H2SO4 ile Aktive Edilen Fıstık Kabuğu Kullanılarak Sürekli Sistem Kolonda Sucul Çözeltiden Asidik Boya Giderimi
Yıl 2019,
, 697 - 708, 31.12.2019
İlknur Şentürk
,
Mazen Alzeın
Öz
Bu
çalışmanın amacı asidik bir boya olan Asit Viyolet 17 boyasının adsorpsiyon
kolonunda arıtılabilirliğini araştırmaktır. Tarımsal bir atık materyal olan
Antep fıstığı kabukları asitle aktive edildikten sonra kolon dolgu materyali
olarak kullanılmıştır. Aktive edilen fıstık kabuklarının fizikokimyasal
özellikleri FTIR ve BET analizleri ile karakterize edilmiştir. Hazırlanan
adsorbanın adsorpsiyon kapasitesinin, BET yüzey alanıyla pozitif ilişkili
olduğu görülmüştür. Sürekli sistem adsorpsiyon deneyleri, asitle
aktive edilmiş fıstık kabuğu ile doldurulan bir sabit kolonda
gerçekleştirilmiştir. Seçilen çalışma parametrelerinin her biri için, çıkış suyu
konsantrasyonunun giriş konsantrasyonuna oranına (Ct/Ci)
karşılık belirli sürelerde okunan değerler grafiğe geçirilerek kırılma eğrileri
çizilmiştir. Kırılma eğrisi verilerine göre seçilen en iyi koşullarda (2 cm
yatak yüksekliği, 6 mL/dk akış hızı ve 40 mg/L başlangıç konsantrasyonu) elde
edilen adsorpsiyon kapasitesi (qm) 13,66 mg/g’dır. Son olarak 0,2 M
NaOH çözeltisi ile adsorban yatağının rejenerasyonu incelenmiştir. Çalışma
sonuçları kullanılan adsorbanın rejenerasyon sonrası adsorplama kapasitesinin,
düşük olduğunu göstermiştir. Kırılma eğrisinden elde edilen veriler Adams-Bohart, Thomas ve Yoon-Nelson
modellerine uyarlanmıştır. Sonuçlar Thomas modelin kırılma eğrilerinin
tanımlanması için daha uygun olduğunu göstermektedir.
Destekleyen Kurum
Sivas Cumhuriyet Üniversitesi CÜBAP
Kaynakça
- Al-Degs, Y.S., Khraisheh, M.A.M., Allen, S.J. and Ahmad, M.N., 2009. Adsorption characteristics of reactive dyes in columns of activated carbon. Journal of Hazardous Materials, 165(1), 944–949.
- Ansari, R., Seyghali, B., Mohammad-khah, A. and Zanjanchi, M.A., 2012. Highly Efficient Adsorption of Anionic Dyes from Aqueous Solutions Using Sawdust Modified by Cationic Surfactant of Cetyltrimethylammonium Bromide. Journal of Surfactants and Detergents, 15(5), 557–565.
- Banerjee, S., Sharma, G.C., Gautam, R.K., Chattopadhyaya, M.C., Upadhyay, S.N., et al. 2016. Removal of Malachite Green, a hazardous dye from aqueous solutions using Avena sativa (oat) hull as a potential adsorbent. Journal of Molecular Liquids, 213, 162–172.
- Garg, V.K., Gupta, R., Bala Yadav, A. and Kumar, R. 2003. Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology, 89(2), 121–124.
- Jain, Suyog N. and Gogate, P.R. 2017a. Adsorptive removal of acid violet 17 dye from wastewater using biosorbent obtained from NaOH and H2SO4 activation of fallen leaves of Ficus racemosa. Journal of Molecular Liquids, 243, 132–143.
- Jain, S.N. and Gogate, P.R. 2017b. NaOH-treated dead leaves of Ficus racemosa as an efficient biosorbent for Acid Blue 25 removal. International Journal of Environmental Science and Technology, 14(3), 531–542.
- Jain, S.N. and Gogate, P.R. 2018. Efficient removal of Acid Green 25 dye from wastewater using activated Prunus Dulcis as biosorbent: Batch and column studies. Journal of Environmental Management, 210, 226–238.
- Kaur, S., Walia, T.P.S. and Kaur, R. 2008. Removal of health hazards causing acidic dyes from aqueous solutions by the process of adsorption. Online Journal of Health and Allied Sciences, 6(3), 1-10.
