Araştırma Makalesi
BibTex RIS Kaynak Göster

Global ve Bölgesel (Yüksek Çözünürlüklü) Sayısal Yükseklik Modellerinin Doğruluk Analizi Üzerine Bir İnceleme

Yıl 2020, , 598 - 612, 25.09.2020
https://doi.org/10.35414/akufemubid.746252

Öz

Topografik yükseklikler birçok mühendislik uygulamasında ve yerbilimlerine ilişkin araştırmalarda kullanılmaktadır. Yüksek çözünürlüklü Sayısal Yükseklik Modelleri (SYM), günümüzde yükseklik verilerini elde etmenin en pratik ve ekonomik yoludur. SYM’lerinin üretiminde farklı yöntemler uygulanır. Bu modeller çeşitli hata kaynaklarından etkilenirler. Bu nedenle, SYM verilerini kullanmadan önce çalışma alanlarındaki performanslarını test etmek çalışmada gereksinim duyulan yükseklik doğruluğunun sağlanması için önemlidir. Genel bir yaklaşım olarak, Sayısal Yükseklik Modellerinin doğruluk analizinde topografyaya uygun dağılmış kontrol noktalarında Global Navigation Satellite System (GNSS) ve/veya nivelman yükseklikleri ile modelden elde edilen yükseklik farklarının karesel ortalama hata (k.o.h.) değerleri dikkate alınır. Bu çalışmada, yüksek çözünürlüklü global SYM’leri: ASTER GDEM (Advanced Spaceborne Thermal Emission and Reflection Radiometer-Gelişmiş Uzay Kaynaklı Termal Emisyon ve Yansıma Radyometresi), SRTM (Shuttle Radar Topography Mission-Mekik Radar Topografya Misyonu) ile bölgesel HGM DTED2 modellerinin doğrulukları GNSS/nivelman verileri kullanılarak analiz edilmiştir. Bu amaçla farklı topografik özellikteki alanları temsil eden üç ayrı GNSS/nivelman veri seti kullanılarak kontrol noktalarının dağılımının yanı sıra test alanı topografyasının SYM doğruluğuna etkisi incelenmiştir. Sonuçlar Türkiye'nin kuzeybatısındaki test edilen global ve bölgesel SYM’lerinin doğruluğunu topografyanın değişen özelliklerine bağlı olarak karşılaştırmakta ve değerlendirmektedir. Testler sonucu global SYM’lerinin doğruluğu 8.0 m iken bölgesel DTED2 SYM doğruluğu 6.0 m olarak bulunmuştur.

Destekleyen Kurum

İstanbul Teknik Üniversitesi Bilimsel Araştırma Projeleri

Proje Numarası

MGA-2018-41585

Teşekkür

Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu tarafından (Proje No.114Y581) ve İstanbul Teknik Üniversitesi Bilimsel Araştırma Projeleri (BAP) programı kapsamında (Proje No. MGA-2018-41585) desteklenmiştir. Çalışmada kullanılan bölgesel SYM DTED2 ve TUTGA verileri Harita Genel Müdürlüğünden temin edilmiştir. Çalışmada kullanılan GNSS/nivelman verileri için İstanbul Teknik Üniversitesi Jeodezi Anabilim Dalına teşekkür ederiz.

