Araştırma Makalesi
BibTex RIS Kaynak Göster

Işınım Transferi Denklemi Baz Alınarak Yer Yüzey Sıcaklığının Landsat-8 Uydu Verileri ile Haritalanması

Yıl 2019, , 769 - 777, 31.12.2019
https://doi.org/10.35414/akufemubid.559576

Öz

Bu
çalışmanın amacı Landsat-8 uydu verileri ve Işınım Transferi Denklemi (RTE)
kullanılarak Yer Yüzey Sıcaklığının (YYS) konumsal olarak elde edilmesidir.
Çalışma kapsamında 27 Eylül 2018 tarihli Landsat-8 verisi kullanılmış ve Adana
ili Ceyhan ilçe sınırları çalışma alanı olarak seçilmiştir. RTE yöntemi ile YYS
çıkarımında atmosferik geçirgenlik (
), aşağı yönlü
atmosferik ışınım (
) ve yukarı yönlü
atmosferik ışınım (
) gerekli atmosferik
parametrelerdir. Bu parametreler, Amerikan Uzay Ajansı (NASA) tarafından
çevrimiçi yayınlanan atmosferik düzeltme parametresi hesaplayıcı tarafından
hesaplanmıştır. YYS çıkarımında bir diğer önemli parametre olan yüzey
yayınırlığı (
) Normalize Fark Bitki
İndeksi (NDVI) kullanılarak hesaplanmıştır. Uygulama sonucunda YYS haritası
oluşturulmuş ve aynı gün alınan MODIS YYS verisi ile çapraz doğrulama işlemi
gerçekleştirilmiştir. Doğruluk analizi sonucunda korelasyon katsayısı 0.91 ve
Karesel Ortalama Hata (KOH) 3.93 K olarak belirlenmiştir. RTE yöntemi
kullanılarak hızlı bir şekilde YYS haritalarının üretimi ile zamansal ve
konumsal analizler yapılarak bölgesel iklim değişikliği çalışmalarında önemli
sonuçlar elde edilecektir.

