Araştırma Makalesi
BibTex RIS Kaynak Göster

Pamuk-Sentetik Bileşenli Lif Katkısı ve Genleştirme Ajanı Miktarlarının Otoklavsız Gazbetonun Teknik Özelliklerine Etkileri

Yıl 2021, , 1404 - 1423, 31.12.2021
https://doi.org/10.35414/akufemubid.933359

Öz

Gazbeton ürünlerde otoklavsız üretimin sağlanmasıyla otoklav sistemlerde kullanılan ısı ve basınç üretim enerjisinden kaçınılabilinmiştir. Bu makalede, endüstriyel atık lif katkı materyalinin 5 ayrı kullanım oranıyla hazırlanan otoklavsız gazbeton örneklerde genleştirici ajanın ağırlıkça %0,08, %0,12 ve %0,15 oranlarında ihtiva durumunun matris yapı üzerindeki etkileri detaylı incelenmiştir. Genleştirilerek üretilen ön kürlemeli otoklavsız gazbeton örneklerinde hava sürükleyici ajan olarak %99.9 saflık derecesine sahip, nano boyutta alüminyum tozu tercih edilmiştir. Endüstriyel atık lif niteliğinde değerlendirilen kot kumaş açma elyafı %70 pamuk, %30 sentetik içermektedir. Bu atık lif malzeme maksimum 2 mm olacak şekilde boyutlandırılmıştır. Bu çalışma kapsamında, özellikle harç içerisinde kullanılan ağırlıkça Al ihtiva oranının lif katkılı ya da lif katkısız otoklavsız ön kürlemeli gazbeton örneklerinde yarattığı etkiler incelenmektedir. Deney ve gözlemler ışığında lif kullanım durumu ve miktarlarına uygun olabilecek ağırlıkça Al ihtiva oranları mikroskobik yapısal analiz, birim hacim kütle, genleşme oranı, basınç dayanımı, kütlece su emme, görünür porozite, sismik hız, akustik empedans ve ısıl iletkenlik özellikleri ile endüstriyel bakış açısıyla yorumlanmıştır.

Destekleyen Kurum

İzmir Kâtip Çelebi Üniversitesi

Teşekkür

Sağladığı laboratuvar imkanlarından dolayı ...ne teşekkür ederiz.

