optical Materials, 144, 114312. http://doi.org/10.1016/j.solener.2020.11.017
  • Gil, B., Yun, A. J., Lim, J., Cho, J., Kim, B., Ryu, S., Park, B., 2023. Design of SnO2 electron transport layer in perovskite solar cells to achieve 2000 h stability under 1 sun illumination and 85°C. Advanced Materials Interfaces, 10(11), 2202148. https://doi.org/10.1002/admi.202202148
  • Giordano, F., Abate, A., Correa Baena, J.P., Saliba, M., Matsui, T., Im, S.H., et al., 2016. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nature Communications. 7, 10379. https://doi.org/10.1038/ncomms10379
  • Han, C., Zhu, X., Martin, J. S., Lin, Y., Spears, S., & Yan, Y., 2020. Recent progress in engineering metal halide perovskites for efficient visible‐light‐driven photocatalysis. Chemistry Sustainability Energy Materials, 13(16), 4005-4025. https://doi.org/10.1002/cssc.202000953
  • Hui, W., Yang, Y., Xu, Q., Gu, H., Feng, S., Su, Z., Zhang, M., Wang, J., Li, X., Fang, J., Xia, F., Huang, W., 2020. Red‐carbon‐quantum‐dot‐doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells. Advanced Materials, 32(4), 1906374. https://doi.org/10.1002/adma.201906374
  • Ilyassov, B., Ibrayev, N., & Nuraje, N., 2015. Hierarchically assembled nanostructures and their photovoltaic properties. Materials Science in Semiconductor Processing, 40, 885-889. http://doi.org/10.1016/j.mssp.2015.07.087
  • Iraj, M., Kolahdouz, M., Asl-Soleimani, E., Esmaeili, E., and Kolahdouz, Z., 2016. TiO2 nanotube formation by Ti film anodization and their transport properties for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 27, 6496-6501. https://doi.org/10.1007/s10854-016-4591-5
  • Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., Ye, Q., Lİ, X., Yin, Z., You, J., 2019. Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 13(7), 500. https://doi.org/10.1038/s41566-019-0398-2
  • Jin, J., Li, H., Bi, W., Chen, C., Zhang, B., Xu, L., Biao, Dong., Song, H., Dai, Q., 2020. Efficient and stable perovskite solar cells through e-beam preparation of cerium doped TiO2 electron transport layer, ultraviolet conversion layer CsPbBr3 and the encapsulation layer Al2O3. Solar Energy, 198, 187-193. https://doi.org/10.1016/j.solener.2020.01.048
  • Kavan, L., Tétreault, N., Moehl, T., & Grätzel, M., 2014. Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells. The Journal of Physical Chemistry C, 118(30), 16408-16418. http://doi.org/10.1021/jp4103614
  • Krishna, A., Zhang, H., Zhou, Z., Gallet, T., Dankl, M., Ouellette, O., Hagfeldt, A., 2021. Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. Energy & Environmental Science, 14(10), 5552-5562. https://doi.org/10.1039/D1EE02454J
  • Kruszyńska, J., Ostapko, J., Ozkaya, V., Surucu, B., Szawcow, O., Nikiforow, K., Holdynski, M., Tavakoli, M., Yadav, P., Satapathi, S., Akin, S., Prochowicz, D., 2022. Atomic layer engineering of aluminum‐doped zinc oxide films for efficient and stable perovskite solar cells. Advanced Materials Interfaces, 9(17), 2200575. https://doi.org/10.1002/admi.202200575
  • Liu, D., Li, S., Zhang, P., Wang, Y., Zhang, R., Sarvari, H., et al., 2017. Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer. Nano Energy 31, 462–468. https://doi.org/10.1016/j.nanoen.2016.11.028