Kaynakça

  • Agrawal R., Mahtab A., Jayaprasad P., Pathan S., Ajai K., 2006. Validating SRTM DEM with Differential GPS Measurements -A Case Study with Different Terrains. Proceedings of the ISPRS Symposium, Goa, India, International Society for Photogrammetry and Remote Sensing.
  • Ayan, T., Deniz, R., Arslan, E., Çelik, R. N., Denli, H.H., Akyılmaz, O., Özşamlı, C., Özlüdemir, M.T., Erol, S., Erol, B., Acar, M., Mercan, H., Tekdal, E., 2006. İstanbul GPS Nirengi Ağı (İGNA) 2005-2006 Yenileme Ölçü ve Değerlendirmesi, Teknik Rapor, İstanbul Teknik Üniversitesi.
  • Ayhan, M.E.; Demir, C.; Lenk, O.; Kılıçoğlu, A.; Aktug, B.; Acıkgoz, M.; Firat, O.; Sengun, Y.S.; Cingoz, A.; Gurdal, M.A.; et al., 2002. Türkiye Ulusal Temel GPS Ağı-1999 (TUTGA-99A). Harita Dergisi, 16, 1–80.
  • Bildirici, İ. Ö. and Abbak, R. A., 2017. Comparison of ASTER and SRTM digital elevation models at one-arc-second resolution over Turkey. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 5(1), 16-25.
  • Bildirici, İ.Ö. and Abbak, R. A., 2020. Türkiye ve Çevresinde SRTM Sayısal Yükseklik Modelinin Doğruluğu. Geomatik, 5(1), 1-11.
  • Bildirici, İ. Ö., Ustun, A., Selvi Z.H., Abbak, R.A., Bugdayci, İ., 2009. Assessment of shuttle radar topography mission elevation data based on topographic maps in Turkey. Cartography and Geographic Information Science, 36(1), 95-104.
  • Çelik, R. N., Ayan, T., Erol, B., 2002. Geodetic Infrastructure Project of Marmara Earthquake Region Land Information System (MERLIS). Teknik Rapor, İstanbul Teknik Üniversitesi, ITU 2002/06/20. 1.
  • Erol, B., 2007. Investigations on Local Geoids for Geodetic Applications. Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul.
  • Erol, B., Işık, M.S., Erol, S., 2020. An Assessment of the GOCE High-Level Processing Facility (HPF) Released Global Geopotential Models with Regional Test Results in Turkey. Remote Sensing 12(3), 586.
  • Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D., 2007. The shuttle radar topography mission. Reviews of geophysics, 45(2).
  • Gesch, D., Oimoen, M.J., Danielson, J.J., Meyer, D., 2016. Validation of the ASTER global digital elevation model version 3 over the conterminous United States. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 143.
  • Hirt, C., 2016. Digital terrain models. Encyclopedia of Geodesy. Springer.
  • Hirt, C., Filmer, M.S., Featherstone, W.E., 2010. Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM ver4. 1 and GEODATA DEM-9S ver3 digital elevation models over Australia. Australian Journal of Earth Sciences, 57(3), 337-347. Agrawal R., Mahtab A., Jayaprasad P., Pathan S., Ajai K., 2006. Validating SRTM DEM with Differential GPS Measurements -A Case Study with Different Terrains. Proceedings of the ISPRS Symposium, Goa, India, International Society for Photogrammetry and Remote Sensing.
  • Ayan, T., Deniz, R., Arslan, E., Çelik, R. N., Denli, H.H., Akyılmaz, O., Özşamlı, C., Özlüdemir, M.T., Erol, S., Erol, B., Acar, M., Mercan, H., Tekdal, E., 2006. İstanbul GPS Nirengi Ağı (İGNA) 2005-2006 Yenileme Ölçü ve Değerlendirmesi, Teknik Rapor, İstanbul Teknik Üniversitesi.
  • Ayhan, M.E.; Demir, C.; Lenk, O.; Kılıçoğlu, A.; Aktug, B.; Acıkgoz, M.; Firat, O.; Sengun, Y.S.; Cingoz, A.; Gurdal, M.A.; et al., 2002. Türkiye Ulusal Temel GPS Ağı-1999 (TUTGA-99A). Harita Dergisi, 16, 1–80.
  • Bildirici, İ. Ö. and Abbak, R. A., 2017. Comparison of ASTER and SRTM digital elevation models at one-arc-second resolution over Turkey. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 5(1), 16-25.
  • Bildirici, İ.Ö. and Abbak, R. A., 2020. Türkiye ve Çevresinde SRTM Sayısal Yükseklik Modelinin Doğruluğu. Geomatik, 5(1), 1-11.
  • Bildirici, İ. Ö., Ustun, A., Selvi Z.H., Abbak, R.A., Bugdayci, İ., 2009. Assessment of shuttle radar topography mission elevation data based on topographic maps in Turkey. Cartography and Geographic Information Science, 36(1), 95-104.
  • Çelik, R. N., Ayan, T., Erol, B., 2002. Geodetic Infrastructure Project of Marmara Earthquake Region Land Information System (MERLIS). Teknik Rapor, İstanbul Teknik Üniversitesi, ITU 2002/06/20. 1.
  • Erol, B., 2007. Investigations on Local Geoids for Geodetic Applications. Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul.
  • Erol, B., Işık, M.S., Erol, S., 2020. An Assessment of the GOCE High-Level Processing Facility (HPF) Released Global Geopotential Models with Regional Test Results in Turkey. Remote Sensing 12(3), 586.
  • Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D., 2007. The shuttle radar topography mission. Reviews of geophysics, 45(2).
  • Gesch, D., Oimoen, M.J., Danielson, J.J., Meyer, D., 2016. Validation of the ASTER global digital elevation model version 3 over the conterminous United States. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 143.
  • Hirt, C., 2016. Digital terrain models. Encyclopedia of Geodesy. Springer.
