Araştırma Makalesi
BibTex RIS Kaynak Göster

Eklemeli İmalat Yöntemi ile Üretilmiş PLA Levhaların Bağlantı Dayanımları: İndüksiyonla Isıtma ve Yapıştırıcı Teknolojilerinin Karşılaştırılması

Yıl 2024, , 993 - 1004, 20.08.2024
https://doi.org/10.35414/akufemubid.1470936

Öz

Bu çalışmada indüksiyonlu ısıtma ve endüstriyel yapıştırıcı kullanılarak hazırlanan termoplastik malzemeli bağlantıların dayanımları deneysel olarak belirlenmiştir. Bağlantılarda kullanılan Polilaktik Asit (PLA) levhalar 3B yazıcı kullanılarak üretilmiş ve yapıştırma ve indüksiyonlu ısıtma yöntemleri ile birleştirilmiştir. İndüksiyonlu ısıtma prosesinde, bindirme bölgesine farklı geometrilerde (tel ve levha) iletken malzeme yerleştirilmiştir. Yapıştırıcı ile birleştirme yönteminde bindirme yüzeylerinde siyanoakrilat endüstriyel yapıştırıcı kullanılmıştır. Her iki yöntem ile hazırlanan bağlantıların dayanımlarını belirlemek için çekme testleri uygulanmıştır. İndüksiyonlu ısıtma prosesinde iletken malzeme olarak levha, 3 tel ve 5 tel kullanılması durumunda bağlantı hasar yükleri sırasıyla, 1003 N, 1393 N ve 2057 N olarak ölçülmüştür. Yapıştırmalı bağlantıda hasar yükü 2378 N’a ulaşmıştır. Deneysel sonuçlar, indüksiyonlu ısıtma yönteminde bindirme bölgesinin tamamında levha yerine farklı sayılarda tel kullanımının daha uygun olduğunu göstermiştir. Ayrıca, indüksiyonlu ısıtmada 5 tel ile ulaşılan bağlantı dayanım değerinin, yapıştırıcı kullanılarak hazırlanan bağlantı dayanım değerine yakın olması, bu yöntemin yapıştırmalı bağlantılara önemli bir alternatif olabileceğini göstermiştir.

Etik Beyan

Bu çalışma Dr. Öğretim Üyesi Özkan ÖZ danışmanlığında Mustafa Acaroğlu tarafından 2023 yılında tamamlanan “İndüksiyon yöntemiyle üretilen termoplastik malzemeli bağlantının mekanik özelliklerinin incelenmesi” başlıklı ve 838401 tez no’lu yüksek lisans tezinden türetilmiştir.

