Araştırma Makalesi
BibTex RIS Kaynak Göster

Relation Between Earthquake and the Troposphere: Chile Example

Yıl 2020, , 1014 - 1023, 31.12.2020
https://doi.org/10.35414/akufemubid.823640

Öz

In studies related to earthquakes, many ground and satellite-based techniques are used and subjects such as surface displacements, fault characteristics, stress transfers are investigated. In addition, earthquake warning systems are established and steps are taken all over the world about earthquake prediction. As an example, changes in the upper layer of the atmosphere (ionosphere), which is one of the important error sources for GNSS studies, are continuously examined before, during, and after the earthquakes. In this regard, the changes in the ionosphere before the earthquake have been frequently examined and anomalies have been found before some of the earthquakes. However, there is a limited number of studies on the changes in the lower layer of the atmosphere (troposphere), which causes less amount of error in GNSS measurements than the ionosphere. In this study, the changes in the troposphere following the 2010 Maule and 2015 Illapel earthquakes, using zenith tropospheric delays (ZTD) calculated from GNSS observations, were investigated. The results showed that the GNSS stations closest to the epicenter of the earthquakes experienced severe tropospheric anomalies during and after the mainshock. Further investigations carried out using atmospheric parameters before and after the earthquake, it was found that these changes in ZTD values were directly related to changes in atmospheric pressure. Finding similar results in two different earthquakes in Chile has revealed the importance of tropospheric parameters in studies related to earthquakes that affect the study area vertically as a result of fault rupture.

