Araştırma Makalesi
BibTex RIS Kaynak Göster

Active Tectonics of Gülbahçe Fault Zone (GBFZ) by Using Geomorphic Indices, İzmir Province, Western Anatolia, Turkey

Yıl 2021, , 1195 - 1209, 31.10.2021
https://doi.org/10.35414/akufemubid.946298

Öz

The Gülbahçe Fault Zone is a dextral strike-slip fault that extends for ~24 km on land and ~46 km under the sea, which consists of the significant southernmost active segments of İzmir Balıkesir Transfer Zone. In this study, the active tectonic behaviour of the Gulbahçe Fault Zone was evaluated by using of morphometric analysis of geomorphic indices. 30 sub-basins identified using ArcGIS ®10.5 (ESRI). All sub-basins were calculated by using mountain-front sinuosity (Smf), valley-floor width to valley height ratio (Vf), basin asymmetry factor (Af), basin shape indice (Bs), drainage density (Dd), and hypsometric integral (Hi) values. The obtained mean results of values are to define each sub-basin's relative tectonic activity (Iat). The Smf, Vf, Af, Bs, Dd, and Hi values range from 1.05 to 1.33; from 0.21 to 4.09; from 25 to 77; from 1.03 and 3.06; from 0.28 to 0.67, respectively. All the results were gathered under three classes, which sign high tectonics activity (Class 1), moderately active tectonic (Class 2), and low tectonics activity (Class 3). The results show that relative active tectonics indice value (Iat) was obtained between 1.33 and 2.33, indicating very high to moderately tectonic activity.