Kaynakça

  • Anderson, M.C., Norman, J.M., Kustas, W.P., Houborg, R., Starks, P.J., and Agam, N., 2008. A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sensing of Environment, 112 (12), 4227–4241.
  • Arnfield, A.J., 2003. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23 (1), 1–26.
  • Arslan, N., 2018. Identification of hotspots using different statistical methods in a region of manufacturing plants. Environmental Monitoring and Assessment, 190 (9), 550.
  • Balcik, F., 2014. Determining the impact of urban components on land surface temperature of Istanbul by using remote sensing indices. Environmental Monitoring and Assessment, 186 (2), 859–872.
  • Becker, F. and Li, Z.L., 1990. Toward a local split window method over land surface. Int. J. Remote Sens.
  • Dash, P., Göttsche, F.-M., Olesen, F., and Fischer, H., 2001. Retrieval of land surface temperature and emissivity from satellite data: Physics, theoretical limitations and current methods. Journal of the Indian Society of Remote Sensing, 29 (l), 23–30.
  • Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J.S., Hook, S., and Kahle, A.B., 1998. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36 (4), 1113–1126.
  • Jiang, Y. and Weng, Q., 2017. Estimation of hourly and daily evapotranspiration and soil moisture using downscaled LST over various urban surfaces. GIScience & Remote Sensing, 54 (1), 95–117.
  • Jiménez-Muñoz, J.C. and Sobrino, J.A., 2003. A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research, 109 (April), 8112.
  • Karakuş, C.B., 2019. The Impact of Land Use/Land Cover (LULC) Changes on Land Surface Temperature in Sivas City Center and Its Surroundings and Assessment of Urban Heat Island. Asia-Pacific Journal of Atmospheric Sciences.
  • Karimi, A., Pahlavani, P., and Bigdeli, B., 2017. LAND USE ANALYSIS ON LAND SURFACE TEMPERATURE IN URBAN AREAS USING A GEOGRAPHICALLY WEIGHTED REGRESSION AND LANDSAT 8 IMAGERY, A CASE STUDY: TEHRAN, IRAN. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W4, 117–122.
  • Kaya, S., Basar, U.G., Karaca, M., and Seker, D.Z., 2012. Assessment of Urban Heat Islands Using Remotely Sensed Data. Ekoloji, 21 (84), 107–113.
  • Kumari, M. and Sarma, K., 2017. Changing trends of land surface temperature in relation to land use/cover around thermal power plant in Singrauli district, Madhya Pradesh, India. Spatial Information Research, 25 (6), 769–777.
  • Li, Z.-L. and Becker, F., 1993. Feasibility of land surface temerature and emissivity determination from AVHRR data. Remote Sensing of Environment, 43 (July 1992), 67–85.
  • Mao, K., Qin, Z., Shi, J., and Gong, P., 2005. A practical split‐window algorithm for retrieving land‐surface temperature from MODIS data. International Journal of Remote Sensing, 26 (15), 3181–3204.
  • Mia, M.B., Nishijima, J., and Fujimitsu, Y., 2014. Exploration and monitoring geothermal activity using Landsat ETM+images. Journal of Volcanology and Geothermal Research, 275 (August 2007), 14–21.
  • Montanaro, M., Gerace, A., Lunsford, A., and Reuter, D., 2014. Stray Light Artifacts in Imagery from the Landsat 8 Thermal Infrared Sensor. Remote Sensing, 6 (11), 10435–10456.
  • Polat, N., Dereli, M.A., Uğur, M.A., and Yalçın, M., 2018. Termal Uydu Görüntülerinin Jeotermal Kaynak Araştırmasında Kullanılabilirliğinin Araştırılması: Afyonkarahisar Örneği. Harran Üniversitesi Mühendislik Dergisi, 3 (3), 1–7.
  • Prakash, A., 2000. Thermal Remote Sensing : Concepts , Issues and Applications. In: International Archives of Photogrammetry and Remote Sensing. Amsterdam, 239–243.
  • Prasad, N., Bandi, R.G., and Padmaja, B., 2013. Monitoring and Extracting Abnormalities in Land Surface Temperature Images for Automatic Identification of Forest Fires. In: 2013 European Modelling Symposium. 215–219.
