Araştırma Makalesi
BibTex RIS Kaynak Göster

Granitik Buzul Çakıllarında Zirkon Tipolojisi Çalışması: Toridler’den Örnek Bir Çalışma (Türkiye)

Yıl 2020, , 917 - 930, 30.11.2020
https://doi.org/10.35414/akufemubid.706323

Öz

Gondwana’nın kuzey kenarına ait Geç Ordovisiyen buzul kayaçlarına, Torid’lerde ve Güneydoğu Anadolu Otokton Kuşağı’nda rastlanmaktadır. Bu çalışmada; Doğu Toridler’de Feke-Saimbeyli-Ceralan (Adana) (DPK-30), Feke-Gökmenler (Adana) (DPK-44) ve Orta Toridler’de Silifke-Ovacık (Mersin) (DPK-72) bölgelerinden alınmış olan granitik buzul çakıllarından ayrılmış zirkon mineralleri üzerinde zirkon tipolojisi ve zirkon doygunluk sıcaklığı araştırmaları yapılmıştır. Zirkon tipolojisi metoduna dayanarak; çalışılan örneklerden DPK-30 örneği kalk-alkalen özellik gösteren, mafik anklavlar içeren hibrit granitoyidler, DPK-44 örneği tamamıyla veya kısmen kıtasal kabuktan oluşan, eser miktarda mafik mikrogranüler ksenolit içeriği ve düşük manto katkısı sunan granitoyidler ve DPK-72 örneği ise alkalen serisi granitoyidler olarak tanımlanan, genellikle sub-volkanik ve anorojenik komplekslerde rastlanan sıcak ve susuz magma kaynağına işaret eden manto kaynaklı kayaçlar olarak tanımlanmıştır. Bu tanımlamalar, bu kayaçlar üzerindeki izotopik verileri de kapsayan öncel jeokimyasal değerlendirmelerle genel olarak uyumludur. Çalışılan granitik kayaçların oluşum sıcaklıkları; sırasıyla zirkon tipolojisi metodu ve zirkon doygunluk sıcaklığı hesabına dayanarak, DPK-30 için 750°C ve 789°C; DPK-44 için 700°C ve 845°C, DPK-72 için 650°C ve 790°C olarak önerilmiştir. Bu sıcaklık aralıkları kaynak alan olarak önerilen Sina Yarımadası ve Mısır Doğu Çölü civarındaki Neoproterozoyik yaşlı granitoyidlerin literatürdeki mevcut sıcaklık verileriyle benzerlik göstermektedir. Sonuç olarak; zirkon tipolojisi metodu ve zirkon doygunluk sıcaklığı çalışmalarının; diğer analitik verilerle birlikte değerlendirildiğinde, granitik buzul çakıllarının kaynak alanlarının saptanmasında faydalı olabileceği düşünülmektedir.

Kaynakça

  • Akın, L., Aydar, E., Schmitt, A.K. and Çubukçu, H.E., 2019. Application of zircon typology method to felsic rocks (Cappadocia, Central Anatolia, Turkey): a zircon crystallization temperature perspective. Turkish Journal of Earth Sciences, 28, 351-371.
  • Azer, M.K., Abdelfadil K.M. and Ramadan A.A., 2019. Geochemistry and Petrogenesis of Late Ediacaran Rare-Metal Albite Granite of the Nubian Shield: Case Studyof Nuweibi Intrusion, Eastern Desert, Egypt. The Journal of Geology, 127, 665-690.
  • Be’eri-Shlevin, Y., Katzir, Y. And Whitehouse, M., 2009. Post-collisional tectonomagmatic evolution in the northern Arabian–Nubian Shield: time constraints from ion-probe U–Pb dating of zircon. Journal of the Geological Society, London, 166, 71-85. doi: 10.1144/0016-76492007-169.