Destekleyen Kurum

TUBITAK (The Scientific and Technological Research Council of Turkey

Proje Numarası

117Y190

Teşekkür

Pınar Gırca from The University of Southern Queensland

Kaynakça

  • Aktuğ, B. and Kılıçoğlu, A., 2006. Recent crustal deformation of İzmir, Western Anatolia and surrounding regions as deduced from repeated GPS measurements and strain field. Journal of Geodynamics, 41, 471-484.
  • Aktuğ, B., Nocquet, J. M., Cingöz, A., Parsons, B., Erkan, Y., England, P., ... and Tekgül, A., 2009. Deformation of western Turkey from a combination of permanent and campaign GPS data: Limits to block‐like behavior. Journal of Geophysical Research: Solid Earth, 114(B10). https://doi.org/10.1029/2008JB006000
  • Aktuğ, B., Ozener, H., Dogru, A., Sabuncu, A., Turgut, B., Halicioglu, K., ... and Havazli, E., 2016. Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field. Journal of Geodynamics, 94, 1-12. https://doi.org/10.1016/j.jog.2016.01.001
  • Baize, S., Audin, L., Winter, T., Alvarado, A., Moreno, L.P., Taipe, M., Reyes, P., Kauffmann, P., and Yepes, H., 2015. Paleoseismology and tectonic geomorphology of the Pallatanga fault (Central Ecuador), a major structure of the South-American crust. Geomorphology, 237, 14-28 https://doi.org/10.1016/j.geomorph.2014.02.030
  • Bull, W.B., 1977a. Tectonic geomorphology of the Mojave Desert, California. U.S. Geological Survey Contract Report 14-0-001-G-394. Office of Earthquakes, Volcanoes, and Engineering, Menlo Park, California, 188.
  • Bull, W.B. and McFadden, L.D., 1977. Tectonic geomorphology north and south of the Garlock fault, California. In: Doehring, D.O. (Ed.), Geomorphology in Arid Regions. Proceedings of the Eighth Annual Geomorphology Symposium. The State University of New York, Binghamton, NY, 115–138.
  • Bull, W.B., 2007. Tectonic geomorphology of mountains: a new approach to Paleoseismology. Oxford: Wiley, 328.
  • Burbank, D.W. and Anderson, R.S., 2001. Tectonic geomorphology. Oxford: Blackwell Science, 247.
  • Baharvand, S., Pardhan, B. and Soori, S., 2020. Evaluation of active tectonics using geomorphic indices in a mountainous basin of Iran. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 111(2), 109-117. https://doi.org/10.1017/S1755691020000031
  • Bozkurt, E. and Sözbilir, H., 2006. Evolution of the large-scale active Manisa Fault, southwest Turkey: implications on fault development and regional tectonics. Geodin. Acta 19, 427–453 https://doi.org/10.3166/ga.19.427-453
  • Cannon, P.J., 1976. Generation of explicit parameters for a quantitative geomorphic study of Mill Creek drainage basin. Oklahoma Geology Notes 36 (1), 3–16.
  • Cowgill, E., 2007. Impact of riser reconstructions on the estimation of secular variation in rates of strike-slip faulting: revisiting the Cherchen River site along the Altyn Tagh Fault, NW China. Earth and Planetary Science Letters 254, 239–255. doi:10.1016/j.epsl.2006.09.015
  • Cowgill, E., Gold, R.D., Chen, X.H., Wang, X.F., Arrowsmith, J.R., Southon, J., 2009. Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet. Geology 37, 647–650.
  • Crupa, W.E., Khan, S.D., Huang J., Khan, A.S. and Kasi, A., 2017. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System. Journal of Asian Earth Sciences, 147, 452-468. https://doi.org/10.1016/j.jseaes.2017.08.006
  • Dehbozorgi, M., Pourkermani, M., Arian, M., Matkan, A.A., Motamedi, H. and Hosseiniasl, A., 2010. Quantitative analysis of the relative tectonic activity in the Sarvestan area, central Zagros, Iran. Geomorphology 121, 329–341.
  • El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J., Keller, E.A., 2007. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 96, 150–173.
  • Emre, Ö. and Barka, A. 2000. Gediz grabeni-Ege Denizi arasının (İzmir yöresi) aktif fayları. Batı Anadolu’nun Depremselliği Sempozyumu, (BADSEM2000), Bildiriler Kitabı, İzmir, 131-132. (in Turkish).
  • Emre, Ö., Özalp, S., Doğan, A., Özaksoy, V., Yıldırım, C. and Göktaş, F., 2005. İzmir ve yakın çevresinin diri fayları ve deprem potansiyelleri, Jeoloji Etütleri Dairesi, Rapor No:10754. 86 . (in Turkish)