- Li, W., Yue, Q., Tu, P., Ma, Z., Gao, B., et al. 2011. Adsorption characteristics of dyes in columns of activated carbon prepared from paper mill sewage sludge. Chemical Engineering Journal, 178, 197–203.
- Kannan, N. and Murugavel, S. 2008. Comparative study on the removal of acid violet by adsorption on various low cost adsorbents. Global NEST Journal, 10(3), 395–403.
- Ramavandi, B., Farjadfard, S. and Ardjmand, M. 2014. Mitigation of orange II dye from simulated and actual wastewater using bimetallic chitosan particles: Continuous flow fixed-bed reactor. Journal of Environmental Chemical Engineering, 2(3), 1776–1784.
- Saleem, M., Pirzada, T. and Qadeer, R. 2007. Sorption of acid violet 17 and direct red 80 dyes on cotton fiber from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292(2–3), 246–250.
- Singh, D. K., Kumar, V., Mohan, S., Bano, D. and Hasan, S.H. 2017. Breakthrough curve modeling of graphene oxide aerogel packed fixed bed column for the removal of Cr(VI) from water. Journal of Water Process Engineering, 18, 150–158.
- Singh, S.A. and Shukla, S.R. 2016. Adsorptive removal of cobalt ions on raw and alkali-treated lemon peels. International Journal of Environmental Science and Technology, 13(1), 165–178.
- Sivaraj, R., Namasivayam, C. and Kadirvelu, K. 2001. Orange peel as an adsorbent in the removal of Acid violet 17 (acid dye) from aqueous solutions. Waste Management, 21(1), 105–110.
- Tamez Uddin, Md., Rukanuzzaman, Md., Maksudur Rahman Khan, Md. and Akhtarul Islam, Md. 2009. Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: A fixed-bed column study. Journal of Environmental Management, 90(11), 3443–3450.
- Thinakaran, N., Baskaralingam, P., Pulikesi, M., Panneerselvam, P. and Sivanesan, S. 2008. Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull. Journal of Hazardous Materials, 151(2), 316–322.
- Vijayalakshmi, P., Bala, V.S.S., Thiruvengadaravi, K.V., Panneerselvam, P., Palanichamy, M. et al. 2011. Removal of Acid Violet 17 from Aqueous Solutions by Adsorption onto Activated Carbon Prepared from Pistachio Nut Shell. Separation Science and Technology, 46(1), 155–163.
- Wu, X., Wu, D., Fu, R. and Zeng, W. 2012. Preparation of carbon aerogels with different pore structures and their fixed bed adsorption properties for dye removal. Dyes and Pigments, 95(3), 689–694.
- Yusuf, M., Khan, M.A., Otero, M., Abdullah, E.C., Hosomi, M. et al. 2017. Synthesis of CTAB intercalated graphene and its application for the adsorption of AR265 and AO7 dyes from water. Journal of Colloid and Interface Science, 493, 51–61.
- Zhang, W., Li, H., Kan, X., Dong, L., Yan, H. et al. 2012. Adsorption of anionic dyes from aqueous solutions using chemically modified straw. Bioresource Technology, 117, 40–47.
- Zhao, B., Shang, Y., Xiao, W., Dou, C. and Han, R. 2014. Adsorption of Congo red from solution using cationic surfactant modified wheat straw in column model. Journal of Environmental Chemical Engineering, 2(1), 40–45.
Yıl 2019,
, 697 - 708, 31.12.2019
İlknur Şentürk
,
Mazen Alzeın
Kaynakça
- Al-Degs, Y.S., Khraisheh, M.A.M., Allen, S.J. and Ahmad, M.N., 2009. Adsorption characteristics of reactive dyes in columns of activated carbon. Journal of Hazardous Materials, 165(1), 944–949.
- Ansari, R., Seyghali, B., Mohammad-khah, A. and Zanjanchi, M.A., 2012. Highly Efficient Adsorption of Anionic Dyes from Aqueous Solutions Using Sawdust Modified by Cationic Surfactant of Cetyltrimethylammonium Bromide. Journal of Surfactants and Detergents, 15(5), 557–565.
- Banerjee, S., Sharma, G.C., Gautam, R.K., Chattopadhyaya, M.C., Upadhyay, S.N., et al. 2016. Removal of Malachite Green, a hazardous dye from aqueous solutions using Avena sativa (oat) hull as a potential adsorbent. Journal of Molecular Liquids, 213, 162–172.