Kaynakça

  • Bakhshi, M., Mobasher, B., 2011. Experimental observations of early-age drying of Portland cement paste under low-pressure conditions. Cement and Concrete Composites, 33(4), 474-484.
  • van Boggelen, D.R., 2011. Safe aluminium dosing in AAC plants. Aircrete Europe BV, Oldenzaal, The Netherlands, 45-50.
  • Bonakdar, A., Babbitt, F., Mobasher, B., 2013. Physical and mechanical characterization of fiber-reinforced aerated concrete (FRAC). Cement & Concrete Composites, 38, 82-91.
  • Chen, Y-L., Chang, J-E., Lai, Y-C., Chou, M-I. M., 2017. A comprehensive study on the production of autoclaved aerated concrete: Effects of silica-lime-cement composition and autoclaving conditions. Construction and Building Materials, 153, 622-629.
  • Geliş, K., Yeşildal, F., 2020. Klasik ve modern yapı elemanları kullanılması durumunda ısı iletim katsayısının değişimi ile minimum yalıtım kalınlığının tayini. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10 (4) , 869-877. DOI: 10.17714/gumusfenbil.725909
  • Kaushik, H.B., Rai, D.C., Jain, S.K., 2007. Stress-strain characteristics of clay brick masonry under uniaxial compression. Journal of Materials in Civil Engineering, 19, 728-739.
  • Laukaitis, A., Fiks, B., 2006. Acoustical properties of aerated autoclaved concrete. Applied Acoustics, 67(3), 284-296.
  • Laurent, J.P., Guerre-Chaley, C., 1995. Influence of water content and temperature on the thermal conductivity of autoclaved aerated concrete. Materials and Structures, 28(182), 464-472.
  • Mobasher, B., Li, C.Y., 1996. Mechanical properties of hybrid cement-based composites. Materials Journal, 93(3), 284–292.
  • Neville, A.M. and Brooks, J.J., 2010. Concrete technology, second edition, Prentice Hall, Pearson Education, 1-464.
  • Perez-Pena, M., Mobasher, B., 1994. Mechanical properties of fiber reinforced lightweight concrete composites. Cement and Concrete Research, 24(6), 1121-1132.
  • Qian, C.X., Stroeven, P., 2000. Development of hybrid polypropylene-steel fibre-reinforced concrete. Cement and Concrete Research, 30(1), 63-69.
  • Rasheed, M.A., Prakash, S.S., 2015. Mechanical behavior of sustainable hybrid-synthetic fiber reinforced cellular light weight concrete for structural applications of masonry. Construction and Building Materials, 98, 631-640.
  • Rasheed, M.A., Prakash, S.S., 2017. Behavior of hybrid-synthetic fiber reinforced cellular lightweight concrete under uni-axial tension - experimental and analytical 20 studies. Construction and Building Materials, 162, 857-870.
  • Ronald, F., Carol, D.H., 1998. Engineering material properties of a fiber reinforced cellular concrete. Materials Journal, 95(5), 631-635.
  • Sanytsky M.A., Sobol, H. S., Markiv, T. E., 2010. Modified composite cements: A tutorial/ M.A. Sanytsky, H.S. Sobol, T.E. Markiv. – Lviv: Lviv Polytechnic Publishing House, 1-132.
  • Siram, K.K.B., 2012. Cellular light-weight concrete blocks as a replacement of burnt clay bricks. International Journal of Engineering and Advanced Technology (IJEAT), 2(2), 149-151.
  • Slaby, A.A., Aziz, K.I., Hadeed, A.F., 2008. Mechanical properties of porcelinite reinforced concrete beams. Iraqi Journal of Civil Engineering, 10, 1-24.
  • Spratt, B.H., 1975. An introduction to lightweight concrete, fifth edition, Cement and Concrete Association, 1-28.
  • Sukmana, N.C., Khifdillah, M.I., Nurkholil, A.S., Anggarini, U., 2019. Optimization of non-autoclaved aerated concrete using phosphogypsum of industrial waste based on the taguchi method. 13th Joint Conference on Chemistry (13th JCC) IOP Conf. Series: Materials Science and Engineering, 509, 012095.
  • Suriyaprakash, S., Hameed, M., 2018. Review study on foam concrete. International Journal of Advanced Research in Basic Engineering Sciences and Technology, 4(12), 1-6.
  • Tanacan L., Ersoy H., Arpacıpğlu, U., 2009. Effect of high temperature and cooling conditions on aerated concrete proerties. Construction and Building Materials, 23(3), 1240-1248.
  • Vijayalakshmi, R., Ramanagopal, S., 2020a. Compression behaviour of polypropylene fibre reinforced cellular light weight concrete masonry prism. Civil And Environmental Engineering Reports, 30(1), 145-160.
  • Vijayalakshmi, R., Ramanagopal, S., 2020b. Experimental investigation into banana fibre reinforced lightweight concrete masonry prism sandwiched with GFRP sheet. Civil and Environmental Engineering Reports, 30(2), 15-31.
  • Wittmann, F.H., 1983. Autoclaved aerated concrete, moisture and properties, developments in civil engineering, vol. 6, Elsevier, Amsterdam, 1-380.
  • Xia, Y., Yan, Y., Hu, Z., 2013. Utilization of circulating fluidized bed fly ash in preparing non-autoclaved aerated concrete production. Construction and Building Materials, 47, 1461-1467.
  • Yuan, B., Straub, C., Segers, S., Yu, Q.L., Brouwers, H.J. H., 2017. Sodium carbonate activated slag as cement replacement in autoclaved aerated concrete. Ceramics International, 43(8), 6039-6047.

The Effects of Cotton-Synthetic Component Fiber Additive and Expansion Agent Amounts on the Technical Properties of Non-Autoclaved Aerated Concrete

Yıl 2021, , 1404 - 1423, 31.12.2021
https://doi.org/10.35414/akufemubid.933359

Öz

By ensuring non-autoclaved production in aerated concrete products, heat and pressure generation energy used in autoclave systems could be avoided. In this article, the effects of 0.08%, 0.12% and 0.15% by weight of the expansion agent on the matrix structure in non-autoclaved aerated concrete samples prepared with 5 different usage rates of industrial waste fiber additive material were examined in detail. Aluminum powder of nano size with 99.9% purity was preferred as air-entraining agent in pre-cured non-autoclaved aerated concrete samples produced by expanding. Denim fabric opening fiber, which is considered as industrial waste fiber, contains 70% cotton and 30% synthetic. This waste fiber material has been sized to a maximum of 2 mm. In this study, especially the effects of Al content by weight used in mortar on pre-cured aerated concrete samples with or without fiber added, are investigated. In the light of experiments and observations, Al content ratios that can be suitable for fiber usage conditions and quantities were interpreted from an industrial point of view with microscopic structural analysis, unit volume mass, expansion rate, compressive strength, water absorption by mass, apparent porosity, seismic velocity, acoustic impedance and thermal conductivity properties.