  • Hirt, C., Filmer, M.S., Featherstone, W.E., 2010. Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM ver4. 1 and GEODATA DEM-9S ver3 digital elevation models over Australia. Australian Journal of Earth Sciences, 57(3), 337-347.
  • Hofmann-Wellenhof, B., Moritz, H., 2006. Physical Geodesy, Springer Verlag.
  • Kolecka, N., Kozak, J., 2014. Assessment of the accuracy of SRTM C-and X-Band high mountain elevation data: A case study of the Polish Tatra Mountains. Pure and Applied Geophysics, 171(6), 897-912.
  • Lemoine, F.G., Kenyon, S.C., Factor, J. K., Trimmer, R. G., Pavlis, N. K., Chinn, D. S., Cox, C. M., Klosko, S. M., Luthcke, S. B., Torrence, M. H., 1998. The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. Teknik Rapor, NASA/TP-1998-206861, Earth Resources And Remote Sensing, NASA Goddard Space Flight Center, 584p.
  • Luedeling, E., Siebert, S., Buerkert, A., 2007. Filling the voids in the SRTM elevation model—A TIN-based delta surface approach. ISPRS Journal of Photogrammetry and Remote Sensing, 62(4), 283-294.
  • Maune, D. F., Nayegandhi, A., 2019. Digital elevation model technologies and applications: the DEM users Manual 3rd Edition, ASPRS Publications.
  • Mouratidis, A., Briole, P., Katsambalos, K., 2010. SRTM 3 DEM (versions 1, 2, 3, 4) validation by means of extensive kinematic GPS measurements: a case study from North Greece. International Journal of Remote Sensing, 31(23), 6205-6222.
  • Mouratidis, A., Karadimou, G., Dimitrios, A., 2017. Extraction and Validation of Geomorphological Features from EU-DEM in the Vicinty of the Mygdonia Basin, Northern Greece. IOP Conf. Series: Earth and Environmental Science, 95, 032009, 2-9. doi :10.1088/1755-1315/95/3/032009
  • Mukherjee, S., Joshi, P.K., Mukherjee, S., Ghosh, A., Grag, R.D., Mukhopadhyay, A., 2013. Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). International Journal of Applied Earth Observation and Geoinformation, 21, 205-217.
  • Mukul, M., Srivastava, V., Mukul, M., 2015. Analysis of the accuracy of shuttle radar topography mission (SRTM) height models using international global navigation satellite system service (IGS) network. Journal of Earth System Science, 124(6), 1343-1357.
  • Mukul, M. S., Srivastava, V., Jade, S., Mukul, M., 2017. Uncertainties in the shuttle radar topography mission (SRTM) Heights: Insights from the indian Himalaya and Peninsula. Scientific Reports, 7, 41672.
  • Sümer, E. Ö., Gürçay, B., Pekesin, B. F., Avcı, K., Koruyucu, M., Dağlıyar, A., Teoman, A., Topçu, T., Özgüner, C., 2006. ASTER Uydu Verisi Uygulamaları: Türkiye'den Örnekler. Özel Yayın Serisi-5, Maden Tetkik Arama Genel Müdürlüğü, 70, Ankara. ISBN: 975-8964-41-0.
  • Tachikawa1, T., Kaku, M., Iwasaki, A., Gesch, D., Oimoen, M., Zhang, Z., Danielson, J., Krieger, T., Curtis, B., Haase, J., Abrams, M., Crippen, R., Carabajal, C., 2011. ASTER Global Digital Elevation Model Version 2 – Summary of Validation Results. U.S., NASA Land Processes Distributed Active Archive Center 25.
  • Varga, M., Bašić, T., 2013. Quality assessment and comparison of Global Digital Elevation Models on the territory of Republic of Croatia. Kartografija i geoinformacije (Cartography and Geoinformation), 12(20), 4-17.
  • Varga, M., Bašić, T., 2015. Accuracy validation and comparison of global digital elevation models over Croatia. International Journal of Remote Sensing, 36(1), 170-189.
  • Wechsler, S. P., 2003. Perceptions of digital elevation model uncertainty by DEM users. Urisa-Washington DC, 15(2), 57-64.
  • Yap, L., Kandé, L.H., Nouayou,R., Kamguia, J., Ngouh, N.A., Makuate M.B., 2019. Vertical accuracy evaluation of freely available latest high-resolution (30 m) global digital elevation models over Cameroon (Central Africa) with GPS/leveling ground control points. International Journal of Digital Earth, 12(5), 500-524.
  • Yılmaz A., Alp O., Okul A., Eker O., Erdoğan M., 2015. Türkiye için Hassas Yükseklik Modeli Üretimi. TUFUAB III. Teknik Sempozyumu Bildiriler Kitabı, 21-25 Mayıs, Konya, 294-301.
  • Yue, L., Shen, H., Zhang, L., Zheng, X., Zhang, F., Yuan, Q., 2017. High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations. ISPRS Journal of Photogrammetry and Remote Sensing, 123, 20-34.
  • İnternet kaynakları
  • 1- https://earthexplorer.usgs.gov/, (27.05.2020).
  • 2- https://idems.maps.arcgis.com/home/index.html, (28.05.2020).
  • 3- https://asterweb.jpl.nasa.gov/, (29.05.2020)
  • 4- https://www2.jpl.nasa.gov/srtm/, (29.05.2020)
  • 5- https://www.harita.gov.tr/anasayfa, (29.05.2020)
  • 6- https://www.dlr.de/eoc/en/desktopdefault.aspx/ tabid-5515/9214_read-17716/, (29.05.2020)
  • 7- https://www.nga.mil/About/History/NGAinHistory/ Pages/ SRTM.aspx, (29.05.2020)
  • 8- https://www2.jpl.nasa.gov/srtm/, (29.05.2020)
  • 9- http://srtm.csi.cgiar.org/srtmdata/, (29.05.2020)
  • 10- http://icgem.gfz-potsdam.de/, (29.05.2020)
  • 11- https://www.unoosa.org/pdf/icg/2012/template/ WGS_84.pdf, (29.05.2020)