  • Bozdoğan, N., Göncüoğlu, M.C. and Kozlu, H., 1996. Lower Paleozoic stratigraphy of SE Anatolia. In Baldis, B.A. and Acenolaza, F.G. eds. El Paleozoico inferior en el noroeste del Gondwana (The lower Paleozoic of NW Gondwana). Serie Correlation Geologica. Instituto Superior Correlacion Geologica, Universidad Nacional de Tucuman, Tucuman, 12, 47-58.
  • Caricchi, L., Simpson, G. and Schaltegger, 2014. Zircons reveal magma fluxes in the Earth’s crust. Nature, 511, 457-461.
  • Cater, J.M.L. and Tunbridge, I.P., 1992. Palaeozoic tectonic history of SE Turkey. Journal of Petroleum Geology, 15 (1), 35–50. DOI:10.1111/j.1747-5457.1992.tb00864.
  • Doornbos, C., Heaman, L.M., Doupé, J.P., England, J., Simonetti, A. and Lajeunesse, P., 2009. The first integrated use of in situ U–Pb geochronology and geochemical analyses to determine long-distance transport of glacial erratics from mainland Canada into the western Arctic Archipelago. Canadian Journal of Earth Sciences, 46, 101-122.
  • Finger, F., Haunschmid, B., Schermaier, A. and Von Quadt, A., 1992. Is zircon morphology indicative of a mantle or crustal origin of a granite? Comparison of Pupin indices with Sr and Nd isotope data of 26 Austrian granites. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 137, 135-137.
  • Ghienne J.-F., Benvenuti A., El Houicha M., Girard F. And Kali E., 2018. The impact of the end-Ordovician glaciation on sediment routing systems: A case study from the Meseta (northern Morocco). Gondwana Research, 63, 169-178. 10.1016/j.gr.2018.07.001.
  • Ghienne, J.-F., Desrochers, A., Vandenbroucke, T.R.A., Achab, A., Asselin, E., Dabard, M.-P., Farley, C., Loi, A., Paris, F., Wickson, S. and Veizer, J., 2014. A Cenozoic-style scenario for the end-Ordovician glaciation. Nature Communications, 5, 4485. DOI:10.1038/ncomms5485.
  • Ghienne, J.F., Deynoux, M., Manatschal, G. and Rubino, J.L., 2003. Palaeovalleys and fault-controlled depocentres in the Late-Ordovician glacial record of the Murzuq Basin (central Libya). Comptes Rendus Geosciences, 335, 1091-1100. DOI:10.1016/j.crte.2003.09.010.
  • Ghienne, J.F., Monod, O., Kozlu, H. and Dean, W.T., 2010. Cambrian-Ordovician depositional sequences in the Middle East: a perspective from Turkey. Earth Science Reviews, 101, 101-146. DOI:10.1016/j.earscirev.2010.04.004.
  • Ghoneim, M.F., Heikal M. T. S., El Dosuky B. T., Abu-Alam T.S. and Sherif M. I., 2015. Neoproterozoic granites of Sharm El-Sheikh area, Egypt: mineralogical and thermobarometric variations. Arabian Journal of Geosciences, 8, 125-141. DOI 10.1007/s12517-013-1182-0.
  • Ghoneim, M.F., Lebda, E.M. and Khedr, M.Z., 2004. Pre-post collisional plutonites of Arais area, Eastern Desert, Egypt: geochemical concept. 6th Int. Conf. On Geochemistry, Alex. Univ., 15-16 September 2004.
  • Göncüoğlu, M.C., 1997. Distribution of Lower Paleozoic units in the Alpine terranes of Turkey: paleogeographic constraints. In Göncüoğlu, M.C. and Derman, A.S., eds. Lower Paleozoic evolution in northwest Gondwana. Turkish Association of Petroleum Geologists Special Publications, 3, 13-24.
  • Göncüoğlu, M.C., Göncüoğlu, Y., Kozlu, H. and Kozur, H., 2004. Paleozoic stratigraphy of the Geyikdağ Unit in the Eastern Taurides (Turkey): new age data and implications for Gondwana evolution. Geologica Carpathica, 55, 433-447.