Kaynakça

  • Ahmed, T. J., Stavrov, D., Bersee, H. E. N., & Beukers, A. 2006. Induction welding of thermoplastic composites—An overview. Composites Part A: Applied Science and Manufacturing, 37(10), 1638-1651. https://doi.org/10.1016/j.compositesa.2005.10.009
  • Al-Obaidi, A., Kimme, J., & Kräusel, V. 2021. Hybrid Joining by Induction Heating of Basalt Fiber Reinforced Thermoplastic Laminates. Journal of Composites Science, 5(1). https://doi.org/10.3390/jcs5010010
  • Altintaş, A. 2016. İndüksiyon Bobin Tasarımında Kullanılan İletken Türlerinin İndüksiyon Sıvı Isıtıcı Performansına Etkilerinin Araştırılması. Marmara Fen Bilimleri Dergisi, 28(1). https://doi.org/10.7240/mufbed.02953
  • Baker, A. A., Callinan, R. J., Davis, M. J., Jones, R., & Williams, J. G. 1984. Repair of mirage III aircraft using the BFRP crack-patching technique. Theoretical and Applied Fracture Mechanics, 2(1), 1-15. https://doi.org/10.1016/0167-8442(84)90035-1
  • Banik, N. 2018. A review on the use of thermoplastic composites and their effects in induction welding method. Materials Today: Proceedings, 5(9), 20239-20249. https://doi.org/10.1016/j.matpr.2018.06.395
  • Bayerl, T., Duhovic, M., Mitschang, P., & Bhattacharyya, D. 2014. The heating of polymer composites by electromagnetic induction – A review. Composites Part A: Applied Science and Manufacturing, 57, 27-40. https://doi.org/10.1016/j.compositesa.2013.10.024
  • Cebrián, A. S., Klunker, F., & Zogg, M. 2014. Simulation of the cure of paste adhesives by induction heating. Journal of Composite Materials, 48(12), 1459-1474. https://doi.org/10.1177/0021998313487933
  • Choudhury, M. R., & Debnath, K. 2019. A review of the research and advances in electromagnetic joining of fiber-reinforced thermoplastic composites. Polymer Engineering & Science, 59(10), 1965-1985. https://doi.org/10.1002/pen.25207
  • Ciardiello, R. 2021. The Mechanical Performance of Re-Bonded and Healed Adhesive Joints Activable through Induction Heating Systems. Materials, 14(21). 6351 https://doi.org/10.3390/ma14216351
  • Demir, S., & Yüksel, C. 2022. Evaluation of effect and optimizing of process parameters for fused deposition modeling parts on tensile properties via Taguchi method. Rapid Prototyping Journal, 29(4), 720-730. https://doi.org/10.1108/RPJ-06-2022-0201
  • El-Mashad, H. M., & Pan, Z. 2017. Application of Induction Heating in Food Processing and Cooking. Food Engineering Reviews, 9(2), 82-90. https://doi.org/10.1007/s12393-016-9156-0
  • Gopi Mohan, R., Santhosh, K., Iyer, R. V., John, L. K., & Ramu, M. 2021. Comparitive analysis of mechanical properties of FDM printed parts based on raster angles. Materials Today: Proceedings, 47, 4730-4734. https://doi.org/10.1016/j.matpr.2021.05.649
  • Jackowski, J., Goldstein, R., & Nemkov, V. 2014. Induction process and coil design for welding of carbon fiber reinforced thermoplastics. International SAMPE Technical Conference.
  • Jafari, F., Eslami-Farsani, R., & Khalili, S. M. R. 2020. Investigation of Longitudinal and Transverse Reinforcing Single Lap Joints of the Polymer Composites/Al under Hygrothermal Condition. Fibers and Polymers, 21(10), 2338-2343. https://doi.org/10.1007/s12221-020-1100-5
  • Kaji, M., Farahani, M., & Ansari, M. 2017. A reinforcing technique for the adhesive bonded composite joints using metallic wires. Journal of Adhesion Science and Technology, 31(17), 1963-1975. https://doi.org/10.1080/01694243.2017.1290573
  • Katsiropoulos, C., Pantelakis, S., Felline, F., Buccoliero, G., & Pappada, S. 2022. A holistic assessment of a stiffened panel production using a novel thermoplastic material and implementing the induction welding process. Aircraft Engineering and Aerospace Technology, 94(9), 1556-1566. https://doi.org/10.1108/AEAT-12-2021-0362
  • Liu, C. W., Qu, C. Y., Han, L., Wang, D. Z., Xiao, W. B., & Hou, X. 2017. Preparation of carbon fiber-reinforced polyimide composites via in situ induction heating. High Performance Polymers, 29(9), 1027-1036. https://doi.org/10.1177/0954008316667789
  • Ma, W., Zhan, X., Yang, H., Bu, H., Li, Y., & Wang, F. 2020. Study on the interface morphology in the induction welding joint of PEEK plate at low power. Journal of Polymer Engineering, 40(5), 432-439. https://doi.org/10.1515/polyeng-2020-0011
  • Mahdi, S., Kim, H.-J., Gama, B. A., Yarlagadda, S., & Gillespie, J. W. 2003. A Comparison of Oven-cured and Induction-cured Adhesively Bonded Composite Joints. Journal of Composite Materials, 37(6), 519-542. https://doi.org/10.1177/0021998303037006776