Kaynakça

  • Afraimovich, E., Feng, D., Kiryushkin, V., Astafyeva, E., Jin S. G., Sankov, V., 2010. TEC response to the 2008 Wenchuan earthquake in comparison with other strong earthquakes. International Journal of Remote Sensing, 31(13), 3601–3613.
  • Akhoondzadeh, M., Parrot, M., Saradjian, M. R., 2010a. Electron and ion density variations before strong earthquakes (M > 6.0) using DEMETER and GPS data. Natural Hazards and Earth System Sciences, 10, 7– 18.
  • Akhoondzadeh, M., Parrot, M., Saradjian, M. R., 2010b. Investigation of VLF and HF waves showing seismo-ionospheric anomalies induced by the 29 September 2009 Samoa earthquake (Mw = 8.1). Natural Hazards and Earth System Sciences, 10, 1061–1067.
  • Askne J., Nordius H., 1987. Estimation of tropospheric delay for microwaves from surface weather data. Radio Science, 22(3), 379–386.
  • Böhm, J., Werl, B., Schuh, H., 2006. Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data. Journal of Geophysical Research, 111(B02406), 1-9.
  • Castaños H., Lomnitz C., 2012. The 2010 Chile Earthquake. Earthquake Disasters in Latin America. Springer Briefs in Earth Sciences, Springer, Dordrecht, 47-53.
  • Chen, Y. I., Liu, J. Y., Tsai, Y. B., Chen, C. S., 2004. Statistical Tests for Preearthquake Ionospheric Anomaly. Terrestrial Atmospheric and Oceanic Sciences, 15 (3), 385–396.
  • Daneshvar, M. R. M., Freund, F. T., 2017. Remote sensing of atmospheric and ionospheric signals prior to the Mw 8.3 Illapel earthquake, Chile 2015. The Chile-2015 (Illapel) Earthquake and Tsunami, Birkhäuser, Cham, 157-191.
  • Davis J. L., Herring T. A., Shapiro I. I., Rogers A. E. E., Elgered G., 1985. Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Science, 20(6), 1593–1607.
  • Gurbuz, G., Jin, S. G., Mekik, C., 2015. Sensing precipitable water vapour (PWV) using GPS in Turkey: validation and variations. Satellite Positioning: Methods, Models and Applications, InTech-Publisher, Rijeka, Croatia, 117-129.
  • Gurbuz, G., Jin, S., 2017. GPS observations of tropospheric disturbances following the 2010 Mw 8.8 Chile earthquake. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 4718-4721.
  • Heidarzadeh, M., Murotani, S., Satake, K., Ishibe, T., Gusman, A. R., 2016. Source model of the 16 September 2015 Illapel, Chile, Mw 8.4 earthquake based on teleseismic and tsunami data. Geophysical Research Letters, 43(2), 643-650.
  • Herring, T. A., King, R. W., McClusky, S. C., 2010. Introduction to GAMIT/GLOBK 10.6. Massachusetts Institute of Technology, Cambridge, 0-50.
  • Ho, Y. Y., Jhuang, H. K., Su, Y. C., Liu, J. Y., 2013. Seismoionospheric anomalies in total electron content of the GIM and electron density of DEMETER before the 27 February 2010 M= 8.8 Chile earthquake. Advances in Space Research, 51(12), 2309–2315.
  • Jin, S. G., Li, Z., Cho, J., 2008a. Integrated Water Vapor Field and Multiscale Variations over China from GPS Measurements. Journal of Applied Meteorology and Climatology, 47(11), 3008–3015.
  • Jin, S. G., Luo, O. F., Gleason, S., 2008c. Characterization of diurnal cycles in ZTD from a decade of global GPS observations. Journal of Geodesy, 83(6), 537–545.
  • Jin, S. G., Han, L., Cho, J., 2011. Lower atmospheric anomalies following the 2008 Wenchuan Earthquake observed by GPS measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 73(7-8), 810–814.
  • Klein, E., Vigny, C., Fleitout, L., Grandin, R., Jolivet, R., Rivera, E., Métois, M., 2017. A comprehensive analysis of the Illapel 2015 Mw 8.3 earthquake from GPS and InSAR data. Earth and Planetary Science Letters, 469, 123-134.
  • Le, H., Liu, J. Y., Liu, L., 2011. A statistical analysis of ionospheric anomalies before 736 M6.0+ earthquakes during 2002-2010. Journal of Geophysical Research: Space Physics, 116(A2).
  • Liu, J. Y., Chen, Y. I., Pulinets, S. A., Tsai, Y. B., Chuo, Y. J., 2000. Seismo-ionospheric signatures prior to M≥6.0 Taiwan earthquakes. Geophysical Research Letters, 27(19), 3113–3116.
  • Liu, J. Y., Chen, Y. I., Chuo, Y. J., Tsai, H. F., 2001. Variations of ionospheric total electron content during the Chi-Chi Earthquake. Geophysical Research Letters, 28(7), 1383–1386.
  • Liu, J. Y., Chuo, Y. J., Shan, S. J., Tsai, Y. B., Chen, Y. I., Pulinets, S. A., Yu, S. B., 2004a. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Annales Geophysicae, 22(5), 1585–1593.
  • Liu, J. Y., Chen, Y.I., Jhuang, H.K., Lin, Y.H., 2004b. Ionospheric foF2 and TEC anomalous days associated with Mp 5.0 earthquakes in Taiwan during 1997–1999. Journal of Terrestrial, Atmospheric and Oceanic Sciences, 15(3), 371–383.
  • Liu, J. Y., Chen, Y. I., Chuo, Y. J., Chen, C. S., 2006. A statistical investigation of preearthquake ionospheric anomaly. Journal of Geophysical Research, 111(A5), 1–5.
  • Lyard, F., Lefevre, F., Letellier, T., Francis, O., 2006. Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics, 56(5-6), 394-415.
  • Oikonomou, C., Haralambous, H., Muslim, B. 2016. Investigation of ionospheric TEC precursors related to the M7. 8 Nepal and M8. 3 Chile earthquakes in 2015 based on spectral and statistical analysis. Natural Hazards, 83(1), 97-116.
  • Pisa, D., Parrot, M., Santolik, O., 2011. Ionospheric density variations recorded before the 2010 Mw 8.8 earthquake in Chile. Journal of Geophysical Research: Space Physics, 116(A8), 1–8.
  • Reddy, C. D., Shrivastava, M. N., González, G., Baez, J. C., 2017. Ionospheric plasma response to M w 8.3 Chile Illapel earthquake on September 16, 2015. The Chile-2015 (Illapel) Earthquake and Tsunami, Birkhäuser, Cham, 145-155.
  • Saastamoinen, J., 1972. Contributions to the theory of atmospheric refraction. Bulletin Géodésique (1946-1975), 105(1), 279-298.
  • Ye, L., Lay, T., Kanamori, H., Koper, K. D., 2017. Rapidly estimated seismic source parameters for the 16 September 2015 Illapel, Chile M w 8.3 earthquake. The Chile-2015 (Illapel) Earthquake and Tsunami, Birkhäuser, Cham, 11-22.
  • Zhang, Y., Zhang, G., Hetland, E. A., Shan, X., Wen, S., Zuo, R., 2017. Coseismic fault slip of the September 16, 2015 Mw 8.3 Illapel, Chile earthquake estimated from InSAR data. The Chile-2015 (Illapel) Earthquake and Tsunami, Birkhäuser, Cham, 73-82.
  • İnternet kaynakları 1-https://weatherspark.com/h/d/147252/2015/9/17/ Historical-Weather-on-Thursday-September-17-2015-at-La-Florida-Airport-Chile#Figures-Pressure, (05/11/2020)

