Araştırma Makalesi
BibTex RIS Kaynak Göster

Preparation of CS/PVA/PVP/GO Hybrid Composites and Determination of Optical Band Gap Energies

Yıl 2021, , 46 - 55, 24.02.2021
https://doi.org/10.35414/akufemubid.803444

Öz

Today, efforts to develop low-cost, advanced and environmentally friendly nano composite materials are increasing. The optical properties of these nano composite materials are critical for engineering as they can be controlled by changing the filler concentrations. In this study, Chitosan/Poly (vinyl alcohol)/Poly (vinyl pyrrolidone) (CS/PVA/PVP) composites containing different concentrations of graphene oxide (GO) were prepared by well-known solution mixing, ultrasonic mixing and spin coating techniques. The effect of varying GO concentrations in composites on optical properties was investigated. Optical band gap energies (Eg) of CS/PVA/PVP/GO composites were obtained and compared using Tauc and Absorbance Spectrum Fit (ASF) methods. In addition, changes in optical parameters such as band tail (Urbach) energy (Eu), refractive index (n), absorption (α) and extinction (k) coefficient were also investigated. The results show that CS/PVA/PVP/GO composites have promising applicability in ultraviolet protection, coating, photonic and optoelectronic devices.

Kaynakça

  • Aziz, S.B. 2016. Modifying Poly(Vinyl Alcohol) (PVA) from Insulator to Small-Bandgap Polymer: A Novel Approach for Organic Solar Cells and Optoelectronic Devices. Journal of Electronic Materials, 45, 736–745.
  • Bourakadi, K.E., Merghoub, N., Fardioui, M., Mekhzoum, M.E.M., Kadmiri, I.M., Essassi, E.M., Qaiss, A.E.K., Bouhfid, R. 2019. Chitosan/polyvinyl alcohol/thiabendazoluim-montmorillonite bio-nanocomposite films: Mechanical, morphological and antimicrobial properties. Composites Part B, 172, 103–110.
  • Dimitrov, V. and Sakka, S. 1996. Linear and nonlinear optical properties of simple oxides. II. Journal of Applied Physics, 79, 1741–1746.
  • Dolgonos, A., Mason T.O. and Poeppelmeier, K.R. 2016. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method. Journal of Solid State Chemistry, 240, 43–48.
  • Elsayed, N.M., Farag, O.F., Elghazaly, M.H. and Nasrallah, D.A. 2015. Investigation of the Effects of Fullerene addition and Plasma Exposure on Optical Properties of Polystyrene Films. IOSR Journal of Applied Physics, 7, 64–70.
  • Husain, M.S.B., Gupta, A., Alashwal, B.Y. and Sharma, S. 2018. Synthesis of PVA/PVP based hydrogel for biomedical applications: a review. Energy Sources, Part A: Recovery, Utilizaiıon, and Environmental Effects, 40, 2388–2393.
  • Mergen, Ö.B., Arda E. and Evingür, G.A. 2020. Electrical, optical and mechanical properties of chitosan biocomposites. Journal of Composite Materials, 54, 1497–1510.
  • Mergen, Ö.B. and Arda, E. 2020. Determination of Optical Band Gap Energies of CS/MWCNT Bio-nanocomposites by Tauc and ASF Methods. Synthetic Metals, 269, 116539.
  • Mergen, Ö.B., Arda E., Kara, S. and Pekcan, Ö. 2019. Effects of GNP Addition on Optical Properties and Band Gap Energies of PMMA Films. Polymer Composıtes, 40, 1862-1869.
  • Özkan, B.C., Soğancı, T., Turhan, H. and Ak, M. 2019. Investigation of rGO and chitosan effects on optical and electrical properties of the conductive polymers for advanced applications. Electrochimica Acta, 295, 1044–1051.
  • Saeedi, F., Montazeri, A., Bahari, Y., Pishvaei, M. and Jannat, B. 2020. Astudy on the viscoelastic behavior of chitosan-polyvinyl alcohol-graphene oxide nanocomposite films as a wound dressing. Polymers and Polymer Composites, https://doi.org/10.1177/0967391120962375
  • Salevitera, S., Fena, Y.W., Omara, N.A.S., Zainudinb, A.A. and Daniyal, W.M.E.M.M. 2018. Optical and structural characterization of immobilized 4-(2-pyridylazo) resorcinol in chitosan-graphene oxide composite thin film and its potential for Co2+ sensing using surface plasmon resonance technique. Results in Physics, 11, 118–122.
  • Souri, D. and Shomalian, K. 2009. Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60-x) V2O5–40TeO2–xSb2O3 glasses. Journal of Non-Crystalline Solids, 355, 1597–1601.
  • Tommalieh, M.J., Ibrahium, H.A., Awwad, N.S., Menazea, A.A. 2020. Gold nanoparticles doped Polyvinyl Alcohol/Chitosan blend via laser ablation for electrical conductivity enhancement. Journal of Molecular Structure, 1221, 128814.
  • Urbach, F. 1953. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review, 92, 1324.
  • Sophie, V., Gilles, R., Gwénaël, G., Michel, V. 2014. Influence of injection molding on the electrical properties of polyamide 12 filled with multi-walled carbon nanotubes. Polymer, 55, 6811-6818.
  • Zainudin, A.A., Fen, Y.W., Yusof, N.A. and Omar, N.A.S. 2017. Structural, optical and sensing properties of ionophore doped graphene based bionanocomposite thin film. Optik, 144, 308–315.