  • Mariani, A., & Malucelli, G. 2023. Insights into Induction Heating Processes for Polymeric Materials: An Overview of the Mechanisms and Current Applications. Energies, 16(11), 4535. https://doi.org/10.3390/en16114535
  • Öz, Ö., Öztürk, F. H. 2023a. "An investigation on failure behaviour of bonded polylactic acid adherends produced by 3D printing process: experimental and numerical approach". Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(8), 399. https://doi.org/10.1007/s40430-023-04321-8
  • Öz, Ö., & Öztürk, F. H. 2023b. Yazdırma Açısının 3B Yazıcıda Üretilen PLA Numunenin Mekanik Özellikleri Üzerine Etkisinin Deneysel ve Sonlu Elemanlar Metodu ile İncelenmesi. Politeknik Dergisi, 26(2), 529 - 540. https://doi.org/10.2339/politeknik.882313
  • Öz, Ö., Öztürk, F. H., & Güleç, C. 2023. Effect of fiber content and plasticizer on mechanical and joint properties of carbon fiber powder reinforced PLA manufactured by 3D printing process. Journal of Adhesion Science and Technology, 37(15), 2208-2231. https://doi.org/10.1080/01694243.2022.2121195
  • Rapoport, E., & Pleshivtseva, Y. 2006. Optimal Control of Induction Heating Processes. CRC Press.
  • Rezvaninasab, M., Farhadinia, M., Mirzaei, A., Ramzaninezhad, M., Khamseh, F., & Alaei, M. h. 2019. Experimental evaluation of reinforcing the single lap joint in both longitudinal and transverse direction under tensile and bending condition. International Journal of Adhesion and Adhesives, 88, 19-25. https://doi.org/10.1016/j.ijadhadh.2018.05.020
  • Rudnev, V., Loveless, D., Cook, R. L., & Black, M. 2002. Handbook of Induction Heating. CRC Press.
  • Rudolf, R., Mitschang, P., & Neitzel, M. 2000. Induction heating of continuous carbon-fibre-reinforced thermoplastics. Composites Part A: Applied Science and Manufacturing, 31(11), 1191-1202. https://doi.org/10.1016/S1359-835X(00)00094-4
  • Saborowski, E., Dittes, A., Lindner, T., & Lampke, T. 2021. Nickel-Aluminum Thermal Spray Coatings as Adhesion Promoter and Susceptor for Inductively Joined Polymer-Metal Hybrids. Polymers, 13(8), 1320. https://doi.org/10.3390/polym13081320
  • Schubbe, J. J., & Mall, S. 1999. Investigation of a cracked thick aluminum panel repaired with a bonded composite patch. Engineering Fracture Mechanics, 63(3), 305-323. https://doi.org/10.1016/S0013-7944(99)00032-6
  • Severijns, C., de Freitas, S. T., & Poulis, J. A. 2017. Susceptor-assisted induction curing behaviour of a two component epoxy paste adhesive for aerospace applications. International Journal of Adhesion and Adhesives, 75, 155-164. https://doi.org/10.1016/j.ijadhadh.2017.03.005
  • Sürmen, H. K., Güven, T. 2024. "Tersine Mühendislik ve Eklemeli İmalat ile Kişiye Özel Nazal Dilatör Tasarımı ve Üretimi". Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 24(1), 197-206. https://doi.org/10.35414/akufemubid.1332603
  • Tay, T. E., Fink, B. K., McKnight, S. H., Yarlagadda, S., & Gillespie, J. W. 1999. Accelerated Curing of Adhesives in Bonded Joints by Induction Heating. Journal of Composite Materials, 33(17), 1643-1664. https://doi.org/10.1177/002199839903301704
  • Tsamasphyros, G., Prassianakis, I., Christopoulos, A., & Kanderakis, G. 2007. Non destructive testing of bonded composite repairs using embedded metallic grids–numerical analysis, Prague: NDT for Safety.
  • Vattathurvalappil, S. H., & Haq, M. 2019. Thermomechanical characterization of Nano-Fe3O4 reinforced thermoplastic adhesives and single lap-joints. Composites Part B: Engineering, 175, 107162. https://doi.org/10.1016/j.compositesb.2019.107162
  • Yarlagadda, S., Kim, H. J., Gillespie, J. W., Shevchenko, N. B., & Fink, B. K. 2002. A Study on the Induction Heating of Conductive Fiber Reinforced Composites. Journal of Composite Materials, 36(4), 401-421. https://doi.org/10.1177/0021998302036004171
  • Yavuz, I., & Yildirim, A. 2023. Mechanical properties of PLA based closed porous structures manufactured using FDM process. Multidiscipline Modeling in Materials and Structures, 19(3), 493-506. https://doi.org/10.1108/MMMS-10-2022-0220
  • Zimmerer, C., Mejia, C. S., Utech, T., Arnhold, K., Janke, A., & Wosnitza, J. 2019. Inductive Heating Using a High-Magnetic-Field Pulse to Initiate Chemical Reactions to Generate Composite Materials. Polymers, 11(3), 535. https://doi.org/10.3390/polym11030535