  • Emre, Ö., Duman., T.Y., Özalp, S., Olgun Ş, Elmacı, H., Şaroğlu, F., Çan, T., 2016. Active fault database of Turkey. Bull Earthq Eng. https://doi.org/10.1007/s10518-016-0041-2
  • Erkül, F., Helvacı, C. and Sözbilir, H., 2005. Evidence for two episodes of volcanism in the Bigadiç borate basin and tectonic implications for western Turkey. Geological Journal, 40, 1-16.
  • Eyubagil, E. E., Solak, H. İ., Kavak, U. S., Tiryakioğlu, İ., Sözbilir, H., Aktuğ, B. and Özkaymak, Ç., 2021. Present-day strike-slip deformation within the southern part of the İzmir-Balıkesir Transfer Zone based on GNSS data and implications for seismic hazard assessment in western Anatolia. Turkish Journal of Earth Sciences, 30(2).
  • Faghih, A. and Nourbakhsh, A., 2015. Appraisal of relative tectonic activity along the Kazerun Fault Zone, Zagros Mountains, Iran: insight from spatial analysis of geomorphic indices. Geological Journal, 50(6), 783-798.
  • Faghih, A., Nezamzadeh, I. and Kusky, T. M., 2016. Geomorphometric evidence of an active pop-up structure along the sabzpushan fault zone, Zagros mountains, SW Iran. Journal of Earth Science, 27(6), 945-954.
  • Fu, B., Awata, Y., Du, J., He, W., 2005. Late Quaternary systematic stream offsets caused by repeated large seismic events along the Kunlun fault, northern Tibet. Geomorphology. 71, 278–292.
  • Fu, B. and Awata, Y., 2007. Displacement and timing of left-lateral faulting in the Kunlun Fault Zone, northern Tibet, inferred from geologic and geomorphic features. Journal of Asian Earth Sciences. 29, 253–265.
  • Göktaş, F., 2014. Karaburun Yarımadası kuzey kıyı kesiminin Neojen stratigrafisi. 79 Maden Tetkik ve Arama Dergisi. 148, 43-61 (in Turkish).
  • Gregory, K. J. and Walling, D. E., 1973. Drainage basin form and process. Edward Arnold, London.
  • Hare, P.W. and Gardner, T.W., 1985. Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. In: Morisawa, M., Hack, J.T. (Eds.), Tectonic Geomorphology. Proceedings of the 15th Annual Binghamton Geomorphology Symposium. Allen and Unwin, Boston, 123–134.
  • Horton, R.E., 1932. Drainage basin characteristics. Trans. Am. Geophys. Union, 13: 350-361
  • İnci, U., Sözbilir, H., Erkül, F. and Sümer, Ö., 2003. The cause of the earthquakes between the Urla and Balıkesir is a fossil fault. Cumhuriyet Newspaper Science Technic Journal, 848, 6-7 (in Turkish)
  • Kaya, O., 1979. Ortadoğu Ege çöküntüsünün (Neojen) stratigrafisi ve tektoniği, Türkiye Jeoloji Kurultayı Bülteni, 22, 233-274 (in Turkish)
  • Kaya, O., Ünay, E., Göktaş, F. and Saraç, G., 2007. Early Miocene stratigraphy of Central West Anatolia, Turkey: implications for the tectonic evolution of the Eastern Aegean area. Geological Journal 42, 85–109.
  • Keller, E. A. and Pinter, N., 1996. Active tectonic, Earthquickes, Uplift and Landscape". Prentice Hall P. 362.
  • Keller, E.A. and Pinter, N., 2002. Active Tectonics: Earthquakes, Uplift, and Landscape, 2. Prentice Hall, Upper Saddle River, N.J, 362. Keller, E. A. and DeVecchio, D. E., 2013. Tectonic geomorphology of active folding and development of transverse drainages. In Treatise on Geomorphology, 129-147. Elsevier Inc.
  • Khalifa, A., Çakır, Z., Owen, L.A and Kaya, Ş., 2018. Morphotectonic analysis of the East Anatolian Fault, Turkey. Turkish Journal of Earth Sciences, 27. http:/doi:110-126, doi:10.3906/yer-1707-16.
  • Mahmood, S.A. and Gloaguen, R., 2012. Appraisal of Active Tectonics in Hindu Kush: Insights From DEM Derived Geomorphic Indices and Drainage analysis. Geoscience Frontiers, 3 (4), 407 – 428.
  • McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., ... and Kastens, K., 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research: Solid Earth, 105(B3), 5695-5719.
  • Marinos, P. and Hoek, E., 2000. GSI: a geologically friendly tool for rock mass strength estimation. In ISRM international symposium. International Society for Rock Mechanics and Rock Engineering.
  • Nugroho, S.K., Gibson, N.P., de Mooij, E.J., Herman, M.K., Watson, C.A., Kawahara, H. and Merritt, S.R., 2020. Detection of Fe i Emission in the Dayside Spectrum of WASP-33b. The Astrophysical Journal Letters, 898(2), L31.