  • Göncüoğlu, M.C. and Kozlu, H., 2000. Early Paleozoic evolution of the NW Gondwanaland: data from southern Turkey and surrounding regions. Gondwana Research, 3, 315–324. DOI:10.1016/S1342-937X(05)70290-2.
  • Gürsu, S., 2015. Determination of source of Late Ordovician (Hirnantian) glacial deposits in southern Turkey by zircon U-Pb Geochronology. TUBITAK 2219 International Post-Doctoral Research Fellowship Programme Final Report, Ankara, 1-304.
  • Gürsu, S., Möller, A., Usta, D., Köksal, S., Ates, S., Sunkari, E.D. and Göncüoğlu, M.C., 2017. LA-ICP-MS U-Pb dating of detrital and magmatic zircons of glacial diamictites and pebbles in Late Ordovician sediments of the Taurides and Southeast Anatolian Autochthone Belt, Turkey: indications for their Arabian-Nubian provenance. The Journal of Geology, 125(2), 165-202. https://doi.org/10. 1086/ 690199.
  • Gürsu, S., Mueller, P.A., Sunkari, E.D., Möller, A., Köksal, S., Kamenov, G.D. and Göncüoğlu, M.C., 2018. Nd, Pb, Hf isotope characteristics and provenance of glacial granitic pebbles from Late Ordovician diamictites in the Taurides, S Turkey. Gondwana Research, 54, 205-216.
  • Hanchar, J. M. and Watson, E. B., 2003. Zircon saturation thermometry. Reviews in Mineralogy and Geochemistry, 53(1), 89-112.
  • Heikal M. T. S., Khedr M.Z., El Monsef M.A. and Gomaa S.R., 2019. Petrogenesis and geodynamic evolution of Neoproterozoic Abu Dabbab Albite Granite, Central Eastern Desert of Egypt: Petrological and geochemical constraints. Journal of African Earth Sciences, 158, 103518.
  • Hofmann, M., Linnemann, U., Hoffmann, K.H., Germs, G., Gerdes, A., Marko, L., Eckelmann, K., Gärtner, A., Krause, R., 2015. The four Neoproterozoic glaciations of southern Namibia and their detrital zircon record: the fingerprints of four crustal growth events during two supercontinent cycles. Precambrian Research, 259, 176-188.
  • Kemp, A., Hawkesworth, C., Paterson, B. and Kinny, P.D., 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439, 580–583 (2006) doi:10.1038/nature04505.
  • Köksal, S., Göncüoğlu, M.C., Toksoy-Köksal, F., Möller, A. and Kemnitz, H., 2008. Zircon typologies and internal structures as petrogenetic indicators in contrasting granitoid types from central Anatolia, Turkey. Mineralogy and Petrology, 93, 185-211.
  • Lisa L. and Uher P., 2006. Provenance of Würmian loess and loess-like sediments of Moravia and Silesia (Czech Republic): a study of zircon typology and cathodoluminescence. Geologica Carpathica, 57 (5), 397-403.
  • Monod, O., Kozlu, H., Ghienne, J.F., Dean, W.T., Günay, Y., Le Hérissé, A., Paris, F. and Robardet, M., 2003. Late Ordovician glaciation in southern Turkey. Terra Nova, 15, 249–257. DOI:10.1046/j.1365-3121.2003.00495.x.
  • Morag, N., Avigad D., Gerdes A., Belousova E. and Harlavan Y., 2011. Crustal evolution and recycling in the northern Arabian-Nubian Shield: New perspectives from zircon Lu–Hf and U–Pb systematics Precambrian Research, 186, 101-116.
  • Moreno J.A., Montero P., Abu Anbar M., Molina J.F., Scarrow J.H., Talavera C., Cambeses A. and Bea F., 2012. SHRIMP U–Pb zircon dating of the Katerina Ring Complex: Insights into the temporal sequence of Ediacaran calc-alkaline to peralkaline magmatism in southern Sinai, Egypt, Gondwana Research, 21, 887-900.