Joint Strength of PLA Sheets Produced by Additive Manufacturing: Comparison of Induction Heating and Adhesive Technologies

Yıl 2024, , 993 - 1004, 20.08.2024
https://doi.org/10.35414/akufemubid.1470936

Öz

In this study, the strengths of thermoplastic joints prepared using induction heating and industrial adhesive were experimentally determined. The Polylactic acid (PLA) sheets used in the joints were produced with a 3D printer and joined using adhesive and induction heating. In the induction heating process, the susceptor with different geometries (wire and sheet) was placed in the overlap region. In the adhesive bonding method, cyanoacrylate industrial adhesive was used on the overlap surfaces. Tensile tests were performed to determine the strength of the joints prepared by both methods. In the case of using a sheet, 3 wires and 5 wires as susceptor in the induction heating process, the joint failure loads were obtained as 1003 N, 1393 N and 2057 N, respectively. In the case of adhesive joint, the failure load reached 2378 N. The experimental results showed that it is more appropriate to use different numbers of wires instead of plates in the entire overlap zone in the induction heating method. In addition, the fact that the joint strength value achieved with 5 wires in induction heating is close to the joint strength value prepared using adhesive showed that this method could be an important alternative to adhesively bonded joints.

Kaynakça

  • Ahmed, T. J., Stavrov, D., Bersee, H. E. N., & Beukers, A. 2006. Induction welding of thermoplastic composites—An overview. Composites Part A: Applied Science and Manufacturing, 37(10), 1638-1651. https://doi.org/10.1016/j.compositesa.2005.10.009
  • Al-Obaidi, A., Kimme, J., & Kräusel, V. 2021. Hybrid Joining by Induction Heating of Basalt Fiber Reinforced Thermoplastic Laminates. Journal of Composites Science, 5(1). https://doi.org/10.3390/jcs5010010
  • Altintaş, A. 2016. İndüksiyon Bobin Tasarımında Kullanılan İletken Türlerinin İndüksiyon Sıvı Isıtıcı Performansına Etkilerinin Araştırılması. Marmara Fen Bilimleri Dergisi, 28(1). https://doi.org/10.7240/mufbed.02953
  • Baker, A. A., Callinan, R. J., Davis, M. J., Jones, R., & Williams, J. G. 1984. Repair of mirage III aircraft using the BFRP crack-patching technique. Theoretical and Applied Fracture Mechanics, 2(1), 1-15. https://doi.org/10.1016/0167-8442(84)90035-1
  • Banik, N. 2018. A review on the use of thermoplastic composites and their effects in induction welding method. Materials Today: Proceedings, 5(9), 20239-20249. https://doi.org/10.1016/j.matpr.2018.06.395
  • Bayerl, T., Duhovic, M., Mitschang, P., & Bhattacharyya, D. 2014. The heating of polymer composites by electromagnetic induction – A review. Composites Part A: Applied Science and Manufacturing, 57, 27-40. https://doi.org/10.1016/j.compositesa.2013.10.024
  • Cebrián, A. S., Klunker, F., & Zogg, M. 2014. Simulation of the cure of paste adhesives by induction heating. Journal of Composite Materials, 48(12), 1459-1474. https://doi.org/10.1177/0021998313487933
  • Choudhury, M. R., & Debnath, K. 2019. A review of the research and advances in electromagnetic joining of fiber-reinforced thermoplastic composites. Polymer Engineering & Science, 59(10), 1965-1985. https://doi.org/10.1002/pen.25207
  • Ciardiello, R. 2021. The Mechanical Performance of Re-Bonded and Healed Adhesive Joints Activable through Induction Heating Systems. Materials, 14(21). 6351 https://doi.org/10.3390/ma14216351