  • Price, J.C., 1983. Estimating surface temperatures from satellite thermal infrared data-A simple formulation for the atmospheric effect. Remote Sensing of Environment, 13 (4), 353–361.
  • Qin, Z., Karnieli, A., and Berliner, P., 2001. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22 (18), 3719–3746.
  • Roşca, C.F., Harpa, G.V., Croitoru, A.-E., Herbel, I., Imbroane, A.M., and Burada, D.C., 2017. The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania. Theoretical and Applied Climatology, 130 (3–4), 775–790.
  • Sahana, M., Dutta, S., and Sajjad, H., 2018. Assessing land transformation and its relation with land surface temperature in Mumbai city, India using geospatial techniques. International Journal of Urban Sciences, 1–21.
  • Sekertekin, A. and Arslan, N., 2019. Monitoring thermal anomaly and radiative heat flux using thermal infrared satellite imagery – A case study at Tuzla geothermal region. Geothermics, 78 (July 2018), 243–254.
  • Sekertekin, A., Kutoglu, S.H., and Kaya, S., 2016. Evaluation of spatio-temporal variability in Land Surface Temperature: A case study of Zonguldak, Turkey. Environmental monitoring and assessment, 188 (1), 30.
  • Şekertekin, A., Kutoglu, Ş.H., Kaya, S., and Marangoz, A.M., 2015. ANALYSING THE EFFECTS OF DIFFERENT LAND COVER TYPES ON LAND SURFACE TEMPERATURE USING SATELLITE DATA. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1-W5 (1W5), 665–667.
  • Şekertekin, A., Kutoglu, Ş.H., Kaya, S., and Marangoz, A.M., 2016. MONITORING THE SURFACE HEAT ISLAND (SHI) EFFECTS OF INDUSTRIAL ENTERPRISES. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B6, 289–293.
  • Şekertekin, A., Kutoğlu, Ş.H., Kaya, Ş., and Marangoz, A.M., 2015. Uydu Verileri ile Arazi Örtüsündeki Yer Yüzey Sıcaklığı Değişimlerinin Analizi: Zonguldak Örneği, Türkiye. In: 15. Türkiye Harita Bilimsel ve Teknik Kurultayı.
  • Sekertekin, A., Kutoglu, S.H., Marangoz, A.M., and Kaya, S., 2016. The Surface Heat Island Effect of Urbanization: Spatial-Temporal Analysis. In: 4th International Geography Symposium. 80–87.
  • Skoković, D., Sobrino, J.A., Jiménez-Muñoz, J.C., Sòria, G., Julien, Y., Mattar, C., and Cristóbal, J., 2014. Calibration and Validation of land surface temperature for Landsat 8-TIRS sensor. In: LPVE2014 - Workshop on Land Product Validation and Evolution (ESA-ESRIN). Frascati/ITALY, 6–9.
  • Sobrino, J.A., Jimenez-Muoz, J.C., Soria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A., and Martinez, P., 2008. Land Surface Emissivity Retrieval From Different VNIR and TIR Sensors. IEEE Transactions on Geoscience and Remote Sensing, 46 (2), 316–327.
  • Sobrino, J.A., Li, Z., Stoll, M.P., and Becker, F., 1996. Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data. International Journal of Remote Sensing, 17 (September 2012), 2089–2114.
  • Ulusoy, İ., 2016. Temporal radiative heat flux estimation and alteration mapping of Tendürek volcano (eastern Turkey) using ASTER imagery. Journal of Volcanology and Geothermal Research, 327, 40–54.
  • Uysal, M. and Polat, N., 2015. An investigation of the relationship between land surface temperatures and biophysical indices retrieved from Landsat TM in Afyonkarahisar (Turkey). Tehnicki vjesnik - Technical Gazette, 22 (1), 177–181.
  • Wan, Z. and Dozier, J., 1996. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34 (4), 892–905.
  • Weng, Q., Lu, D., and Schubring, J., 2004. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89 (4), 467–483.
  • Yalcin, M. and Kilic Gul, F., 2017. A GIS-based multi criteria decision analysis approach for exploring geothermal resources: Akarcay basin (Afyonkarahisar). Geothermics, 67, 18–28.
  • Yavaşlı, D.D., Ölgen, K., and Zoğal, V., 2018. Are Summer Resorts Cooler in Summer? A Case Study of İzmir Province. Aegean Geographical Journal, 27 (2), 127–134.
Yıl 2019, , 769 - 777, 31.12.2019
https://doi.org/10.35414/akufemubid.559576