  • Osorio-Granada E., Restrepo-Moreno S.A., Munoz-Valencia J.A., Trejos-Tamayo R.A., Pardo-Trujillo A., 2017. Detrital zircon typology and U/Pb geochronology for the Miocene Ladrilleros-Juanchaco sedimentary sequence, Equatorial Pacific (Colombia): New constraints on provenance and paleogeography in northwestern South America. Geologica Acta, 15 (3), 201-215.
  • Özgül, N. ve Kozlu,H., 2002, Kozan-Feke (Doğu Toroslar) Yöresinin Stratigrafisi ve Yapısal Konumu ile İlgili Bulgular, Türkiye Petrol Jeologları Derneği Bülteni, 14 (1), 1-36.
  • Özgül, N., Metin, S., Göğer, İ., Bingöl, İ., Baydar, O. Ve Erdoğan, B., 1973. Tufanbeyli dolayının Kambriyen ve Tersiyer kayaları. Türkiye Jeoloji Bülteni, 16 (1), 81-101.
  • Paris, F.F., Le Hérissé, A., Monod, O., Kozlu, H., Ghienne, J.F., Dean, W.T., Vecoli, M. and Günay, Y., 2007. Ordovician chitinozoans and acritarchs from southern and southeastern Turkey. Revue de Micropaleontologie, 50, 81–107. https://doi.org/10.1016/j.revmic.2006.11. 004.
  • Pastor-Galán, D., Gutiérrez-Alonso, G., Murphy, J.B., Fernández-Suárez, J., Hofmann, M. and Linnemann, U., 2013. Provenance analysis of the Paleozoic sequences of the northern Gondwana margin in NW Iberia: passive margin to Variscan collision and orocline development. Gondwana Research, 23, 1089-1103.
  • Pohl, A., Donnadieu, Y., Le Hir, G., Ladant, J.B., Dumas, C., Alvarez-Solas, J., Vandenbroucke, T.R.A., 2016. Glacial onset predated Late Ordovician climate cooling. Paleoceanography, 31, 800-821.
  • Pupin, J.P., 1980. Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73, 207-220.
  • Schermaier, A., Haunschmid, B., Schubert, G., Frasl, G. and Finger, F., 1992. Diskriminierung von S-typ und I-typ graniten auf der basis zirkontypologischer untersuchungen. Frankfurter Geowiss Arb, Serie A Geologie-Paläontologie, 11: 149-153.
  • Schoene, B., Schaltegger U., Brack P., Latkoczy C., and Günther D., 2012. Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy. Earth Planetary Science Letters, 355–356, 162-173.
  • Shaw, J., Gutiérrez-Alonso, G., Johnston, S.T. and Galán, D.P., 2014. Provenance variability along the Early Ordovician north Gondwana margin: Paleogeographic and tectonic implications of U-Pb detrital zircon ages from the Armorican Quartzite of the Iberian Variscan belt. Geological Society of America Bulletin, 126, 702-719.
  • Watson, E. B., 1979. Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contributions to Mineralogy and Petrology, 70, 407-419.
  • Watson, E. B. and Harrison, T. M., 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planetary Science Letters, 64, 295-304.
  • Zoheir, B.A., Mehanna, A. M., Qaoud, N. N., 2008. Geochemistry and geothermobarometry of the Um Eleiga Neoproterozoic island arc intrusive complex, SE Egypt: genesis of a potential gold-hosting intrusion. Applied Earth Science (Trans. Inst. Min. Metall. B), 117, 3, DOI: 10.1179/174327508X375620.