CS/PVA/PVP/GO Hibrit Kompozitlerin Hazırlanması ve Optik Bant Boşluğu Enerjilerinin Belirlenmesi

Yıl 2021, , 46 - 55, 24.02.2021
https://doi.org/10.35414/akufemubid.803444

Öz

Günümüzde düşük maliyetli, gelişmiş ve çevre dostu nano kompozit malzemeler geliştirme çabaları artmaktadır. Bu nano kompozit malzemelerin optik özellikleri, dolgu konsantrasyonları değiştirilerek kontrol edilebildikleri için mühendislik açısından kritik öneme sahiptir. Bu çalışmada, farklı konsantrasyonlarda grafen oksit (GO) içeren Kitosan/Poli (vinil alkol)/Poli (vinil pirolidon) (CS/PVA/PVP) kompozitler, iyi bilinen çözelti karıştırma, ultrasonik karıştırma ve döndürerek kaplama teknikleri ile hazırlandı. Kompozitlerdeki değişen GO konsantrasyonlarının optik özellikler üzerindeki etkisi araştırıldı. CS/PVA/PVP/GO kompozitlerin optik bant aralığı enerjileri (Eg) Tauc ve Soğurma Spektrumunu Fit Etme (ASF) yöntemleri kullanılarak elde edildi ve karşılaştırıldı. Ayrıca bant kuyruğu (Urbach) enerjisi (Eu), kırılma indisi (n), soğurma (α) ve sönüm (k) katsayısı gibi optik parametrelerdeki değişiklikler de araştırıldı. Sonuçlar, CS/PVA/PVP/GO kompozitlerin, ultraviyole koruma, kaplama, fotonik ve optoelektronik cihazlarda uygulanabilirliğinin umut verici olduğunu göstermektedir.