Deprem ve Troposfer İlişkisi: Şili Örneği

Yıl 2020, , 1014 - 1023, 31.12.2020
https://doi.org/10.35414/akufemubid.823640

Öz

Depremler ile ilgili yapılan çalışmalarda yer ve uydu tabanlı birçok teknik kullanılmakta ve deplasman miktarları, fay karakteristikleri, gerilim aktarımları gibi konular araştırılmaktadır. Ayrıca, deprem uyarı sistemleri kurulmakta ve deprem tahmini konusunda tüm Dünya’da adımlar atılmaktadır. Örnek olarak; GNSS çalışmaları için önemli hata kaynaklarından biri olan atmosferin üst katmanındaki (iyonosfer) değişimler, deprem öncesi, deprem sırası ve deprem sonrası sürekli incelenmektedir. Ancak, GNSS ölçümlerinde oluşturduğu hata miktarı iyonosfere göre daha az olan atmosferin alt katmanındaki (troposfer) değişimler ile ilgili sınırlı sayıda çalışma bulunmaktadır. Bu çalışmada, 2010 Maule ve 2015 Illapel depremlerinin ardından troposferdeki değişimler, GNSS gözlemlerinden hesaplanan troposferik zenit gecikmeleri (Zenith Total Delay - ZTD) kullanılarak incelenmiştir. Sonuçlar, depremlerin merkez üssüne en yakın GNSS istasyonlarında, ana şok sırasında ve sonrasında ciddi troposferik anomaliler olduğunu göstermektedir. Deprem öncesi ve deprem sonrasındaki günlerde atmosferik parametreler incelendiğinde, ZTD değerlerindeki bu değişimlerin atmosferik basınçtaki değişimlerle doğrudan ilişkili olduğu tespit edilmiştir. Nazca tektonik plakasının Güney Amerika plakasının altına doğru hareketi sonucu oluşan fay kırılması, atmosferde ölçülen basınç değerlerinde değişime sebep olmuş ve dolayısı ile ZTD değişimlerini tetiklemiştir. Şili’de gerçekleşen iki farklı depremde de benzer sonuçlara rastlanması, fay kırılması sonucu çalışma bölgesini düşeyde etkileyen depremler ile ilgili yapılan çalışmalarda, troposferik parametrelerin incelenmesinin önemini ortaya çıkarmıştır.