Zircon Typology Study on the Granitic Glacial Pebbles: A Case Study from the Taurides (Turkey)

Yıl 2020, , 917 - 930, 30.11.2020
https://doi.org/10.35414/akufemubid.706323

Öz

The Late Ordovician glacial rocks from the northern part of the Gondwana are encountered in Taurides and Southeast Anatolia Autochtone Zone. In this study, zircon typology and zircon saturation temperature invetigations are performed on zircon minerals separated from the granitic glacial pebbles from the Feke-Saimbeyli-Ceralan and Feke-Gökmenler (Adana) areas in the east Taurides and Silifke-Ovacık (Mersin) in the central Taurides. Based on the zircon typology method, among the studied samples, DPK-30 is described as calc-alkaline hybrid granitoids bearing mafic enclaves, DPK-44 is identified as granitoids formed from wholly or partly continental crust with rare mafic microgranular xenoliths and low mantle contribution, and DPK-72 is defined as alkaline series granitoids, which are mantle originated rocks observed in subvolcanic and anorogenic complexes pointing out to hot and dry magma source. These descriptions are generally agreeable with the previous geochemical assessments, including isotopic data, on these rocks. Formation temperatures of studied granitic rocks are suggested as 750°C and 789°C for DPK-30, 700°C and 845°C for DPK-44, and 650°C and 790°C for DPK-72, based on zircon typology method and by zircon saturation temperature calculation, respectively. These temperature ranges show similarities to the present temperature data in literature on the Neoproterozoic granitoids from the Sina Peninsula and the Eastern Egypt Desert. As a result, zircon typology method and zircon saturation temperature calculation studies, combined with the other analytical data, can be beneficial in determining the source regions of the granitic glacial pebbles.

Kaynakça

  • Akın, L., Aydar, E., Schmitt, A.K. and Çubukçu, H.E., 2019. Application of zircon typology method to felsic rocks (Cappadocia, Central Anatolia, Turkey): a zircon crystallization temperature perspective. Turkish Journal of Earth Sciences, 28, 351-371.
  • Azer, M.K., Abdelfadil K.M. and Ramadan A.A., 2019. Geochemistry and Petrogenesis of Late Ediacaran Rare-Metal Albite Granite of the Nubian Shield: Case Studyof Nuweibi Intrusion, Eastern Desert, Egypt. The Journal of Geology, 127, 665-690.
  • Be’eri-Shlevin, Y., Katzir, Y. And Whitehouse, M., 2009. Post-collisional tectonomagmatic evolution in the northern Arabian–Nubian Shield: time constraints from ion-probe U–Pb dating of zircon. Journal of the Geological Society, London, 166, 71-85. doi: 10.1144/0016-76492007-169.
  • Bozdoğan, N., Göncüoğlu, M.C. and Kozlu, H., 1996. Lower Paleozoic stratigraphy of SE Anatolia. In Baldis, B.A. and Acenolaza, F.G. eds. El Paleozoico inferior en el noroeste del Gondwana (The lower Paleozoic of NW Gondwana). Serie Correlation Geologica. Instituto Superior Correlacion Geologica, Universidad Nacional de Tucuman, Tucuman, 12, 47-58.
  • Caricchi, L., Simpson, G. and Schaltegger, 2014. Zircons reveal magma fluxes in the Earth’s crust. Nature, 511, 457-461.
  • Cater, J.M.L. and Tunbridge, I.P., 1992. Palaeozoic tectonic history of SE Turkey. Journal of Petroleum Geology, 15 (1), 35–50. DOI:10.1111/j.1747-5457.1992.tb00864.
  • Doornbos, C., Heaman, L.M., Doupé, J.P., England, J., Simonetti, A. and Lajeunesse, P., 2009. The first integrated use of in situ U–Pb geochronology and geochemical analyses to determine long-distance transport of glacial erratics from mainland Canada into the western Arctic Archipelago. Canadian Journal of Earth Sciences, 46, 101-122.
  • Finger, F., Haunschmid, B., Schermaier, A. and Von Quadt, A., 1992. Is zircon morphology indicative of a mantle or crustal origin of a granite? Comparison of Pupin indices with Sr and Nd isotope data of 26 Austrian granites. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 137, 135-137.
  • Ghienne J.-F., Benvenuti A., El Houicha M., Girard F. And Kali E., 2018. The impact of the end-Ordovician glaciation on sediment routing systems: A case study from the Meseta (northern Morocco). Gondwana Research, 63, 169-178. 10.1016/j.gr.2018.07.001.