  • Li, X., Chen, Y., Li, L., & Huang, J., 2018. Perovskite thin film consisting with one-dimensional nanowires. Materials, 11(9), 1759. https://doi.org/10.3390%2Fma11091759
  • Ma, Z., Huang, D., Liu, Q., Yan, G., Xiao, Z., Chen, D., Huang, Y., 2022. Excess PbI2 evolution for triple-cation based perovskite solar cells with 21.9% efficiency. Journal of Energy Chemistry, 66, 152-160. https://doi.org/10.1016/j.jechem.2021.07.030
  • Mali, S. S., Patil, J. V., Kim, H., & Hong, C. K., 2019. Gallium cationic incorporated compact TiO2 as an efficient electron-transporting layer for stable perovskite solar cells, Matter 1, 1–13. https://doi.org/10.1016/j.matt.2019.04.001
  • Min, H., Lee, D. Y., Kim, J., Kim, G., Lee, K. S., Kim, J., Paik, J. M., Kim, K. Y., Kim, K., Kim, M., Shin, T., Il Seok, S., 2021. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 598(7881), 444-450. https://doi.org/10.1038/s41586-021-03964-8
  • Moshfeghi, E., and Entezari, M. H., 2022. Enhancement of the photovoltaic performance of perovskite solar cells via sono‐synthesis of Al‐doped TiO2 as the electron transport layer. International Journal of Energy Research, 46(15), 23465-23479. https://doi.org/10.1002/er.8643.
  • Nagaraj, G., Mohammed, M. K., Shekargoftar, M., Sasikumar, P., Sakthivel, P., Ravi, G., Shalan, A. E., 2021. High-performance perovskite solar cells using the graphene quantum dot–modified SnO2/ZnO photoelectrode. Materials Today Energy, 22, 100853. https://doi.org/10.1016/j.mtener.2021.100853.
  • Nguyen, T. M. H., & Bark, C. W., 2020. Synthesis of cobalt-doped TiO2 based on metal–organic frameworks as an effective electron transport material in perovskite solar cells. ACS Omega, 5(5), 2280-2286. https://doi.org/10.1021/acsomega.9b03507
  • Ozkaya, V., Sadegh, F., Unal, M., Alkan, B., Ebic, M., Ozturk, T., Yilmaz, M., Akin, S., 2023. Eco-friendly boost for perovskite photovoltaics: harnessing cellulose-modified SnO2 as a high-performance electron transporting material. ACS Applied Materials & Interfaces, 15(49), 57338-57349. https://doi.org/10.1021/acsami.3c12698
  • Patel, K., Prochowicz, D., Akin, S., Kalam, A., Tavakoli, M. M., & Yadav, P., 2023. Applications of carbon‐based materials for improving the performance and stability of perovskite solar cells. Energy Technology, 11(10), 2300228. https://doi.org/10.1002/ente.202300228
  • Sadegh, F., Akin, S., Moghadam, M., Mirkhani, V., Ruiz‒Preciado, M. A., Wang, Z., Tavakoli, Graetzel, M., Hagfeldt, A., M., Tress, W., 2020. Highly efficient, stable and hysteresis‒less planar perovskite solar cell based on chemical bath treated Zn2SnO4 electron transport layer. Nano Energy, 75, 105038. https://doi.org/10.1016/j.nanoen.2020.105038
  • Sadegh, F., Akman, E., Prochowicz, D., Tavakoli, M. M., Yadav, P., & Akin, S., 2022. Facile NaF treatment achieves 20% efficient ETL-free perovskite solar cells. ACS Applied Materials & Interfaces, 14(34), 38631-38641. https://doi.org/10.1021/acsami.2c06110
  • Sadegh, F., Ebic, M., Prochowicz, D., Ans, M., Kruszyńska, J., Satapathi, S., Moghadam, M., Yadav, P., Akin, S., 2023. Acetate-based ionic liquid engineering for efficient and stable CsPbI2Br perovskite solar cells with an unprecedented fill factor over 83%. Materials Today Physics, 40, 101301. https://doi.org/10.1016/j.mtphys.2023.101301