  • Nyst, M., and Thatcher, W., 2004. New constraints on the active tectonic deformation of the Aegean. Journal of Geophysical Research: Solid Earth, 109(B11).
  • Ocakoğlu, N., Demirbağ, E. and Kuşçu, İ., 2005. Neotectonic structures in İzmir Gulf and surrounding regions (western Turkey): Evidences of strike-slip faulting with compression in the Aegean extensional regime. Marine Geology, 219, 155–171.
  • Omidali, M., Arian, M., and Sorbi, A. , 2015. Neotectonics of Boroujerd Area, SW Iran by Index of Active Tectonics. Open Journal of Geology, 5(05), 309.
  • Owen, A. W., Armstrong, H. A. and Floyd, J. D., 1999. Rare earth element geochemistry of upper Ordovician cherts from the Southern Uplands of Scotland. Journal of the Geological Society, 156(1), 191-204.
  • Özkaymak, Ç. and Sözbilir, H., 2008. Stratigraphic and structural evidence for fault reactivation: the active Manisa fault zone, western Anatolia. Turkish Journal of Earth Sciences, 17, 615–635. Özkaymak, Ç. and Sözbilir H., 2012. Tectonic geomorphology of the Spildağı high ranges, Western Anatolia. Geomorphology, 173, 128-140.
  • Özkaymak, Ç., 2014. Tectonic analysis of the Honaz Fault (western Anatolia) using geomorphic indices and the regional implications. Geodinamica Acta, 27(2-3), 110-129.
  • Özsayın, E., 2016. Relative tectonic activity assessment of the Çameli Basin, Western Anatolia, using geomorphic indices. Geodinamica Acta, 28(4), 241-253.
  • Papazachos, B.C. and Papazachou, C.B., 1997. The earthquakes of Greece. Ziti Publishing, 304.
  • Patton, P.C., 1988. Drainage basinmorphometry and floods. In: Baker VR, KochelRC, Patton PC (ed.) Flood geomorphology, 51–65.
  • Pike, R.J. and Wilson, S.E., 1971. Elevation Relief Ratio, Hypsometric Integral and Geomorphic Areaaltitude Analysis. Geological Society of America Bulletin, 62, 1079 – 1084.
  • Ramírez-Herrera, M.T., 1998. Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surface Processes Landforms, 23, 317–332.
  • Rana, N., Singh, S., Sundriyal, Y. P., Rawat, G. S., and Juyal, N., 2016. Interpreting the geomorphometric indices for neotectonic implications: An example of Alaknanda valley, Garhwal Himalaya, India. Journal of Earth System Science, 125(4), 841-854.
  • Reilinger, R. E., Mcclusky, S. C., Oral, M. B., King, W. and Toksöz, M. N., 1997. Global positioning system measurements of present crustal movements in the Arabia- Africa-Eurasia plate collision zone. J.Geophys. Res., 102, 9983-9999.
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., ... and Nadariya, M., 2006. GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5).
  • Ring, U., Susanne, L. and Matthias, B., 1999. Structural analysis of a complex nappe sequence and late orogenic basins from the Aegean Island of Samos, Greece. Journal of Structural Geology, 21, 1575–1601.
  • Rockwell, T.K., Keller, E.A. and Johnson, D.L., 1984. Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California. In: Morisawa, M. (Ed.), Tectonic Geomorphology. Proceedings of the 15th Annual Geomorphology Symposium. Allen and Unwin Publishers, Boston, MA, 183–207.
  • Saber, R., Çağlayan A. and Işık V., 2018. Relative tectonic activity assessment and kinematic analysis of the North Bozgush fault zone, NW Iran. Journal of Asian Earth Sciences, 164, 219-236.
  • Sağlam, S.,A. and Düzgün, M., 2017. Başkale fay zonunun tektonik jeomorfolojisi, Maden Tetkik ve Arama Dergisi , 155, 33-47 (in Turkish).
  • Selim, H.,H., Tüysüz, O., Karakaş, A. and Taş, K.Ü., 2013. Morphotectonic Evidence from The Southern Branch of The North Anatolian Fault (NAF) and Basins of The South Marmara Sub-Region, NW Turkey. Quaternary International, 292, 176 – 192.
  • Silva, P.G., Goy, J.L., Zazo, C. and Bardají, T., 2003. Fault-generated mountain fronts in southeast Spain: geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50, 203–225.
  • Softa, M., Emre, T., Sözbilir, H., Spencer, J. Q., and Turan, M., 2018. Geomorphic evidence for active tectonic deformation in the coastal part of Eastern Black Sea, Eastern Pontides, Turkey. Geodinamica Acta, 30(1), 249-264.