An Investigation on Accuracy Analysis of Global and Regional (High Resolution) Digital Elevation Models

Yıl 2020, , 598 - 612, 25.09.2020
https://doi.org/10.35414/akufemubid.746252

Öz

The topographical heights are required in practice for a number of engineering applications as well as their specific use in many Earth science disciplines. Using a high-resolution Digital Elevation Model (DEM) is the most practical and economical way for obtaining the height data nowadays. These models include errors. So, it is important to clarify the quality as well as the accuracy of the DEM in the study areas before using its data. In general, validating DEMs using independent point-wise data such as GNSS and leveling heights provide an overall accuracy measure in terms of root means square error (r.m.s.e.) of the DEM derived heights. In this study three high-resolution digital elevation models ASTER, SRTM and Turkey Digital Topographic Data (DTED2) in 1 and 3 resolutions are assessed using GNSS/leveling data. Using three different sets of GNSS/leveling data invalidations it is aimed to clarify the role of the distribution of the ground-control points as well as the region’s characteristics, such as roughness of topography, land-cover, etc., in the validation results. The conclusions report the accuracy of the validated DEMs in northwest Turkey and hence include a categorization of DEM performances, generated from remotely sensed data and terrestrial techniques, depending on the topographical characteristics. In the test results the accuracies for global DTMs is 8.0 m, and for regional DTED2 DEM is 6.0 m.