Öz

Kaynakça

  • Anderson, M.C., Norman, J.M., Kustas, W.P., Houborg, R., Starks, P.J., and Agam, N., 2008. A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sensing of Environment, 112 (12), 4227–4241.
  • Arnfield, A.J., 2003. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23 (1), 1–26.
  • Arslan, N., 2018. Identification of hotspots using different statistical methods in a region of manufacturing plants. Environmental Monitoring and Assessment, 190 (9), 550.
  • Balcik, F., 2014. Determining the impact of urban components on land surface temperature of Istanbul by using remote sensing indices. Environmental Monitoring and Assessment, 186 (2), 859–872.
  • Becker, F. and Li, Z.L., 1990. Toward a local split window method over land surface. Int. J. Remote Sens.
  • Dash, P., Göttsche, F.-M., Olesen, F., and Fischer, H., 2001. Retrieval of land surface temperature and emissivity from satellite data: Physics, theoretical limitations and current methods. Journal of the Indian Society of Remote Sensing, 29 (l), 23–30.
  • Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J.S., Hook, S., and Kahle, A.B., 1998. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36 (4), 1113–1126.
  • Jiang, Y. and Weng, Q., 2017. Estimation of hourly and daily evapotranspiration and soil moisture using downscaled LST over various urban surfaces. GIScience & Remote Sensing, 54 (1), 95–117.
  • Jiménez-Muñoz, J.C. and Sobrino, J.A., 2003. A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research, 109 (April), 8112.
  • Karakuş, C.B., 2019. The Impact of Land Use/Land Cover (LULC) Changes on Land Surface Temperature in Sivas City Center and Its Surroundings and Assessment of Urban Heat Island. Asia-Pacific Journal of Atmospheric Sciences.
  • Karimi, A., Pahlavani, P., and Bigdeli, B., 2017. LAND USE ANALYSIS ON LAND SURFACE TEMPERATURE IN URBAN AREAS USING A GEOGRAPHICALLY WEIGHTED REGRESSION AND LANDSAT 8 IMAGERY, A CASE STUDY: TEHRAN, IRAN. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W4, 117–122.
  • Kaya, S., Basar, U.G., Karaca, M., and Seker, D.Z., 2012. Assessment of Urban Heat Islands Using Remotely Sensed Data. Ekoloji, 21 (84), 107–113.
  • Kumari, M. and Sarma, K., 2017. Changing trends of land surface temperature in relation to land use/cover around thermal power plant in Singrauli district, Madhya Pradesh, India. Spatial Information Research, 25 (6), 769–777.
  • Li, Z.-L. and Becker, F., 1993. Feasibility of land surface temerature and emissivity determination from AVHRR data. Remote Sensing of Environment, 43 (July 1992), 67–85.
  • Mao, K., Qin, Z., Shi, J., and Gong, P., 2005. A practical split‐window algorithm for retrieving land‐surface temperature from MODIS data. International Journal of Remote Sensing, 26 (15), 3181–3204.
  • Mia, M.B., Nishijima, J., and Fujimitsu, Y., 2014. Exploration and monitoring geothermal activity using Landsat ETM+images. Journal of Volcanology and Geothermal Research, 275 (August 2007), 14–21.
  • Montanaro, M., Gerace, A., Lunsford, A., and Reuter, D., 2014. Stray Light Artifacts in Imagery from the Landsat 8 Thermal Infrared Sensor. Remote Sensing, 6 (11), 10435–10456.
  • Polat, N., Dereli, M.A., Uğur, M.A., and Yalçın, M., 2018. Termal Uydu Görüntülerinin Jeotermal Kaynak Araştırmasında Kullanılabilirliğinin Araştırılması: Afyonkarahisar Örneği. Harran Üniversitesi Mühendislik Dergisi, 3 (3), 1–7.
  • Prakash, A., 2000. Thermal Remote Sensing : Concepts , Issues and Applications. In: International Archives of Photogrammetry and Remote Sensing. Amsterdam, 239–243.
  • Prasad, N., Bandi, R.G., and Padmaja, B., 2013. Monitoring and Extracting Abnormalities in Land Surface Temperature Images for Automatic Identification of Forest Fires. In: 2013 European Modelling Symposium. 215–219.
  • Price, J.C., 1983. Estimating surface temperatures from satellite thermal infrared data-A simple formulation for the atmospheric effect. Remote Sensing of Environment, 13 (4), 353–361.
  • Qin, Z., Karnieli, A., and Berliner, P., 2001. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22 (18), 3719–3746.
  • Roşca, C.F., Harpa, G.V., Croitoru, A.-E., Herbel, I., Imbroane, A.M., and Burada, D.C., 2017. The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania. Theoretical and Applied Climatology, 130 (3–4), 775–790.
  • Sahana, M., Dutta, S., and Sajjad, H., 2018. Assessing land transformation and its relation with land surface temperature in Mumbai city, India using geospatial techniques. International Journal of Urban Sciences, 1–21.
  • Sekertekin, A. and Arslan, N., 2019. Monitoring thermal anomaly and radiative heat flux using thermal infrared satellite imagery – A case study at Tuzla geothermal region. Geothermics, 78 (July 2018), 243–254.
  • Sekertekin, A., Kutoglu, S.H., and Kaya, S., 2016. Evaluation of spatio-temporal variability in Land Surface Temperature: A case study of Zonguldak, Turkey. Environmental monitoring and assessment, 188 (1), 30.
  • Şekertekin, A., Kutoglu, Ş.H., Kaya, S., and Marangoz, A.M., 2015. ANALYSING THE EFFECTS OF DIFFERENT LAND COVER TYPES ON LAND SURFACE TEMPERATURE USING SATELLITE DATA. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1-W5 (1W5), 665–667.
  • Şekertekin, A., Kutoglu, Ş.H., Kaya, S., and Marangoz, A.M., 2016. MONITORING THE SURFACE HEAT ISLAND (SHI) EFFECTS OF INDUSTRIAL ENTERPRISES. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B6, 289–293.
  • Şekertekin, A., Kutoğlu, Ş.H., Kaya, Ş., and Marangoz, A.M., 2015. Uydu Verileri ile Arazi Örtüsündeki Yer Yüzey Sıcaklığı Değişimlerinin Analizi: Zonguldak Örneği, Türkiye. In: 15. Türkiye Harita Bilimsel ve Teknik Kurultayı.
  • Sekertekin, A., Kutoglu, S.H., Marangoz, A.M., and Kaya, S., 2016. The Surface Heat Island Effect of Urbanization: Spatial-Temporal Analysis. In: 4th International Geography Symposium. 80–87.
  • Skoković, D., Sobrino, J.A., Jiménez-Muñoz, J.C., Sòria, G., Julien, Y., Mattar, C., and Cristóbal, J., 2014. Calibration and Validation of land surface temperature for Landsat 8-TIRS sensor. In: LPVE2014 - Workshop on Land Product Validation and Evolution (ESA-ESRIN). Frascati/ITALY, 6–9.
  • Sobrino, J.A., Jimenez-Muoz, J.C., Soria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A., and Martinez, P., 2008. Land Surface Emissivity Retrieval From Different VNIR and TIR Sensors. IEEE Transactions on Geoscience and Remote Sensing, 46 (2), 316–327.
  • Sobrino, J.A., Li, Z., Stoll, M.P., and Becker, F., 1996. Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data. International Journal of Remote Sensing, 17 (September 2012), 2089–2114.
  • Ulusoy, İ., 2016. Temporal radiative heat flux estimation and alteration mapping of Tendürek volcano (eastern Turkey) using ASTER imagery. Journal of Volcanology and Geothermal Research, 327, 40–54.
  • Uysal, M. and Polat, N., 2015. An investigation of the relationship between land surface temperatures and biophysical indices retrieved from Landsat TM in Afyonkarahisar (Turkey). Tehnicki vjesnik - Technical Gazette, 22 (1), 177–181.
  • Wan, Z. and Dozier, J., 1996. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34 (4), 892–905.
  • Weng, Q., Lu, D., and Schubring, J., 2004. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89 (4), 467–483.
  • Yalcin, M. and Kilic Gul, F., 2017. A GIS-based multi criteria decision analysis approach for exploring geothermal resources: Akarcay basin (Afyonkarahisar). Geothermics, 67, 18–28.
  • Yavaşlı, D.D., Ölgen, K., and Zoğal, V., 2018. Are Summer Resorts Cooler in Summer? A Case Study of İzmir Province. Aegean Geographical Journal, 27 (2), 127–134.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Aliihsan Şekertekin 0000-0002-4715-5160