  • Sözbilir, H., Erkül, F. and Sümer, Ö., 2003a. Gümüldür (İzmir) ve Bigadiç (Balıkesir) arasında uzanan Miyosen sonrası yaşlı KD-Doğrultulu accommodation zonuna ait saha verileri, Batı Anadolu [Field evidence for post-Miocene NE-trending accomodation zone lying between Gümüldür (İzmir) and Bigadiç (Balıkesir), west Anatolia]. Geological Congress of Turkey, Ankara, Abstracts, 85–86.
  • Sözbilir, H., Sümer, Ö., Uzel, B., Ersoy, Y., Erkul, F., İnci, U. and Helvacı, C., 2005. İzmir’deki Deprem Dizilerinin Nedeni: faylardaki çiçek yapısı. Cumhuriyet Bilim Teknik Dergisi Deprem Araştırmaları, 976, 18-19. (in Turkish)
  • Sözbilir, H., Sümer, Ö., Uzel, B., Özkaymak, Ç., Ersoy, Y. Erkül, F., İncİ, U. and Helvacı, C., 2007. Batı Anadolu’da İzmir-Balıkesir transfer zonu içinde kalan aktif doğrultu-atımlı faylarla sınırlı havzaların jeolojik özellikleri [Geological features of basins bordered by active strike-slip faults that located in the İzmir- Balıkesir transfer zone, western Anatolia]. 11th Meeting of Active Tectonics Research Group, Abstracts, 42 (in Turkish).
  • Sözbilir, H., Sümer, Ö., Uzel, B., Ersoy, Y., Erkül, F., İnci, U., Helvacı, C. and Özkaymak, Ç., 2009. 17-20 Ekim 2005 Sığacık Körfezi (İzmir) depremlerinin sismik jeomorfolojisi ve bölgedeki gerilme alanları ile ilişkisi, Batı Anadolu. Türkiye Jeoloji Bülteni, 52 (2), 217-238. (in Turkish).
  • Sözbilir, H., Sarı, B., Uzel, B., Sümer, Ö. and Akkiraz, S., 2011. Tectonic implications of transtensional supradetachment basin development in an extension-parallel transfer zone: the Kocaçay Basin, Western Anatolia, Turkey. Basin Research, 23, 423–448, doi: 10.1111/j.1365-2117.2010.00496.x.
  • Strahler, A.N., 1952b. Hypsometric (area-altitude) Analysis of Erosional Topography. Geological Society of America Bulletin, 63, 1117 – 1141.
  • Strahler, A. N., 1964. Part II. Quantitative geomorphology of drainage basins and channel networks. Handbook of Applied Hydrology: McGraw-Hill, New York, 4-39.
  • Taxeidis, K., 2003. Study of historical seismicity of the Eastern Aegean Islands. PhD, University of Athens, Greece, 301 (in Greek).
  • Tarboton, D.G., Bras, R.L., and Rodriguez-Iturbe, I., 1991. On the extraction of channel networks from digital elevation data: Hydrological Processes, 5, 81-100.
  • Utlu, M., and Özdemir, H., 2018. The Role of Basin Morphometric Features in Flood Output: A Case Study of the Biga River Basin. J. Geog. 36, 49– 62. https://doi.org/10.26650/JGEOG408101
  • Uzel, B. and Sözbilir, H., 2008. A first record of a strike-slip basin in Western Anatolia and its tectonic implication: The Cumaovası Basin. Turkish Journal of Earth Sciences, 17, 559–591.
  • Uzel, B., Sözbilir, H., Özkaymak, Ç., Kaymakci, N., Langereis, C.G., 2013. Structural evidence for strike-slip deformation in the İzmir–Balıkesir Transfer Zone and consequences for late Cenozoic evolution of western Anatolia (Turkey). Journal Geodynamics, 65, 94–116.
  • Uzun, M., 2019. Evaluation of fluvial processes and formation of drainage network with morphometric indices in Dilderesi Basin (Kocaeli). International Journal of Geography and Geography Education (IGGE), 40, 454-477.
  • Walker, F. and Allen M.B., 2012. Offset rivers, drainage spacing and the record of strike-slip faulting: The Kuh Banan Fault, Iran. Tectonophysics. 530-531, 251-263.
  • Wells, S. G., Bullard, T. F., Menges, C. M., Drake, P. G., Karas, P. A. and Kelson, K. I., 1988. Regional variations in tectonic geomorphology along a segmented convergent plate boundary, Pacific coast of Costa Rica. Geomorphology, 1, 239–265.
  • Yazıcı, M., Zabcı, C., Sancar, T. and Natalin, B. A., 2018. The role of intraplate strike-slip faults in shaping the surrounding morphology: The Ovacık Fault (eastern Turkey) as a case study. Geomorphology, 321, 129-145.
  • Yıldırım, C., 2014. Relative tectonic activity assessment of the Tuz Gölü fault zone; Central Anatolia, Turkey. Tectonophysics, 630, 183–192.
  • Internet References 1-http:// www.yerbilimleri.mta.gov.tr (07.05.2021)