Proje Numarası

MGA-2018-41585

Kaynakça

  • Agrawal R., Mahtab A., Jayaprasad P., Pathan S., Ajai K., 2006. Validating SRTM DEM with Differential GPS Measurements -A Case Study with Different Terrains. Proceedings of the ISPRS Symposium, Goa, India, International Society for Photogrammetry and Remote Sensing.
  • Ayan, T., Deniz, R., Arslan, E., Çelik, R. N., Denli, H.H., Akyılmaz, O., Özşamlı, C., Özlüdemir, M.T., Erol, S., Erol, B., Acar, M., Mercan, H., Tekdal, E., 2006. İstanbul GPS Nirengi Ağı (İGNA) 2005-2006 Yenileme Ölçü ve Değerlendirmesi, Teknik Rapor, İstanbul Teknik Üniversitesi.
  • Ayhan, M.E.; Demir, C.; Lenk, O.; Kılıçoğlu, A.; Aktug, B.; Acıkgoz, M.; Firat, O.; Sengun, Y.S.; Cingoz, A.; Gurdal, M.A.; et al., 2002. Türkiye Ulusal Temel GPS Ağı-1999 (TUTGA-99A). Harita Dergisi, 16, 1–80.
  • Bildirici, İ. Ö. and Abbak, R. A., 2017. Comparison of ASTER and SRTM digital elevation models at one-arc-second resolution over Turkey. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 5(1), 16-25.
  • Bildirici, İ.Ö. and Abbak, R. A., 2020. Türkiye ve Çevresinde SRTM Sayısal Yükseklik Modelinin Doğruluğu. Geomatik, 5(1), 1-11.
  • Bildirici, İ. Ö., Ustun, A., Selvi Z.H., Abbak, R.A., Bugdayci, İ., 2009. Assessment of shuttle radar topography mission elevation data based on topographic maps in Turkey. Cartography and Geographic Information Science, 36(1), 95-104.
  • Çelik, R. N., Ayan, T., Erol, B., 2002. Geodetic Infrastructure Project of Marmara Earthquake Region Land Information System (MERLIS). Teknik Rapor, İstanbul Teknik Üniversitesi, ITU 2002/06/20. 1.
  • Erol, B., 2007. Investigations on Local Geoids for Geodetic Applications. Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul.
  • Erol, B., Işık, M.S., Erol, S., 2020. An Assessment of the GOCE High-Level Processing Facility (HPF) Released Global Geopotential Models with Regional Test Results in Turkey. Remote Sensing 12(3), 586.
  • Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D., 2007. The shuttle radar topography mission. Reviews of geophysics, 45(2).
  • Gesch, D., Oimoen, M.J., Danielson, J.J., Meyer, D., 2016. Validation of the ASTER global digital elevation model version 3 over the conterminous United States. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 143.
  • Hirt, C., 2016. Digital terrain models. Encyclopedia of Geodesy. Springer.
  • Hirt, C., Filmer, M.S., Featherstone, W.E., 2010. Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM ver4. 1 and GEODATA DEM-9S ver3 digital elevation models over Australia. Australian Journal of Earth Sciences, 57(3), 337-347. Agrawal R., Mahtab A., Jayaprasad P., Pathan S., Ajai K., 2006. Validating SRTM DEM with Differential GPS Measurements -A Case Study with Different Terrains. Proceedings of the ISPRS Symposium, Goa, India, International Society for Photogrammetry and Remote Sensing.
  • Ayan, T., Deniz, R., Arslan, E., Çelik, R. N., Denli, H.H., Akyılmaz, O., Özşamlı, C., Özlüdemir, M.T., Erol, S., Erol, B., Acar, M., Mercan, H., Tekdal, E., 2006. İstanbul GPS Nirengi Ağı (İGNA) 2005-2006 Yenileme Ölçü ve Değerlendirmesi, Teknik Rapor, İstanbul Teknik Üniversitesi.
  • Ayhan, M.E.; Demir, C.; Lenk, O.; Kılıçoğlu, A.; Aktug, B.; Acıkgoz, M.; Firat, O.; Sengun, Y.S.; Cingoz, A.; Gurdal, M.A.; et al., 2002. Türkiye Ulusal Temel GPS Ağı-1999 (TUTGA-99A). Harita Dergisi, 16, 1–80.