  • Demir, S., & Yüksel, C. 2022. Evaluation of effect and optimizing of process parameters for fused deposition modeling parts on tensile properties via Taguchi method. Rapid Prototyping Journal, 29(4), 720-730. https://doi.org/10.1108/RPJ-06-2022-0201
  • El-Mashad, H. M., & Pan, Z. 2017. Application of Induction Heating in Food Processing and Cooking. Food Engineering Reviews, 9(2), 82-90. https://doi.org/10.1007/s12393-016-9156-0
  • Gopi Mohan, R., Santhosh, K., Iyer, R. V., John, L. K., & Ramu, M. 2021. Comparitive analysis of mechanical properties of FDM printed parts based on raster angles. Materials Today: Proceedings, 47, 4730-4734. https://doi.org/10.1016/j.matpr.2021.05.649
  • Jackowski, J., Goldstein, R., & Nemkov, V. 2014. Induction process and coil design for welding of carbon fiber reinforced thermoplastics. International SAMPE Technical Conference.
  • Jafari, F., Eslami-Farsani, R., & Khalili, S. M. R. 2020. Investigation of Longitudinal and Transverse Reinforcing Single Lap Joints of the Polymer Composites/Al under Hygrothermal Condition. Fibers and Polymers, 21(10), 2338-2343. https://doi.org/10.1007/s12221-020-1100-5
  • Kaji, M., Farahani, M., & Ansari, M. 2017. A reinforcing technique for the adhesive bonded composite joints using metallic wires. Journal of Adhesion Science and Technology, 31(17), 1963-1975. https://doi.org/10.1080/01694243.2017.1290573
  • Katsiropoulos, C., Pantelakis, S., Felline, F., Buccoliero, G., & Pappada, S. 2022. A holistic assessment of a stiffened panel production using a novel thermoplastic material and implementing the induction welding process. Aircraft Engineering and Aerospace Technology, 94(9), 1556-1566. https://doi.org/10.1108/AEAT-12-2021-0362
  • Liu, C. W., Qu, C. Y., Han, L., Wang, D. Z., Xiao, W. B., & Hou, X. 2017. Preparation of carbon fiber-reinforced polyimide composites via in situ induction heating. High Performance Polymers, 29(9), 1027-1036. https://doi.org/10.1177/0954008316667789
  • Ma, W., Zhan, X., Yang, H., Bu, H., Li, Y., & Wang, F. 2020. Study on the interface morphology in the induction welding joint of PEEK plate at low power. Journal of Polymer Engineering, 40(5), 432-439. https://doi.org/10.1515/polyeng-2020-0011
  • Mahdi, S., Kim, H.-J., Gama, B. A., Yarlagadda, S., & Gillespie, J. W. 2003. A Comparison of Oven-cured and Induction-cured Adhesively Bonded Composite Joints. Journal of Composite Materials, 37(6), 519-542. https://doi.org/10.1177/0021998303037006776
  • Mariani, A., & Malucelli, G. 2023. Insights into Induction Heating Processes for Polymeric Materials: An Overview of the Mechanisms and Current Applications. Energies, 16(11), 4535. https://doi.org/10.3390/en16114535
  • Öz, Ö., Öztürk, F. H. 2023a. "An investigation on failure behaviour of bonded polylactic acid adherends produced by 3D printing process: experimental and numerical approach". Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(8), 399. https://doi.org/10.1007/s40430-023-04321-8
  • Öz, Ö., & Öztürk, F. H. 2023b. Yazdırma Açısının 3B Yazıcıda Üretilen PLA Numunenin Mekanik Özellikleri Üzerine Etkisinin Deneysel ve Sonlu Elemanlar Metodu ile İncelenmesi. Politeknik Dergisi, 26(2), 529 - 540. https://doi.org/10.2339/politeknik.882313
  • Öz, Ö., Öztürk, F. H., & Güleç, C. 2023. Effect of fiber content and plasticizer on mechanical and joint properties of carbon fiber powder reinforced PLA manufactured by 3D printing process. Journal of Adhesion Science and Technology, 37(15), 2208-2231. https://doi.org/10.1080/01694243.2022.2121195