  • Ghienne, J.-F., Desrochers, A., Vandenbroucke, T.R.A., Achab, A., Asselin, E., Dabard, M.-P., Farley, C., Loi, A., Paris, F., Wickson, S. and Veizer, J., 2014. A Cenozoic-style scenario for the end-Ordovician glaciation. Nature Communications, 5, 4485. DOI:10.1038/ncomms5485.
  • Ghienne, J.F., Deynoux, M., Manatschal, G. and Rubino, J.L., 2003. Palaeovalleys and fault-controlled depocentres in the Late-Ordovician glacial record of the Murzuq Basin (central Libya). Comptes Rendus Geosciences, 335, 1091-1100. DOI:10.1016/j.crte.2003.09.010.
  • Ghienne, J.F., Monod, O., Kozlu, H. and Dean, W.T., 2010. Cambrian-Ordovician depositional sequences in the Middle East: a perspective from Turkey. Earth Science Reviews, 101, 101-146. DOI:10.1016/j.earscirev.2010.04.004.
  • Ghoneim, M.F., Heikal M. T. S., El Dosuky B. T., Abu-Alam T.S. and Sherif M. I., 2015. Neoproterozoic granites of Sharm El-Sheikh area, Egypt: mineralogical and thermobarometric variations. Arabian Journal of Geosciences, 8, 125-141. DOI 10.1007/s12517-013-1182-0.
  • Ghoneim, M.F., Lebda, E.M. and Khedr, M.Z., 2004. Pre-post collisional plutonites of Arais area, Eastern Desert, Egypt: geochemical concept. 6th Int. Conf. On Geochemistry, Alex. Univ., 15-16 September 2004.
  • Göncüoğlu, M.C., 1997. Distribution of Lower Paleozoic units in the Alpine terranes of Turkey: paleogeographic constraints. In Göncüoğlu, M.C. and Derman, A.S., eds. Lower Paleozoic evolution in northwest Gondwana. Turkish Association of Petroleum Geologists Special Publications, 3, 13-24.
  • Göncüoğlu, M.C., Göncüoğlu, Y., Kozlu, H. and Kozur, H., 2004. Paleozoic stratigraphy of the Geyikdağ Unit in the Eastern Taurides (Turkey): new age data and implications for Gondwana evolution. Geologica Carpathica, 55, 433-447.
  • Göncüoğlu, M.C. and Kozlu, H., 2000. Early Paleozoic evolution of the NW Gondwanaland: data from southern Turkey and surrounding regions. Gondwana Research, 3, 315–324. DOI:10.1016/S1342-937X(05)70290-2.
  • Gürsu, S., 2015. Determination of source of Late Ordovician (Hirnantian) glacial deposits in southern Turkey by zircon U-Pb Geochronology. TUBITAK 2219 International Post-Doctoral Research Fellowship Programme Final Report, Ankara, 1-304.
  • Gürsu, S., Möller, A., Usta, D., Köksal, S., Ates, S., Sunkari, E.D. and Göncüoğlu, M.C., 2017. LA-ICP-MS U-Pb dating of detrital and magmatic zircons of glacial diamictites and pebbles in Late Ordovician sediments of the Taurides and Southeast Anatolian Autochthone Belt, Turkey: indications for their Arabian-Nubian provenance. The Journal of Geology, 125(2), 165-202. https://doi.org/10. 1086/ 690199.
  • Gürsu, S., Mueller, P.A., Sunkari, E.D., Möller, A., Köksal, S., Kamenov, G.D. and Göncüoğlu, M.C., 2018. Nd, Pb, Hf isotope characteristics and provenance of glacial granitic pebbles from Late Ordovician diamictites in the Taurides, S Turkey. Gondwana Research, 54, 205-216.
  • Hanchar, J. M. and Watson, E. B., 2003. Zircon saturation thermometry. Reviews in Mineralogy and Geochemistry, 53(1), 89-112.
  • Heikal M. T. S., Khedr M.Z., El Monsef M.A. and Gomaa S.R., 2019. Petrogenesis and geodynamic evolution of Neoproterozoic Abu Dabbab Albite Granite, Central Eastern Desert of Egypt: Petrological and geochemical constraints. Journal of African Earth Sciences, 158, 103518.