  • Bildirici, İ. Ö. and Abbak, R. A., 2017. Comparison of ASTER and SRTM digital elevation models at one-arc-second resolution over Turkey. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 5(1), 16-25.
  • Bildirici, İ.Ö. and Abbak, R. A., 2020. Türkiye ve Çevresinde SRTM Sayısal Yükseklik Modelinin Doğruluğu. Geomatik, 5(1), 1-11.
  • Bildirici, İ. Ö., Ustun, A., Selvi Z.H., Abbak, R.A., Bugdayci, İ., 2009. Assessment of shuttle radar topography mission elevation data based on topographic maps in Turkey. Cartography and Geographic Information Science, 36(1), 95-104.
  • Çelik, R. N., Ayan, T., Erol, B., 2002. Geodetic Infrastructure Project of Marmara Earthquake Region Land Information System (MERLIS). Teknik Rapor, İstanbul Teknik Üniversitesi, ITU 2002/06/20. 1.
  • Erol, B., 2007. Investigations on Local Geoids for Geodetic Applications. Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul.
  • Erol, B., Işık, M.S., Erol, S., 2020. An Assessment of the GOCE High-Level Processing Facility (HPF) Released Global Geopotential Models with Regional Test Results in Turkey. Remote Sensing 12(3), 586.
  • Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D., 2007. The shuttle radar topography mission. Reviews of geophysics, 45(2).
  • Gesch, D., Oimoen, M.J., Danielson, J.J., Meyer, D., 2016. Validation of the ASTER global digital elevation model version 3 over the conterminous United States. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 143.
  • Hirt, C., 2016. Digital terrain models. Encyclopedia of Geodesy. Springer.
  • Hirt, C., Filmer, M.S., Featherstone, W.E., 2010. Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM ver4. 1 and GEODATA DEM-9S ver3 digital elevation models over Australia. Australian Journal of Earth Sciences, 57(3), 337-347.
  • Hofmann-Wellenhof, B., Moritz, H., 2006. Physical Geodesy, Springer Verlag.
  • Kolecka, N., Kozak, J., 2014. Assessment of the accuracy of SRTM C-and X-Band high mountain elevation data: A case study of the Polish Tatra Mountains. Pure and Applied Geophysics, 171(6), 897-912.
  • Lemoine, F.G., Kenyon, S.C., Factor, J. K., Trimmer, R. G., Pavlis, N. K., Chinn, D. S., Cox, C. M., Klosko, S. M., Luthcke, S. B., Torrence, M. H., 1998. The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. Teknik Rapor, NASA/TP-1998-206861, Earth Resources And Remote Sensing, NASA Goddard Space Flight Center, 584p.
  • Luedeling, E., Siebert, S., Buerkert, A., 2007. Filling the voids in the SRTM elevation model—A TIN-based delta surface approach. ISPRS Journal of Photogrammetry and Remote Sensing, 62(4), 283-294.
  • Maune, D. F., Nayegandhi, A., 2019. Digital elevation model technologies and applications: the DEM users Manual 3rd Edition, ASPRS Publications.
  • Mouratidis, A., Briole, P., Katsambalos, K., 2010. SRTM 3 DEM (versions 1, 2, 3, 4) validation by means of extensive kinematic GPS measurements: a case study from North Greece. International Journal of Remote Sensing, 31(23), 6205-6222.
  • Mouratidis, A., Karadimou, G., Dimitrios, A., 2017. Extraction and Validation of Geomorphological Features from EU-DEM in the Vicinty of the Mygdonia Basin, Northern Greece. IOP Conf. Series: Earth and Environmental Science, 95, 032009, 2-9. doi :10.1088/1755-1315/95/3/032009