  • Rapoport, E., & Pleshivtseva, Y. 2006. Optimal Control of Induction Heating Processes. CRC Press.
  • Rezvaninasab, M., Farhadinia, M., Mirzaei, A., Ramzaninezhad, M., Khamseh, F., & Alaei, M. h. 2019. Experimental evaluation of reinforcing the single lap joint in both longitudinal and transverse direction under tensile and bending condition. International Journal of Adhesion and Adhesives, 88, 19-25. https://doi.org/10.1016/j.ijadhadh.2018.05.020
  • Rudnev, V., Loveless, D., Cook, R. L., & Black, M. 2002. Handbook of Induction Heating. CRC Press.
  • Rudolf, R., Mitschang, P., & Neitzel, M. 2000. Induction heating of continuous carbon-fibre-reinforced thermoplastics. Composites Part A: Applied Science and Manufacturing, 31(11), 1191-1202. https://doi.org/10.1016/S1359-835X(00)00094-4
  • Saborowski, E., Dittes, A., Lindner, T., & Lampke, T. 2021. Nickel-Aluminum Thermal Spray Coatings as Adhesion Promoter and Susceptor for Inductively Joined Polymer-Metal Hybrids. Polymers, 13(8), 1320. https://doi.org/10.3390/polym13081320
  • Schubbe, J. J., & Mall, S. 1999. Investigation of a cracked thick aluminum panel repaired with a bonded composite patch. Engineering Fracture Mechanics, 63(3), 305-323. https://doi.org/10.1016/S0013-7944(99)00032-6
  • Severijns, C., de Freitas, S. T., & Poulis, J. A. 2017. Susceptor-assisted induction curing behaviour of a two component epoxy paste adhesive for aerospace applications. International Journal of Adhesion and Adhesives, 75, 155-164. https://doi.org/10.1016/j.ijadhadh.2017.03.005
  • Sürmen, H. K., Güven, T. 2024. "Tersine Mühendislik ve Eklemeli İmalat ile Kişiye Özel Nazal Dilatör Tasarımı ve Üretimi". Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 24(1), 197-206. https://doi.org/10.35414/akufemubid.1332603
  • Tay, T. E., Fink, B. K., McKnight, S. H., Yarlagadda, S., & Gillespie, J. W. 1999. Accelerated Curing of Adhesives in Bonded Joints by Induction Heating. Journal of Composite Materials, 33(17), 1643-1664. https://doi.org/10.1177/002199839903301704
  • Tsamasphyros, G., Prassianakis, I., Christopoulos, A., & Kanderakis, G. 2007. Non destructive testing of bonded composite repairs using embedded metallic grids–numerical analysis, Prague: NDT for Safety.
  • Vattathurvalappil, S. H., & Haq, M. 2019. Thermomechanical characterization of Nano-Fe3O4 reinforced thermoplastic adhesives and single lap-joints. Composites Part B: Engineering, 175, 107162. https://doi.org/10.1016/j.compositesb.2019.107162
  • Yarlagadda, S., Kim, H. J., Gillespie, J. W., Shevchenko, N. B., & Fink, B. K. 2002. A Study on the Induction Heating of Conductive Fiber Reinforced Composites. Journal of Composite Materials, 36(4), 401-421. https://doi.org/10.1177/0021998302036004171
  • Yavuz, I., & Yildirim, A. 2023. Mechanical properties of PLA based closed porous structures manufactured using FDM process. Multidiscipline Modeling in Materials and Structures, 19(3), 493-506. https://doi.org/10.1108/MMMS-10-2022-0220
  • Zimmerer, C., Mejia, C. S., Utech, T., Arnhold, K., Janke, A., & Wosnitza, J. 2019. Inductive Heating Using a High-Magnetic-Field Pulse to Initiate Chemical Reactions to Generate Composite Materials. Polymers, 11(3), 535. https://doi.org/10.3390/polym11030535
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Mustafa Acaroğlu 0000-0003-4067-4141