Kaynakça

  • Aziz, S.B. 2016. Modifying Poly(Vinyl Alcohol) (PVA) from Insulator to Small-Bandgap Polymer: A Novel Approach for Organic Solar Cells and Optoelectronic Devices. Journal of Electronic Materials, 45, 736–745.
  • Bourakadi, K.E., Merghoub, N., Fardioui, M., Mekhzoum, M.E.M., Kadmiri, I.M., Essassi, E.M., Qaiss, A.E.K., Bouhfid, R. 2019. Chitosan/polyvinyl alcohol/thiabendazoluim-montmorillonite bio-nanocomposite films: Mechanical, morphological and antimicrobial properties. Composites Part B, 172, 103–110.
  • Dimitrov, V. and Sakka, S. 1996. Linear and nonlinear optical properties of simple oxides. II. Journal of Applied Physics, 79, 1741–1746.
  • Dolgonos, A., Mason T.O. and Poeppelmeier, K.R. 2016. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method. Journal of Solid State Chemistry, 240, 43–48.
  • Elsayed, N.M., Farag, O.F., Elghazaly, M.H. and Nasrallah, D.A. 2015. Investigation of the Effects of Fullerene addition and Plasma Exposure on Optical Properties of Polystyrene Films. IOSR Journal of Applied Physics, 7, 64–70.
  • Husain, M.S.B., Gupta, A., Alashwal, B.Y. and Sharma, S. 2018. Synthesis of PVA/PVP based hydrogel for biomedical applications: a review. Energy Sources, Part A: Recovery, Utilizaiıon, and Environmental Effects, 40, 2388–2393.
  • Mergen, Ö.B., Arda E. and Evingür, G.A. 2020. Electrical, optical and mechanical properties of chitosan biocomposites. Journal of Composite Materials, 54, 1497–1510.
  • Mergen, Ö.B. and Arda, E. 2020. Determination of Optical Band Gap Energies of CS/MWCNT Bio-nanocomposites by Tauc and ASF Methods. Synthetic Metals, 269, 116539.
  • Mergen, Ö.B., Arda E., Kara, S. and Pekcan, Ö. 2019. Effects of GNP Addition on Optical Properties and Band Gap Energies of PMMA Films. Polymer Composıtes, 40, 1862-1869.
  • Özkan, B.C., Soğancı, T., Turhan, H. and Ak, M. 2019. Investigation of rGO and chitosan effects on optical and electrical properties of the conductive polymers for advanced applications. Electrochimica Acta, 295, 1044–1051.
  • Saeedi, F., Montazeri, A., Bahari, Y., Pishvaei, M. and Jannat, B. 2020. Astudy on the viscoelastic behavior of chitosan-polyvinyl alcohol-graphene oxide nanocomposite films as a wound dressing. Polymers and Polymer Composites, https://doi.org/10.1177/0967391120962375
  • Salevitera, S., Fena, Y.W., Omara, N.A.S., Zainudinb, A.A. and Daniyal, W.M.E.M.M. 2018. Optical and structural characterization of immobilized 4-(2-pyridylazo) resorcinol in chitosan-graphene oxide composite thin film and its potential for Co2+ sensing using surface plasmon resonance technique. Results in Physics, 11, 118–122.
  • Souri, D. and Shomalian, K. 2009. Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60-x) V2O5–40TeO2–xSb2O3 glasses. Journal of Non-Crystalline Solids, 355, 1597–1601.
  • Tommalieh, M.J., Ibrahium, H.A., Awwad, N.S., Menazea, A.A. 2020. Gold nanoparticles doped Polyvinyl Alcohol/Chitosan blend via laser ablation for electrical conductivity enhancement. Journal of Molecular Structure, 1221, 128814.
  • Urbach, F. 1953. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review, 92, 1324.
  • Sophie, V., Gilles, R., Gwénaël, G., Michel, V. 2014. Influence of injection molding on the electrical properties of polyamide 12 filled with multi-walled carbon nanotubes. Polymer, 55, 6811-6818.
  • Zainudin, A.A., Fen, Y.W., Yusof, N.A. and Omar, N.A.S. 2017. Structural, optical and sensing properties of ionophore doped graphene based bionanocomposite thin film. Optik, 144, 308–315.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ömer Bahadır Mergen 0000-0002-8829-436X

Yayımlanma Tarihi 24 Şubat 2021
Gönderilme Tarihi 1 Ekim 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Mergen, Ö. B. (2021). CS/PVA/PVP/GO Hibrit Kompozitlerin Hazırlanması ve Optik Bant Boşluğu Enerjilerinin Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(1), 46-55. https://doi.org/10.35414/akufemubid.803444
AMA Mergen ÖB. CS/PVA/PVP/GO Hibrit Kompozitlerin Hazırlanması ve Optik Bant Boşluğu Enerjilerinin Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Şubat 2021;21(1):46-55. doi:10.35414/akufemubid.803444
Chicago Mergen, Ömer Bahadır. “CS/PVA/PVP/GO Hibrit Kompozitlerin Hazırlanması Ve Optik Bant Boşluğu Enerjilerinin Belirlenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, sy. 1 (Şubat 2021): 46-55. https://doi.org/10.35414/akufemubid.803444.
EndNote Mergen ÖB (01 Şubat 2021) CS/PVA/PVP/GO Hibrit Kompozitlerin Hazırlanması ve Optik Bant Boşluğu Enerjilerinin Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 1 46–55.
IEEE Ö. B. Mergen, “CS/PVA/PVP/GO Hibrit Kompozitlerin Hazırlanması ve Optik Bant Boşluğu Enerjilerinin Belirlenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 1, ss. 46–55, 2021, doi: 10.35414/akufemubid.803444.
ISNAD Mergen, Ömer Bahadır. “CS/PVA/PVP/GO Hibrit Kompozitlerin Hazırlanması Ve Optik Bant Boşluğu Enerjilerinin Belirlenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/1 (Şubat 2021), 46-55. https://doi.org/10.35414/akufemubid.803444.
JAMA Mergen ÖB. CS/PVA/PVP/GO Hibrit Kompozitlerin Hazırlanması ve Optik Bant Boşluğu Enerjilerinin Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:46–55.
MLA Mergen, Ömer Bahadır. “CS/PVA/PVP/GO Hibrit Kompozitlerin Hazırlanması Ve Optik Bant Boşluğu Enerjilerinin Belirlenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 1, 2021, ss. 46-55, doi:10.35414/akufemubid.803444.
Vancouver Mergen ÖB. CS/PVA/PVP/GO Hibrit Kompozitlerin Hazırlanması ve Optik Bant Boşluğu Enerjilerinin Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(1):46-55.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.