  • Shi, X., Ding, Y., Zhou, S., Zhang, B., Cai, M., Yao, J., Nazeeruddin, M. K., 2019. Enhanced interfacial binding and electron extraction using boron‐doped TiO2 for highly efficient hysteresis‐free perovskite solar cells. Advanced Science, 6(21), 1901213. https://doi.org/10.1002/advs.201901213
  • Su, T. S., & Wei, T. C., 2020. Co‐electrodeposition of Sn‐doped TiO2 electron‐transporting layer for perovskite solar cells. Physica Status Solidi (a), 217(1), 1900491. http://doi.org/10.1002/pssa.201900491
  • Tien, C. H., Lai, H. Y., & Chen, L. C., 2023. Methylammonium halide salt interfacial modification of perovskite quantum dots/triple-cation perovskites enable efficient solar cells. Scientific Reports, 13(1), 5387. https://doi.org/10.1038/s41598-023-32697-z
  • Qureshi, A. A., Javed, H. M. A., Javed, S., Bashir, A., Usman, M., Akram, A., Raza, S. A., 2021. Incorporation of Zr-doped TiO2 nanoparticles in electron transport layer for efficient planar perovskite solar cells. Surfaces and Interfaces, 25, 101299. https://doi.org/10.1016/j.surfin.2021.101299
  • Wang, H., Li, Y., Ba, X., Huang, L., & Yu, Y., 2015. TiO2 thin films with rutile phase prepared by DC magnetron co-sputtering at room temperature: Effect of Cu incorporation. Applied Surface Science, 345, 49-56. https://doi.org/10.1016/j.apsusc.2015.03.106
  • Wang, S., Liu, B., Zhu, Y., Ma, Z., Liu, B., Miao, X., Ma, R., Wang, C., 2018. Enhanced performance of TiO2-based perovskite solar cells with Ru-doped TiO2 electron transport layer. Solar Energy, 169, 335-342. http://doi.org/10.1016/j.solener.2018.05.005
  • Wang, H., Zhao, C., Yin, L., Li, X., Tu, X., Lim, E. G., Zhao, C. Z., 2021. W-doped TiO2 as electron transport layer for high performance solution-processed perovskite solar cells. Applied Surface Science, 563, 150298. http://doi.org/10.1016/j.apsusc.2021.150298
  • Wu, Y., Zhu, H., Yu, B. B., Akin, S., Liu, Y., Shen, Z., Pan, L., Cai, H., 2022. Interface modification to achieve high-efficiency and stable perovskite solar cells. Chemical Engineering Journal, 433, 134613. http://doi.org/10.1016/j.cej.2022.134613
  • Xia, R., Wang, S., Wang, X., Dong, W., & Fang, X. 2016., Fabrication of hierarchical anatase TiO2 nanostructure for dye-sensitized solar cells. Journal of Nanoscience and Nanotechnology, 16(6), 5810-5814. https://doi.org/10.1166/jnn.2016.12053
  • Valadi, K., Gharibi, S., Taheri-Ledari, R., Akin, S., Maleki, A., & Shalan, A. E., 2021. Metal oxide electron transport materials for perovskite solar cells: a review. Environmental Chemistry Letters, 19(3), 2185-2207. http://doi.org/10.1007/s10311-020-01171-x
  • Venkatachalam, P., Kalaivani, T., & Krishnakumar, N., 2019. Perovskite sensitized erbium doped TiO2 photoanode solar cells with enhanced photovoltaic performance. Optical Materials, 94, 1-8. https://doi.org/10.1016/j.optmat.2019.05.039
  • Ye, Q., Zhao, Y., Mu, S., Ma, F., Gao, F., Chu, Z., Yin, Z., Gao, P., Zhang, X., You, J., 2019. Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Advanced materials, 31(49), 1905143. https://doi.org/10.1002/adma.201905143
  • Zhang, H., Shi, J., Xu, X., Zhu, L., Luo, Y., Li, D., & Meng, Q., 2016. Mg-doped TiO2 boosts the efficiency of planar perovskite solar cells to exceed 19%. Journal of Materials Chemistry A, 4(40), 15383-15389. https://doi.org/10.1039/C6TA06879K