Jeomorfik İndis kullanarak Gülbahçe Fay Zonu’ nun (GBFZ) Aktif Tektonik Değerlendirmesi, İzmir, Batı Anadolu, Türkiye

Yıl 2021, , 1195 - 1209, 31.10.2021
https://doi.org/10.35414/akufemubid.946298

Öz

Karadaki uzunluğu ~24 km denizdeki uzunluğu ~46 km olan ve sağ yanal ötelenmeli doğrultu atımlı fay karakterindeki Gülbahçe Fay Zonu, İzmir-Balıkesir Transfer Zonu’ nun güney kısmında yer alan en önemli faylarından biridir. Gülbahçe Fay Zonu’nun aktif tektonik davranışını değerlendirmek için drenaj havzaları ve dağ önlerindeki jeomorfolojik indislerin morfometrik analizleri gerçekleştirilmiştir. ArcGIS ®10.5 (ESRI) kullanılarak belirlenen 30 alt havzanın, dağ önü sinüslük indisi (Smf), vadi tabanı genişliği vadi yüksekliği oranı (Vf), havza asimetri faktörü (Af), havza şekil indisi (Bs), drenaj yoğunluğu (Dd) ve hipsometrik integral (Hi) değerleri belirlenmiş ve bu değerlerin ortalamaları alınarak her bir alt havzanın göreceli tektonik aktivitesi (Iat) tanımlanmıştır. Smf değeri 1,05 ile 1,33, Vf değeri 0,21 ile 4,09, Af değerlerinin 25 ile 77; Bs değerlerinin 1,03 ile 3,06 , Dd değerlerinin 0,84 ile 3,49 ve Hi değerlerinin 0,28 ile 0,67 aralığında olduğu belirlenmiştir. Tüm veriler, yüksek tektonik aktivite (Sınıf 1), orta derecede aktif tektonik (Sınıf 2) ve düşük tektonik aktivite (Sınıf 3) olmak üzere üç sınıfta ayrılarak incelenmiştir. Elde edilen sonuçlar, Gülbahçe Fay Zonu’ nun göreceli aktif tektonik indis değerinin (Iat) sırasıyla çok yüksek ile orta derecede tektonik aktiviteyi gösteren 1,33 ile 2,33 aralığında olduğunu gösterir.