  • Mukherjee, S., Joshi, P.K., Mukherjee, S., Ghosh, A., Grag, R.D., Mukhopadhyay, A., 2013. Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). International Journal of Applied Earth Observation and Geoinformation, 21, 205-217.
  • Mukul, M., Srivastava, V., Mukul, M., 2015. Analysis of the accuracy of shuttle radar topography mission (SRTM) height models using international global navigation satellite system service (IGS) network. Journal of Earth System Science, 124(6), 1343-1357.
  • Mukul, M. S., Srivastava, V., Jade, S., Mukul, M., 2017. Uncertainties in the shuttle radar topography mission (SRTM) Heights: Insights from the indian Himalaya and Peninsula. Scientific Reports, 7, 41672.
  • Sümer, E. Ö., Gürçay, B., Pekesin, B. F., Avcı, K., Koruyucu, M., Dağlıyar, A., Teoman, A., Topçu, T., Özgüner, C., 2006. ASTER Uydu Verisi Uygulamaları: Türkiye'den Örnekler. Özel Yayın Serisi-5, Maden Tetkik Arama Genel Müdürlüğü, 70, Ankara. ISBN: 975-8964-41-0.
  • Tachikawa1, T., Kaku, M., Iwasaki, A., Gesch, D., Oimoen, M., Zhang, Z., Danielson, J., Krieger, T., Curtis, B., Haase, J., Abrams, M., Crippen, R., Carabajal, C., 2011. ASTER Global Digital Elevation Model Version 2 – Summary of Validation Results. U.S., NASA Land Processes Distributed Active Archive Center 25.
  • Varga, M., Bašić, T., 2013. Quality assessment and comparison of Global Digital Elevation Models on the territory of Republic of Croatia. Kartografija i geoinformacije (Cartography and Geoinformation), 12(20), 4-17.
  • Varga, M., Bašić, T., 2015. Accuracy validation and comparison of global digital elevation models over Croatia. International Journal of Remote Sensing, 36(1), 170-189.
  • Wechsler, S. P., 2003. Perceptions of digital elevation model uncertainty by DEM users. Urisa-Washington DC, 15(2), 57-64.
  • Yap, L., Kandé, L.H., Nouayou,R., Kamguia, J., Ngouh, N.A., Makuate M.B., 2019. Vertical accuracy evaluation of freely available latest high-resolution (30 m) global digital elevation models over Cameroon (Central Africa) with GPS/leveling ground control points. International Journal of Digital Earth, 12(5), 500-524.
  • Yılmaz A., Alp O., Okul A., Eker O., Erdoğan M., 2015. Türkiye için Hassas Yükseklik Modeli Üretimi. TUFUAB III. Teknik Sempozyumu Bildiriler Kitabı, 21-25 Mayıs, Konya, 294-301.
  • Yue, L., Shen, H., Zhang, L., Zheng, X., Zhang, F., Yuan, Q., 2017. High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations. ISPRS Journal of Photogrammetry and Remote Sensing, 123, 20-34.
  • İnternet kaynakları
  • 1- https://earthexplorer.usgs.gov/, (27.05.2020).
  • 2- https://idems.maps.arcgis.com/home/index.html, (28.05.2020).
  • 3- https://asterweb.jpl.nasa.gov/, (29.05.2020)
  • 4- https://www2.jpl.nasa.gov/srtm/, (29.05.2020)
  • 5- https://www.harita.gov.tr/anasayfa, (29.05.2020)
  • 6- https://www.dlr.de/eoc/en/desktopdefault.aspx/ tabid-5515/9214_read-17716/, (29.05.2020)
  • 7- https://www.nga.mil/About/History/NGAinHistory/ Pages/ SRTM.aspx, (29.05.2020)
  • 8- https://www2.jpl.nasa.gov/srtm/, (29.05.2020)
  • 9- http://srtm.csi.cgiar.org/srtmdata/, (29.05.2020)
  • 10- http://icgem.gfz-potsdam.de/, (29.05.2020)
  • 11- https://www.unoosa.org/pdf/icg/2012/template/ WGS_84.pdf, (29.05.2020)
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Bihter Erol 0000-0003-0854-788X