  • Zhang, Z., Gao, Y., Li, Z., Qiao, L., Xiong, Q., Deng, L., Gao, P., 2021. Marked passivation effect of naphthalene‐1, 8‐dicarboximides in high‐performance perovskite solar cells. Advanced Materials, 33(31), 2008405. https://doi.org/10.1002/adma.202008405
  • Zhao, Y., Tan, H., Yuan, H., Yang, Z., Fan, J. Z., Kim, J., Voznyy, O., Gong, X., Quan, L., Tan, C. S., Hofkens, J., Yu, D., Zhao, Q., Sargent, E. H., 2018. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature Communications, 9(1), 1607. https://doi.org/10.1038/s41467-018-04029-7
  • Zhao, N., & Wang, J., 2024. Solar full spectrum management in low and medium temperature light-driven chemical hydrogen synthesis-A review. Renewable and Sustainable Energy Reviews, 196, 114368. http://doi.org/10.1016/j.rser.2024.114368
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Muhittin Ünal 0000-0003-2431-6870

Seçkin Akın 0000-0001-9852-7246

Murat Ebiç 0000-0002-1280-4052

Bekir Baynal 0009-0000-2563-696X

Erken Görünüm Tarihi 23 Temmuz 2024
Yayımlanma Tarihi 20 Ağustos 2024
Gönderilme Tarihi 18 Aralık 2023
Kabul Tarihi 22 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Ünal, M., Akın, S., Ebiç, M., Baynal, B. (2024). Perovskit Güneş Hücrelerinde Li-TFSI Katkılı TiO2 Elektron Transfer Tabakasının Optimizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(4), 921-930. https://doi.org/10.35414/akufemubid.1403743
AMA Ünal M, Akın S, Ebiç M, Baynal B. Perovskit Güneş Hücrelerinde Li-TFSI Katkılı TiO2 Elektron Transfer Tabakasının Optimizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ağustos 2024;24(4):921-930. doi:10.35414/akufemubid.1403743
Chicago Ünal, Muhittin, Seçkin Akın, Murat Ebiç, ve Bekir Baynal. “Perovskit Güneş Hücrelerinde Li-TFSI Katkılı TiO2 Elektron Transfer Tabakasının Optimizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, sy. 4 (Ağustos 2024): 921-30. https://doi.org/10.35414/akufemubid.1403743.
EndNote Ünal M, Akın S, Ebiç M, Baynal B (01 Ağustos 2024) Perovskit Güneş Hücrelerinde Li-TFSI Katkılı TiO2 Elektron Transfer Tabakasının Optimizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 4 921–930.
IEEE M. Ünal, S. Akın, M. Ebiç, ve B. Baynal, “Perovskit Güneş Hücrelerinde Li-TFSI Katkılı TiO2 Elektron Transfer Tabakasının Optimizasyonu”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 4, ss. 921–930, 2024, doi: 10.35414/akufemubid.1403743.
ISNAD Ünal, Muhittin vd. “Perovskit Güneş Hücrelerinde Li-TFSI Katkılı TiO2 Elektron Transfer Tabakasının Optimizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/4 (Ağustos 2024), 921-930. https://doi.org/10.35414/akufemubid.1403743.
JAMA Ünal M, Akın S, Ebiç M, Baynal B. Perovskit Güneş Hücrelerinde Li-TFSI Katkılı TiO2 Elektron Transfer Tabakasının Optimizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:921–930.
MLA Ünal, Muhittin vd. “Perovskit Güneş Hücrelerinde Li-TFSI Katkılı TiO2 Elektron Transfer Tabakasının Optimizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 4, 2024, ss. 921-30, doi:10.35414/akufemubid.1403743.
Vancouver Ünal M, Akın S, Ebiç M, Baynal B. Perovskit Güneş Hücrelerinde Li-TFSI Katkılı TiO2 Elektron Transfer Tabakasının Optimizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(4):921-30.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.