Yayımlanma Tarihi 31 Aralık 2019
Gönderilme Tarihi 1 Mayıs 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Şekertekin, A. (2019). Işınım Transferi Denklemi Baz Alınarak Yer Yüzey Sıcaklığının Landsat-8 Uydu Verileri ile Haritalanması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 19(3), 769-777. https://doi.org/10.35414/akufemubid.559576
AMA Şekertekin A. Işınım Transferi Denklemi Baz Alınarak Yer Yüzey Sıcaklığının Landsat-8 Uydu Verileri ile Haritalanması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Aralık 2019;19(3):769-777. doi:10.35414/akufemubid.559576
Chicago Şekertekin, Aliihsan. “Işınım Transferi Denklemi Baz Alınarak Yer Yüzey Sıcaklığının Landsat-8 Uydu Verileri Ile Haritalanması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19, sy. 3 (Aralık 2019): 769-77. https://doi.org/10.35414/akufemubid.559576.
EndNote Şekertekin A (01 Aralık 2019) Işınım Transferi Denklemi Baz Alınarak Yer Yüzey Sıcaklığının Landsat-8 Uydu Verileri ile Haritalanması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19 3 769–777.
IEEE A. Şekertekin, “Işınım Transferi Denklemi Baz Alınarak Yer Yüzey Sıcaklığının Landsat-8 Uydu Verileri ile Haritalanması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 19, sy. 3, ss. 769–777, 2019, doi: 10.35414/akufemubid.559576.
ISNAD Şekertekin, Aliihsan. “Işınım Transferi Denklemi Baz Alınarak Yer Yüzey Sıcaklığının Landsat-8 Uydu Verileri Ile Haritalanması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19/3 (Aralık 2019), 769-777. https://doi.org/10.35414/akufemubid.559576.
JAMA Şekertekin A. Işınım Transferi Denklemi Baz Alınarak Yer Yüzey Sıcaklığının Landsat-8 Uydu Verileri ile Haritalanması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19:769–777.
MLA Şekertekin, Aliihsan. “Işınım Transferi Denklemi Baz Alınarak Yer Yüzey Sıcaklığının Landsat-8 Uydu Verileri Ile Haritalanması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 19, sy. 3, 2019, ss. 769-77, doi:10.35414/akufemubid.559576.
Vancouver Şekertekin A. Işınım Transferi Denklemi Baz Alınarak Yer Yüzey Sıcaklığının Landsat-8 Uydu Verileri ile Haritalanması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19(3):769-77.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.