Mustafa Serkan Işık 0000-0003-1769-4451

Serdar Erol 0000-0002-7100-8267

Proje Numarası MGA-2018-41585
Yayımlanma Tarihi 25 Eylül 2020
Gönderilme Tarihi 1 Haziran 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Erol, B., Işık, M. S., & Erol, S. (2020). Global ve Bölgesel (Yüksek Çözünürlüklü) Sayısal Yükseklik Modellerinin Doğruluk Analizi Üzerine Bir İnceleme. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(4), 598-612. https://doi.org/10.35414/akufemubid.746252
AMA Erol B, Işık MS, Erol S. Global ve Bölgesel (Yüksek Çözünürlüklü) Sayısal Yükseklik Modellerinin Doğruluk Analizi Üzerine Bir İnceleme. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Eylül 2020;20(4):598-612. doi:10.35414/akufemubid.746252
Chicago Erol, Bihter, Mustafa Serkan Işık, ve Serdar Erol. “Global Ve Bölgesel (Yüksek Çözünürlüklü) Sayısal Yükseklik Modellerinin Doğruluk Analizi Üzerine Bir İnceleme”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, sy. 4 (Eylül 2020): 598-612. https://doi.org/10.35414/akufemubid.746252.
EndNote Erol B, Işık MS, Erol S (01 Eylül 2020) Global ve Bölgesel (Yüksek Çözünürlüklü) Sayısal Yükseklik Modellerinin Doğruluk Analizi Üzerine Bir İnceleme. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 4 598–612.
IEEE B. Erol, M. S. Işık, ve S. Erol, “Global ve Bölgesel (Yüksek Çözünürlüklü) Sayısal Yükseklik Modellerinin Doğruluk Analizi Üzerine Bir İnceleme”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 20, sy. 4, ss. 598–612, 2020, doi: 10.35414/akufemubid.746252.
ISNAD Erol, Bihter vd. “Global Ve Bölgesel (Yüksek Çözünürlüklü) Sayısal Yükseklik Modellerinin Doğruluk Analizi Üzerine Bir İnceleme”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/4 (Eylül 2020), 598-612. https://doi.org/10.35414/akufemubid.746252.
JAMA Erol B, Işık MS, Erol S. Global ve Bölgesel (Yüksek Çözünürlüklü) Sayısal Yükseklik Modellerinin Doğruluk Analizi Üzerine Bir İnceleme. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:598–612.
MLA Erol, Bihter vd. “Global Ve Bölgesel (Yüksek Çözünürlüklü) Sayısal Yükseklik Modellerinin Doğruluk Analizi Üzerine Bir İnceleme”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 20, sy. 4, 2020, ss. 598-12, doi:10.35414/akufemubid.746252.
Vancouver Erol B, Işık MS, Erol S. Global ve Bölgesel (Yüksek Çözünürlüklü) Sayısal Yükseklik Modellerinin Doğruluk Analizi Üzerine Bir İnceleme. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(4):598-612.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.