Kaynakça

  • Afraimovich, E., Feng, D., Kiryushkin, V., Astafyeva, E., Jin S. G., Sankov, V., 2010. TEC response to the 2008 Wenchuan earthquake in comparison with other strong earthquakes. International Journal of Remote Sensing, 31(13), 3601–3613.
  • Akhoondzadeh, M., Parrot, M., Saradjian, M. R., 2010a. Electron and ion density variations before strong earthquakes (M > 6.0) using DEMETER and GPS data. Natural Hazards and Earth System Sciences, 10, 7– 18.
  • Akhoondzadeh, M., Parrot, M., Saradjian, M. R., 2010b. Investigation of VLF and HF waves showing seismo-ionospheric anomalies induced by the 29 September 2009 Samoa earthquake (Mw = 8.1). Natural Hazards and Earth System Sciences, 10, 1061–1067.
  • Askne J., Nordius H., 1987. Estimation of tropospheric delay for microwaves from surface weather data. Radio Science, 22(3), 379–386.
  • Böhm, J., Werl, B., Schuh, H., 2006. Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data. Journal of Geophysical Research, 111(B02406), 1-9.
  • Castaños H., Lomnitz C., 2012. The 2010 Chile Earthquake. Earthquake Disasters in Latin America. Springer Briefs in Earth Sciences, Springer, Dordrecht, 47-53.
  • Chen, Y. I., Liu, J. Y., Tsai, Y. B., Chen, C. S., 2004. Statistical Tests for Preearthquake Ionospheric Anomaly. Terrestrial Atmospheric and Oceanic Sciences, 15 (3), 385–396.
  • Daneshvar, M. R. M., Freund, F. T., 2017. Remote sensing of atmospheric and ionospheric signals prior to the Mw 8.3 Illapel earthquake, Chile 2015. The Chile-2015 (Illapel) Earthquake and Tsunami, Birkhäuser, Cham, 157-191.
  • Davis J. L., Herring T. A., Shapiro I. I., Rogers A. E. E., Elgered G., 1985. Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Science, 20(6), 1593–1607.
  • Gurbuz, G., Jin, S. G., Mekik, C., 2015. Sensing precipitable water vapour (PWV) using GPS in Turkey: validation and variations. Satellite Positioning: Methods, Models and Applications, InTech-Publisher, Rijeka, Croatia, 117-129.
  • Gurbuz, G., Jin, S., 2017. GPS observations of tropospheric disturbances following the 2010 Mw 8.8 Chile earthquake. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 4718-4721.
  • Heidarzadeh, M., Murotani, S., Satake, K., Ishibe, T., Gusman, A. R., 2016. Source model of the 16 September 2015 Illapel, Chile, Mw 8.4 earthquake based on teleseismic and tsunami data. Geophysical Research Letters, 43(2), 643-650.
  • Herring, T. A., King, R. W., McClusky, S. C., 2010. Introduction to GAMIT/GLOBK 10.6. Massachusetts Institute of Technology, Cambridge, 0-50.
  • Ho, Y. Y., Jhuang, H. K., Su, Y. C., Liu, J. Y., 2013. Seismoionospheric anomalies in total electron content of the GIM and electron density of DEMETER before the 27 February 2010 M= 8.8 Chile earthquake. Advances in Space Research, 51(12), 2309–2315.
  • Jin, S. G., Li, Z., Cho, J., 2008a. Integrated Water Vapor Field and Multiscale Variations over China from GPS Measurements. Journal of Applied Meteorology and Climatology, 47(11), 3008–3015.
  • Jin, S. G., Luo, O. F., Gleason, S., 2008c. Characterization of diurnal cycles in ZTD from a decade of global GPS observations. Journal of Geodesy, 83(6), 537–545.
  • Jin, S. G., Han, L., Cho, J., 2011. Lower atmospheric anomalies following the 2008 Wenchuan Earthquake observed by GPS measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 73(7-8), 810–814.
  • Klein, E., Vigny, C., Fleitout, L., Grandin, R., Jolivet, R., Rivera, E., Métois, M., 2017. A comprehensive analysis of the Illapel 2015 Mw 8.3 earthquake from GPS and InSAR data. Earth and Planetary Science Letters, 469, 123-134.
  • Le, H., Liu, J. Y., Liu, L., 2011. A statistical analysis of ionospheric anomalies before 736 M6.0+ earthquakes during 2002-2010. Journal of Geophysical Research: Space Physics, 116(A2).
  • Liu, J. Y., Chen, Y. I., Pulinets, S. A., Tsai, Y. B., Chuo, Y. J., 2000. Seismo-ionospheric signatures prior to M≥6.0 Taiwan earthquakes. Geophysical Research Letters, 27(19), 3113–3116.
  • Liu, J. Y., Chen, Y. I., Chuo, Y. J., Tsai, H. F., 2001. Variations of ionospheric total electron content during the Chi-Chi Earthquake. Geophysical Research Letters, 28(7), 1383–1386.
  • Liu, J. Y., Chuo, Y. J., Shan, S. J., Tsai, Y. B., Chen, Y. I., Pulinets, S. A., Yu, S. B., 2004a. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Annales Geophysicae, 22(5), 1585–1593.
  • Liu, J. Y., Chen, Y.I., Jhuang, H.K., Lin, Y.H., 2004b. Ionospheric foF2 and TEC anomalous days associated with Mp 5.0 earthquakes in Taiwan during 1997–1999. Journal of Terrestrial, Atmospheric and Oceanic Sciences, 15(3), 371–383.
  • Liu, J. Y., Chen, Y. I., Chuo, Y. J., Chen, C. S., 2006. A statistical investigation of preearthquake ionospheric anomaly. Journal of Geophysical Research, 111(A5), 1–5.
  • Lyard, F., Lefevre, F., Letellier, T., Francis, O., 2006. Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics, 56(5-6), 394-415.
  • Oikonomou, C., Haralambous, H., Muslim, B. 2016. Investigation of ionospheric TEC precursors related to the M7. 8 Nepal and M8. 3 Chile earthquakes in 2015 based on spectral and statistical analysis. Natural Hazards, 83(1), 97-116.
  • Pisa, D., Parrot, M., Santolik, O., 2011. Ionospheric density variations recorded before the 2010 Mw 8.8 earthquake in Chile. Journal of Geophysical Research: Space Physics, 116(A8), 1–8.
  • Reddy, C. D., Shrivastava, M. N., González, G., Baez, J. C., 2017. Ionospheric plasma response to M w 8.3 Chile Illapel earthquake on September 16, 2015. The Chile-2015 (Illapel) Earthquake and Tsunami, Birkhäuser, Cham, 145-155.
  • Saastamoinen, J., 1972. Contributions to the theory of atmospheric refraction. Bulletin Géodésique (1946-1975), 105(1), 279-298.
  • Ye, L., Lay, T., Kanamori, H., Koper, K. D., 2017. Rapidly estimated seismic source parameters for the 16 September 2015 Illapel, Chile M w 8.3 earthquake. The Chile-2015 (Illapel) Earthquake and Tsunami, Birkhäuser, Cham, 11-22.
  • Zhang, Y., Zhang, G., Hetland, E. A., Shan, X., Wen, S., Zuo, R., 2017. Coseismic fault slip of the September 16, 2015 Mw 8.3 Illapel, Chile earthquake estimated from InSAR data. The Chile-2015 (Illapel) Earthquake and Tsunami, Birkhäuser, Cham, 73-82.
  • İnternet kaynakları 1-https://weatherspark.com/h/d/147252/2015/9/17/ Historical-Weather-on-Thursday-September-17-2015-at-La-Florida-Airport-Chile#Figures-Pressure, (05/11/2020)
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gökhan Gürbüz 0000-0001-5491-4623