Özkan Öz 0000-0002-9833-429X

Fatih Huzeyfe Öztürk 0000-0001-8025-8236

Erken Görünüm Tarihi 23 Temmuz 2024
Yayımlanma Tarihi 20 Ağustos 2024
Gönderilme Tarihi 19 Nisan 2024
Kabul Tarihi 10 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Acaroğlu, M., Öz, Ö., & Öztürk, F. H. (2024). Eklemeli İmalat Yöntemi ile Üretilmiş PLA Levhaların Bağlantı Dayanımları: İndüksiyonla Isıtma ve Yapıştırıcı Teknolojilerinin Karşılaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(4), 993-1004. https://doi.org/10.35414/akufemubid.1470936
AMA Acaroğlu M, Öz Ö, Öztürk FH. Eklemeli İmalat Yöntemi ile Üretilmiş PLA Levhaların Bağlantı Dayanımları: İndüksiyonla Isıtma ve Yapıştırıcı Teknolojilerinin Karşılaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ağustos 2024;24(4):993-1004. doi:10.35414/akufemubid.1470936
Chicago Acaroğlu, Mustafa, Özkan Öz, ve Fatih Huzeyfe Öztürk. “Eklemeli İmalat Yöntemi Ile Üretilmiş PLA Levhaların Bağlantı Dayanımları: İndüksiyonla Isıtma Ve Yapıştırıcı Teknolojilerinin Karşılaştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, sy. 4 (Ağustos 2024): 993-1004. https://doi.org/10.35414/akufemubid.1470936.
EndNote Acaroğlu M, Öz Ö, Öztürk FH (01 Ağustos 2024) Eklemeli İmalat Yöntemi ile Üretilmiş PLA Levhaların Bağlantı Dayanımları: İndüksiyonla Isıtma ve Yapıştırıcı Teknolojilerinin Karşılaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 4 993–1004.
IEEE M. Acaroğlu, Ö. Öz, ve F. H. Öztürk, “Eklemeli İmalat Yöntemi ile Üretilmiş PLA Levhaların Bağlantı Dayanımları: İndüksiyonla Isıtma ve Yapıştırıcı Teknolojilerinin Karşılaştırılması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 4, ss. 993–1004, 2024, doi: 10.35414/akufemubid.1470936.
ISNAD Acaroğlu, Mustafa vd. “Eklemeli İmalat Yöntemi Ile Üretilmiş PLA Levhaların Bağlantı Dayanımları: İndüksiyonla Isıtma Ve Yapıştırıcı Teknolojilerinin Karşılaştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/4 (Ağustos 2024), 993-1004. https://doi.org/10.35414/akufemubid.1470936.
JAMA Acaroğlu M, Öz Ö, Öztürk FH. Eklemeli İmalat Yöntemi ile Üretilmiş PLA Levhaların Bağlantı Dayanımları: İndüksiyonla Isıtma ve Yapıştırıcı Teknolojilerinin Karşılaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:993–1004.
MLA Acaroğlu, Mustafa vd. “Eklemeli İmalat Yöntemi Ile Üretilmiş PLA Levhaların Bağlantı Dayanımları: İndüksiyonla Isıtma Ve Yapıştırıcı Teknolojilerinin Karşılaştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 4, 2024, ss. 993-1004, doi:10.35414/akufemubid.1470936.
Vancouver Acaroğlu M, Öz Ö, Öztürk FH. Eklemeli İmalat Yöntemi ile Üretilmiş PLA Levhaların Bağlantı Dayanımları: İndüksiyonla Isıtma ve Yapıştırıcı Teknolojilerinin Karşılaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(4):993-1004.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.