Kaynakça

  • Bakhshi, M., Mobasher, B., 2011. Experimental observations of early-age drying of Portland cement paste under low-pressure conditions. Cement and Concrete Composites, 33(4), 474-484.
  • van Boggelen, D.R., 2011. Safe aluminium dosing in AAC plants. Aircrete Europe BV, Oldenzaal, The Netherlands, 45-50.
  • Bonakdar, A., Babbitt, F., Mobasher, B., 2013. Physical and mechanical characterization of fiber-reinforced aerated concrete (FRAC). Cement & Concrete Composites, 38, 82-91.
  • Chen, Y-L., Chang, J-E., Lai, Y-C., Chou, M-I. M., 2017. A comprehensive study on the production of autoclaved aerated concrete: Effects of silica-lime-cement composition and autoclaving conditions. Construction and Building Materials, 153, 622-629.
  • Geliş, K., Yeşildal, F., 2020. Klasik ve modern yapı elemanları kullanılması durumunda ısı iletim katsayısının değişimi ile minimum yalıtım kalınlığının tayini. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10 (4) , 869-877. DOI: 10.17714/gumusfenbil.725909
  • Kaushik, H.B., Rai, D.C., Jain, S.K., 2007. Stress-strain characteristics of clay brick masonry under uniaxial compression. Journal of Materials in Civil Engineering, 19, 728-739.
  • Laukaitis, A., Fiks, B., 2006. Acoustical properties of aerated autoclaved concrete. Applied Acoustics, 67(3), 284-296.
  • Laurent, J.P., Guerre-Chaley, C., 1995. Influence of water content and temperature on the thermal conductivity of autoclaved aerated concrete. Materials and Structures, 28(182), 464-472.
  • Mobasher, B., Li, C.Y., 1996. Mechanical properties of hybrid cement-based composites. Materials Journal, 93(3), 284–292.
  • Neville, A.M. and Brooks, J.J., 2010. Concrete technology, second edition, Prentice Hall, Pearson Education, 1-464.
  • Perez-Pena, M., Mobasher, B., 1994. Mechanical properties of fiber reinforced lightweight concrete composites. Cement and Concrete Research, 24(6), 1121-1132.
  • Qian, C.X., Stroeven, P., 2000. Development of hybrid polypropylene-steel fibre-reinforced concrete. Cement and Concrete Research, 30(1), 63-69.
  • Rasheed, M.A., Prakash, S.S., 2015. Mechanical behavior of sustainable hybrid-synthetic fiber reinforced cellular light weight concrete for structural applications of masonry. Construction and Building Materials, 98, 631-640.
  • Rasheed, M.A., Prakash, S.S., 2017. Behavior of hybrid-synthetic fiber reinforced cellular lightweight concrete under uni-axial tension - experimental and analytical 20 studies. Construction and Building Materials, 162, 857-870.
  • Ronald, F., Carol, D.H., 1998. Engineering material properties of a fiber reinforced cellular concrete. Materials Journal, 95(5), 631-635.
  • Sanytsky M.A., Sobol, H. S., Markiv, T. E., 2010. Modified composite cements: A tutorial/ M.A. Sanytsky, H.S. Sobol, T.E. Markiv. – Lviv: Lviv Polytechnic Publishing House, 1-132.
  • Siram, K.K.B., 2012. Cellular light-weight concrete blocks as a replacement of burnt clay bricks. International Journal of Engineering and Advanced Technology (IJEAT), 2(2), 149-151.
  • Slaby, A.A., Aziz, K.I., Hadeed, A.F., 2008. Mechanical properties of porcelinite reinforced concrete beams. Iraqi Journal of Civil Engineering, 10, 1-24.
  • Spratt, B.H., 1975. An introduction to lightweight concrete, fifth edition, Cement and Concrete Association, 1-28.
  • Sukmana, N.C., Khifdillah, M.I., Nurkholil, A.S., Anggarini, U., 2019. Optimization of non-autoclaved aerated concrete using phosphogypsum of industrial waste based on the taguchi method. 13th Joint Conference on Chemistry (13th JCC) IOP Conf. Series: Materials Science and Engineering, 509, 012095.
  • Suriyaprakash, S., Hameed, M., 2018. Review study on foam concrete. International Journal of Advanced Research in Basic Engineering Sciences and Technology, 4(12), 1-6.
  • Tanacan L., Ersoy H., Arpacıpğlu, U., 2009. Effect of high temperature and cooling conditions on aerated concrete proerties. Construction and Building Materials, 23(3), 1240-1248.
  • Vijayalakshmi, R., Ramanagopal, S., 2020a. Compression behaviour of polypropylene fibre reinforced cellular light weight concrete masonry prism. Civil And Environmental Engineering Reports, 30(1), 145-160.
  • Vijayalakshmi, R., Ramanagopal, S., 2020b. Experimental investigation into banana fibre reinforced lightweight concrete masonry prism sandwiched with GFRP sheet. Civil and Environmental Engineering Reports, 30(2), 15-31.
  • Wittmann, F.H., 1983. Autoclaved aerated concrete, moisture and properties, developments in civil engineering, vol. 6, Elsevier, Amsterdam, 1-380.
  • Xia, Y., Yan, Y., Hu, Z., 2013. Utilization of circulating fluidized bed fly ash in preparing non-autoclaved aerated concrete production. Construction and Building Materials, 47, 1461-1467.
  • Yuan, B., Straub, C., Segers, S., Yu, Q.L., Brouwers, H.J. H., 2017. Sodium carbonate activated slag as cement replacement in autoclaved aerated concrete. Ceramics International, 43(8), 6039-6047.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Makaleler
Yazarlar