- Garg, V.K., Gupta, R., Bala Yadav, A. and Kumar, R. 2003. Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology, 89(2), 121–124.
- Jain, Suyog N. and Gogate, P.R. 2017a. Adsorptive removal of acid violet 17 dye from wastewater using biosorbent obtained from NaOH and H2SO4 activation of fallen leaves of Ficus racemosa. Journal of Molecular Liquids, 243, 132–143.
- Jain, S.N. and Gogate, P.R. 2017b. NaOH-treated dead leaves of Ficus racemosa as an efficient biosorbent for Acid Blue 25 removal. International Journal of Environmental Science and Technology, 14(3), 531–542.
- Jain, S.N. and Gogate, P.R. 2018. Efficient removal of Acid Green 25 dye from wastewater using activated Prunus Dulcis as biosorbent: Batch and column studies. Journal of Environmental Management, 210, 226–238.
- Kaur, S., Walia, T.P.S. and Kaur, R. 2008. Removal of health hazards causing acidic dyes from aqueous solutions by the process of adsorption. Online Journal of Health and Allied Sciences, 6(3), 1-10.
- Li, W., Yue, Q., Tu, P., Ma, Z., Gao, B., et al. 2011. Adsorption characteristics of dyes in columns of activated carbon prepared from paper mill sewage sludge. Chemical Engineering Journal, 178, 197–203.
- Kannan, N. and Murugavel, S. 2008. Comparative study on the removal of acid violet by adsorption on various low cost adsorbents. Global NEST Journal, 10(3), 395–403.
- Ramavandi, B., Farjadfard, S. and Ardjmand, M. 2014. Mitigation of orange II dye from simulated and actual wastewater using bimetallic chitosan particles: Continuous flow fixed-bed reactor. Journal of Environmental Chemical Engineering, 2(3), 1776–1784.
- Saleem, M., Pirzada, T. and Qadeer, R. 2007. Sorption of acid violet 17 and direct red 80 dyes on cotton fiber from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292(2–3), 246–250.
- Singh, D. K., Kumar, V., Mohan, S., Bano, D. and Hasan, S.H. 2017. Breakthrough curve modeling of graphene oxide aerogel packed fixed bed column for the removal of Cr(VI) from water. Journal of Water Process Engineering, 18, 150–158.
- Singh, S.A. and Shukla, S.R. 2016. Adsorptive removal of cobalt ions on raw and alkali-treated lemon peels. International Journal of Environmental Science and Technology, 13(1), 165–178.
- Sivaraj, R., Namasivayam, C. and Kadirvelu, K. 2001. Orange peel as an adsorbent in the removal of Acid violet 17 (acid dye) from aqueous solutions. Waste Management, 21(1), 105–110.
- Tamez Uddin, Md., Rukanuzzaman, Md., Maksudur Rahman Khan, Md. and Akhtarul Islam, Md. 2009. Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: A fixed-bed column study. Journal of Environmental Management, 90(11), 3443–3450.
- Thinakaran, N., Baskaralingam, P., Pulikesi, M., Panneerselvam, P. and Sivanesan, S. 2008. Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull. Journal of Hazardous Materials, 151(2), 316–322.
- Vijayalakshmi, P., Bala, V.S.S., Thiruvengadaravi, K.V., Panneerselvam, P., Palanichamy, M. et al. 2011. Removal of Acid Violet 17 from Aqueous Solutions by Adsorption onto Activated Carbon Prepared from Pistachio Nut Shell. Separation Science and Technology, 46(1), 155–163.
- Wu, X., Wu, D., Fu, R. and Zeng, W. 2012. Preparation of carbon aerogels with different pore structures and their fixed bed adsorption properties for dye removal. Dyes and Pigments, 95(3), 689–694.
- Yusuf, M., Khan, M.A., Otero, M., Abdullah, E.C., Hosomi, M. et al. 2017. Synthesis of CTAB intercalated graphene and its application for the adsorption of AR265 and AO7 dyes from water. Journal of Colloid and Interface Science, 493, 51–61.
- Zhang, W., Li, H., Kan, X., Dong, L., Yan, H. et al. 2012. Adsorption of anionic dyes from aqueous solutions using chemically modified straw. Bioresource Technology, 117, 40–47.
- Zhao, B., Shang, Y., Xiao, W., Dou, C. and Han, R. 2014. Adsorption of Congo red from solution using cationic surfactant modified wheat straw in column model. Journal of Environmental Chemical Engineering, 2(1), 40–45.