Kübra Koçyiğit Bu kişi benim 0000-0002-2805-0777

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 9 Kasım 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Gürbüz, G., & Koçyiğit, K. (2020). Deprem ve Troposfer İlişkisi: Şili Örneği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(6), 1014-1023. https://doi.org/10.35414/akufemubid.823640
AMA Gürbüz G, Koçyiğit K. Deprem ve Troposfer İlişkisi: Şili Örneği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Aralık 2020;20(6):1014-1023. doi:10.35414/akufemubid.823640
Chicago Gürbüz, Gökhan, ve Kübra Koçyiğit. “Deprem Ve Troposfer İlişkisi: Şili Örneği”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, sy. 6 (Aralık 2020): 1014-23. https://doi.org/10.35414/akufemubid.823640.
EndNote Gürbüz G, Koçyiğit K (01 Aralık 2020) Deprem ve Troposfer İlişkisi: Şili Örneği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 6 1014–1023.
IEEE G. Gürbüz ve K. Koçyiğit, “Deprem ve Troposfer İlişkisi: Şili Örneği”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 20, sy. 6, ss. 1014–1023, 2020, doi: 10.35414/akufemubid.823640.
ISNAD Gürbüz, Gökhan - Koçyiğit, Kübra. “Deprem Ve Troposfer İlişkisi: Şili Örneği”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/6 (Aralık 2020), 1014-1023. https://doi.org/10.35414/akufemubid.823640.
JAMA Gürbüz G, Koçyiğit K. Deprem ve Troposfer İlişkisi: Şili Örneği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:1014–1023.
MLA Gürbüz, Gökhan ve Kübra Koçyiğit. “Deprem Ve Troposfer İlişkisi: Şili Örneği”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 20, sy. 6, 2020, ss. 1014-23, doi:10.35414/akufemubid.823640.
Vancouver Gürbüz G, Koçyiğit K. Deprem ve Troposfer İlişkisi: Şili Örneği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(6):1014-23.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.