Şeyma Pınar Özcan 0000-0002-1395-196X

Lütfullah Gündüz 0000-0003-2487-467X

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 6 Mayıs 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Özcan, Ş. P., & Gündüz, L. (2021). Pamuk-Sentetik Bileşenli Lif Katkısı ve Genleştirme Ajanı Miktarlarının Otoklavsız Gazbetonun Teknik Özelliklerine Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(6), 1404-1423. https://doi.org/10.35414/akufemubid.933359
AMA Özcan ŞP, Gündüz L. Pamuk-Sentetik Bileşenli Lif Katkısı ve Genleştirme Ajanı Miktarlarının Otoklavsız Gazbetonun Teknik Özelliklerine Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Aralık 2021;21(6):1404-1423. doi:10.35414/akufemubid.933359
Chicago Özcan, Şeyma Pınar, ve Lütfullah Gündüz. “Pamuk-Sentetik Bileşenli Lif Katkısı Ve Genleştirme Ajanı Miktarlarının Otoklavsız Gazbetonun Teknik Özelliklerine Etkileri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, sy. 6 (Aralık 2021): 1404-23. https://doi.org/10.35414/akufemubid.933359.
EndNote Özcan ŞP, Gündüz L (01 Aralık 2021) Pamuk-Sentetik Bileşenli Lif Katkısı ve Genleştirme Ajanı Miktarlarının Otoklavsız Gazbetonun Teknik Özelliklerine Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 6 1404–1423.
IEEE Ş. P. Özcan ve L. Gündüz, “Pamuk-Sentetik Bileşenli Lif Katkısı ve Genleştirme Ajanı Miktarlarının Otoklavsız Gazbetonun Teknik Özelliklerine Etkileri”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 6, ss. 1404–1423, 2021, doi: 10.35414/akufemubid.933359.
ISNAD Özcan, Şeyma Pınar - Gündüz, Lütfullah. “Pamuk-Sentetik Bileşenli Lif Katkısı Ve Genleştirme Ajanı Miktarlarının Otoklavsız Gazbetonun Teknik Özelliklerine Etkileri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/6 (Aralık 2021), 1404-1423. https://doi.org/10.35414/akufemubid.933359.
JAMA Özcan ŞP, Gündüz L. Pamuk-Sentetik Bileşenli Lif Katkısı ve Genleştirme Ajanı Miktarlarının Otoklavsız Gazbetonun Teknik Özelliklerine Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:1404–1423.
MLA Özcan, Şeyma Pınar ve Lütfullah Gündüz. “Pamuk-Sentetik Bileşenli Lif Katkısı Ve Genleştirme Ajanı Miktarlarının Otoklavsız Gazbetonun Teknik Özelliklerine Etkileri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 6, 2021, ss. 1404-23, doi:10.35414/akufemubid.933359.
Vancouver Özcan ŞP, Gündüz L. Pamuk-Sentetik Bileşenli Lif Katkısı ve Genleştirme Ajanı Miktarlarının Otoklavsız Gazbetonun Teknik Özelliklerine Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(6):1404-23.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.