Proje Numarası

117Y190

Kaynakça

  • Aktuğ, B. and Kılıçoğlu, A., 2006. Recent crustal deformation of İzmir, Western Anatolia and surrounding regions as deduced from repeated GPS measurements and strain field. Journal of Geodynamics, 41, 471-484.
  • Aktuğ, B., Nocquet, J. M., Cingöz, A., Parsons, B., Erkan, Y., England, P., ... and Tekgül, A., 2009. Deformation of western Turkey from a combination of permanent and campaign GPS data: Limits to block‐like behavior. Journal of Geophysical Research: Solid Earth, 114(B10). https://doi.org/10.1029/2008JB006000
  • Aktuğ, B., Ozener, H., Dogru, A., Sabuncu, A., Turgut, B., Halicioglu, K., ... and Havazli, E., 2016. Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field. Journal of Geodynamics, 94, 1-12. https://doi.org/10.1016/j.jog.2016.01.001
  • Baize, S., Audin, L., Winter, T., Alvarado, A., Moreno, L.P., Taipe, M., Reyes, P., Kauffmann, P., and Yepes, H., 2015. Paleoseismology and tectonic geomorphology of the Pallatanga fault (Central Ecuador), a major structure of the South-American crust. Geomorphology, 237, 14-28 https://doi.org/10.1016/j.geomorph.2014.02.030
  • Bull, W.B., 1977a. Tectonic geomorphology of the Mojave Desert, California. U.S. Geological Survey Contract Report 14-0-001-G-394. Office of Earthquakes, Volcanoes, and Engineering, Menlo Park, California, 188.
  • Bull, W.B. and McFadden, L.D., 1977. Tectonic geomorphology north and south of the Garlock fault, California. In: Doehring, D.O. (Ed.), Geomorphology in Arid Regions. Proceedings of the Eighth Annual Geomorphology Symposium. The State University of New York, Binghamton, NY, 115–138.
  • Bull, W.B., 2007. Tectonic geomorphology of mountains: a new approach to Paleoseismology. Oxford: Wiley, 328.
  • Burbank, D.W. and Anderson, R.S., 2001. Tectonic geomorphology. Oxford: Blackwell Science, 247.
  • Baharvand, S., Pardhan, B. and Soori, S., 2020. Evaluation of active tectonics using geomorphic indices in a mountainous basin of Iran. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 111(2), 109-117. https://doi.org/10.1017/S1755691020000031
  • Bozkurt, E. and Sözbilir, H., 2006. Evolution of the large-scale active Manisa Fault, southwest Turkey: implications on fault development and regional tectonics. Geodin. Acta 19, 427–453 https://doi.org/10.3166/ga.19.427-453
  • Cannon, P.J., 1976. Generation of explicit parameters for a quantitative geomorphic study of Mill Creek drainage basin. Oklahoma Geology Notes 36 (1), 3–16.
  • Cowgill, E., 2007. Impact of riser reconstructions on the estimation of secular variation in rates of strike-slip faulting: revisiting the Cherchen River site along the Altyn Tagh Fault, NW China. Earth and Planetary Science Letters 254, 239–255. doi:10.1016/j.epsl.2006.09.015
  • Cowgill, E., Gold, R.D., Chen, X.H., Wang, X.F., Arrowsmith, J.R., Southon, J., 2009. Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet. Geology 37, 647–650.
  • Crupa, W.E., Khan, S.D., Huang J., Khan, A.S. and Kasi, A., 2017. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System. Journal of Asian Earth Sciences, 147, 452-468. https://doi.org/10.1016/j.jseaes.2017.08.006
  • Dehbozorgi, M., Pourkermani, M., Arian, M., Matkan, A.A., Motamedi, H. and Hosseiniasl, A., 2010. Quantitative analysis of the relative tectonic activity in the Sarvestan area, central Zagros, Iran. Geomorphology 121, 329–341.
  • El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J., Keller, E.A., 2007. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 96, 150–173.
  • Emre, Ö. and Barka, A. 2000. Gediz grabeni-Ege Denizi arasının (İzmir yöresi) aktif fayları. Batı Anadolu’nun Depremselliği Sempozyumu, (BADSEM2000), Bildiriler Kitabı, İzmir, 131-132. (in Turkish).
  • Emre, Ö., Özalp, S., Doğan, A., Özaksoy, V., Yıldırım, C. and Göktaş, F., 2005. İzmir ve yakın çevresinin diri fayları ve deprem potansiyelleri, Jeoloji Etütleri Dairesi, Rapor No:10754. 86 . (in Turkish)
  • Emre, Ö., Duman., T.Y., Özalp, S., Olgun Ş, Elmacı, H., Şaroğlu, F., Çan, T., 2016. Active fault database of Turkey. Bull Earthq Eng. https://doi.org/10.1007/s10518-016-0041-2
  • Erkül, F., Helvacı, C. and Sözbilir, H., 2005. Evidence for two episodes of volcanism in the Bigadiç borate basin and tectonic implications for western Turkey. Geological Journal, 40, 1-16.
  • Eyubagil, E. E., Solak, H. İ., Kavak, U. S., Tiryakioğlu, İ., Sözbilir, H., Aktuğ, B. and Özkaymak, Ç., 2021. Present-day strike-slip deformation within the southern part of the İzmir-Balıkesir Transfer Zone based on GNSS data and implications for seismic hazard assessment in western Anatolia. Turkish Journal of Earth Sciences, 30(2).
  • Faghih, A. and Nourbakhsh, A., 2015. Appraisal of relative tectonic activity along the Kazerun Fault Zone, Zagros Mountains, Iran: insight from spatial analysis of geomorphic indices. Geological Journal, 50(6), 783-798.
  • Faghih, A., Nezamzadeh, I. and Kusky, T. M., 2016. Geomorphometric evidence of an active pop-up structure along the sabzpushan fault zone, Zagros mountains, SW Iran. Journal of Earth Science, 27(6), 945-954.
  • Fu, B., Awata, Y., Du, J., He, W., 2005. Late Quaternary systematic stream offsets caused by repeated large seismic events along the Kunlun fault, northern Tibet. Geomorphology. 71, 278–292.