  • Hofmann, M., Linnemann, U., Hoffmann, K.H., Germs, G., Gerdes, A., Marko, L., Eckelmann, K., Gärtner, A., Krause, R., 2015. The four Neoproterozoic glaciations of southern Namibia and their detrital zircon record: the fingerprints of four crustal growth events during two supercontinent cycles. Precambrian Research, 259, 176-188.
  • Kemp, A., Hawkesworth, C., Paterson, B. and Kinny, P.D., 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439, 580–583 (2006) doi:10.1038/nature04505.
  • Köksal, S., Göncüoğlu, M.C., Toksoy-Köksal, F., Möller, A. and Kemnitz, H., 2008. Zircon typologies and internal structures as petrogenetic indicators in contrasting granitoid types from central Anatolia, Turkey. Mineralogy and Petrology, 93, 185-211.
  • Lisa L. and Uher P., 2006. Provenance of Würmian loess and loess-like sediments of Moravia and Silesia (Czech Republic): a study of zircon typology and cathodoluminescence. Geologica Carpathica, 57 (5), 397-403.
  • Monod, O., Kozlu, H., Ghienne, J.F., Dean, W.T., Günay, Y., Le Hérissé, A., Paris, F. and Robardet, M., 2003. Late Ordovician glaciation in southern Turkey. Terra Nova, 15, 249–257. DOI:10.1046/j.1365-3121.2003.00495.x.
  • Morag, N., Avigad D., Gerdes A., Belousova E. and Harlavan Y., 2011. Crustal evolution and recycling in the northern Arabian-Nubian Shield: New perspectives from zircon Lu–Hf and U–Pb systematics Precambrian Research, 186, 101-116.
  • Moreno J.A., Montero P., Abu Anbar M., Molina J.F., Scarrow J.H., Talavera C., Cambeses A. and Bea F., 2012. SHRIMP U–Pb zircon dating of the Katerina Ring Complex: Insights into the temporal sequence of Ediacaran calc-alkaline to peralkaline magmatism in southern Sinai, Egypt, Gondwana Research, 21, 887-900.
  • Osorio-Granada E., Restrepo-Moreno S.A., Munoz-Valencia J.A., Trejos-Tamayo R.A., Pardo-Trujillo A., 2017. Detrital zircon typology and U/Pb geochronology for the Miocene Ladrilleros-Juanchaco sedimentary sequence, Equatorial Pacific (Colombia): New constraints on provenance and paleogeography in northwestern South America. Geologica Acta, 15 (3), 201-215.
  • Özgül, N. ve Kozlu,H., 2002, Kozan-Feke (Doğu Toroslar) Yöresinin Stratigrafisi ve Yapısal Konumu ile İlgili Bulgular, Türkiye Petrol Jeologları Derneği Bülteni, 14 (1), 1-36.
  • Özgül, N., Metin, S., Göğer, İ., Bingöl, İ., Baydar, O. Ve Erdoğan, B., 1973. Tufanbeyli dolayının Kambriyen ve Tersiyer kayaları. Türkiye Jeoloji Bülteni, 16 (1), 81-101.
  • Paris, F.F., Le Hérissé, A., Monod, O., Kozlu, H., Ghienne, J.F., Dean, W.T., Vecoli, M. and Günay, Y., 2007. Ordovician chitinozoans and acritarchs from southern and southeastern Turkey. Revue de Micropaleontologie, 50, 81–107. https://doi.org/10.1016/j.revmic.2006.11. 004.
  • Pastor-Galán, D., Gutiérrez-Alonso, G., Murphy, J.B., Fernández-Suárez, J., Hofmann, M. and Linnemann, U., 2013. Provenance analysis of the Paleozoic sequences of the northern Gondwana margin in NW Iberia: passive margin to Variscan collision and orocline development. Gondwana Research, 23, 1089-1103.
  • Pohl, A., Donnadieu, Y., Le Hir, G., Ladant, J.B., Dumas, C., Alvarez-Solas, J., Vandenbroucke, T.R.A., 2016. Glacial onset predated Late Ordovician climate cooling. Paleoceanography, 31, 800-821.
  • Pupin, J.P., 1980. Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73, 207-220.
  • Schermaier, A., Haunschmid, B., Schubert, G., Frasl, G. and Finger, F., 1992. Diskriminierung von S-typ und I-typ graniten auf der basis zirkontypologischer untersuchungen. Frankfurter Geowiss Arb, Serie A Geologie-Paläontologie, 11: 149-153.
  • Schoene, B., Schaltegger U., Brack P., Latkoczy C., and Günther D., 2012. Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy. Earth Planetary Science Letters, 355–356, 162-173.
  • Shaw, J., Gutiérrez-Alonso, G., Johnston, S.T. and Galán, D.P., 2014. Provenance variability along the Early Ordovician north Gondwana margin: Paleogeographic and tectonic implications of U-Pb detrital zircon ages from the Armorican Quartzite of the Iberian Variscan belt. Geological Society of America Bulletin, 126, 702-719.
  • Watson, E. B., 1979. Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contributions to Mineralogy and Petrology, 70, 407-419.
  • Watson, E. B. and Harrison, T. M., 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planetary Science Letters, 64, 295-304.
  • Zoheir, B.A., Mehanna, A. M., Qaoud, N. N., 2008. Geochemistry and geothermobarometry of the Um Eleiga Neoproterozoic island arc intrusive complex, SE Egypt: genesis of a potential gold-hosting intrusion. Applied Earth Science (Trans. Inst. Min. Metall. B), 117, 3, DOI: 10.1179/174327508X375620.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Serhat Köksal 0000-0002-0094-9481

Yayımlanma Tarihi 30 Kasım 2020
Gönderilme Tarihi 19 Mart 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Köksal, S. (2020). Granitik Buzul Çakıllarında Zirkon Tipolojisi Çalışması: Toridler’den Örnek Bir Çalışma (Türkiye). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(5), 917-930. https://doi.org/10.35414/akufemubid.706323
AMA Köksal S. Granitik Buzul Çakıllarında Zirkon Tipolojisi Çalışması: Toridler’den Örnek Bir Çalışma (Türkiye). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Kasım 2020;20(5):917-930. doi:10.35414/akufemubid.706323
Chicago Köksal, Serhat. “Granitik Buzul Çakıllarında Zirkon Tipolojisi Çalışması: Toridler’den Örnek Bir Çalışma (Türkiye)”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, sy. 5 (Kasım 2020): 917-30. https://doi.org/10.35414/akufemubid.706323.
EndNote Köksal S (01 Kasım 2020) Granitik Buzul Çakıllarında Zirkon Tipolojisi Çalışması: Toridler’den Örnek Bir Çalışma (Türkiye). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 5 917–930.
IEEE S. Köksal, “Granitik Buzul Çakıllarında Zirkon Tipolojisi Çalışması: Toridler’den Örnek Bir Çalışma (Türkiye)”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 20, sy. 5, ss. 917–930, 2020, doi: 10.35414/akufemubid.706323.
ISNAD Köksal, Serhat. “Granitik Buzul Çakıllarında Zirkon Tipolojisi Çalışması: Toridler’den Örnek Bir Çalışma (Türkiye)”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/5 (Kasım 2020), 917-930. https://doi.org/10.35414/akufemubid.706323.
JAMA Köksal S. Granitik Buzul Çakıllarında Zirkon Tipolojisi Çalışması: Toridler’den Örnek Bir Çalışma (Türkiye). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:917–930.
MLA Köksal, Serhat. “Granitik Buzul Çakıllarında Zirkon Tipolojisi Çalışması: Toridler’den Örnek Bir Çalışma (Türkiye)”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 20, sy. 5, 2020, ss. 917-30, doi:10.35414/akufemubid.706323.
Vancouver Köksal S. Granitik Buzul Çakıllarında Zirkon Tipolojisi Çalışması: Toridler’den Örnek Bir Çalışma (Türkiye). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(5):917-30.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.