  • Fu, B. and Awata, Y., 2007. Displacement and timing of left-lateral faulting in the Kunlun Fault Zone, northern Tibet, inferred from geologic and geomorphic features. Journal of Asian Earth Sciences. 29, 253–265.
  • Göktaş, F., 2014. Karaburun Yarımadası kuzey kıyı kesiminin Neojen stratigrafisi. 79 Maden Tetkik ve Arama Dergisi. 148, 43-61 (in Turkish).
  • Gregory, K. J. and Walling, D. E., 1973. Drainage basin form and process. Edward Arnold, London.
  • Hare, P.W. and Gardner, T.W., 1985. Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. In: Morisawa, M., Hack, J.T. (Eds.), Tectonic Geomorphology. Proceedings of the 15th Annual Binghamton Geomorphology Symposium. Allen and Unwin, Boston, 123–134.
  • Horton, R.E., 1932. Drainage basin characteristics. Trans. Am. Geophys. Union, 13: 350-361
  • İnci, U., Sözbilir, H., Erkül, F. and Sümer, Ö., 2003. The cause of the earthquakes between the Urla and Balıkesir is a fossil fault. Cumhuriyet Newspaper Science Technic Journal, 848, 6-7 (in Turkish)
  • Kaya, O., 1979. Ortadoğu Ege çöküntüsünün (Neojen) stratigrafisi ve tektoniği, Türkiye Jeoloji Kurultayı Bülteni, 22, 233-274 (in Turkish)
  • Kaya, O., Ünay, E., Göktaş, F. and Saraç, G., 2007. Early Miocene stratigraphy of Central West Anatolia, Turkey: implications for the tectonic evolution of the Eastern Aegean area. Geological Journal 42, 85–109.
  • Keller, E. A. and Pinter, N., 1996. Active tectonic, Earthquickes, Uplift and Landscape". Prentice Hall P. 362.
  • Keller, E.A. and Pinter, N., 2002. Active Tectonics: Earthquakes, Uplift, and Landscape, 2. Prentice Hall, Upper Saddle River, N.J, 362. Keller, E. A. and DeVecchio, D. E., 2013. Tectonic geomorphology of active folding and development of transverse drainages. In Treatise on Geomorphology, 129-147. Elsevier Inc.
  • Khalifa, A., Çakır, Z., Owen, L.A and Kaya, Ş., 2018. Morphotectonic analysis of the East Anatolian Fault, Turkey. Turkish Journal of Earth Sciences, 27. http:/doi:110-126, doi:10.3906/yer-1707-16.
  • Mahmood, S.A. and Gloaguen, R., 2012. Appraisal of Active Tectonics in Hindu Kush: Insights From DEM Derived Geomorphic Indices and Drainage analysis. Geoscience Frontiers, 3 (4), 407 – 428.
  • McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., ... and Kastens, K., 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research: Solid Earth, 105(B3), 5695-5719.
  • Marinos, P. and Hoek, E., 2000. GSI: a geologically friendly tool for rock mass strength estimation. In ISRM international symposium. International Society for Rock Mechanics and Rock Engineering.
  • Nugroho, S.K., Gibson, N.P., de Mooij, E.J., Herman, M.K., Watson, C.A., Kawahara, H. and Merritt, S.R., 2020. Detection of Fe i Emission in the Dayside Spectrum of WASP-33b. The Astrophysical Journal Letters, 898(2), L31.
  • Nyst, M., and Thatcher, W., 2004. New constraints on the active tectonic deformation of the Aegean. Journal of Geophysical Research: Solid Earth, 109(B11).
  • Ocakoğlu, N., Demirbağ, E. and Kuşçu, İ., 2005. Neotectonic structures in İzmir Gulf and surrounding regions (western Turkey): Evidences of strike-slip faulting with compression in the Aegean extensional regime. Marine Geology, 219, 155–171.
  • Omidali, M., Arian, M., and Sorbi, A. , 2015. Neotectonics of Boroujerd Area, SW Iran by Index of Active Tectonics. Open Journal of Geology, 5(05), 309.
  • Owen, A. W., Armstrong, H. A. and Floyd, J. D., 1999. Rare earth element geochemistry of upper Ordovician cherts from the Southern Uplands of Scotland. Journal of the Geological Society, 156(1), 191-204.
  • Özkaymak, Ç. and Sözbilir, H., 2008. Stratigraphic and structural evidence for fault reactivation: the active Manisa fault zone, western Anatolia. Turkish Journal of Earth Sciences, 17, 615–635. Özkaymak, Ç. and Sözbilir H., 2012. Tectonic geomorphology of the Spildağı high ranges, Western Anatolia. Geomorphology, 173, 128-140.
  • Özkaymak, Ç., 2014. Tectonic analysis of the Honaz Fault (western Anatolia) using geomorphic indices and the regional implications. Geodinamica Acta, 27(2-3), 110-129.
  • Özsayın, E., 2016. Relative tectonic activity assessment of the Çameli Basin, Western Anatolia, using geomorphic indices. Geodinamica Acta, 28(4), 241-253.
  • Papazachos, B.C. and Papazachou, C.B., 1997. The earthquakes of Greece. Ziti Publishing, 304.
  • Patton, P.C., 1988. Drainage basinmorphometry and floods. In: Baker VR, KochelRC, Patton PC (ed.) Flood geomorphology, 51–65.
  • Pike, R.J. and Wilson, S.E., 1971. Elevation Relief Ratio, Hypsometric Integral and Geomorphic Areaaltitude Analysis. Geological Society of America Bulletin, 62, 1079 – 1084.
  • Ramírez-Herrera, M.T., 1998. Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surface Processes Landforms, 23, 317–332.
  • Rana, N., Singh, S., Sundriyal, Y. P., Rawat, G. S., and Juyal, N., 2016. Interpreting the geomorphometric indices for neotectonic implications: An example of Alaknanda valley, Garhwal Himalaya, India. Journal of Earth System Science, 125(4), 841-854.
  • Reilinger, R. E., Mcclusky, S. C., Oral, M. B., King, W. and Toksöz, M. N., 1997. Global positioning system measurements of present crustal movements in the Arabia- Africa-Eurasia plate collision zone. J.Geophys. Res., 102, 9983-9999.
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., ... and Nadariya, M., 2006. GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5).
  • Ring, U., Susanne, L. and Matthias, B., 1999. Structural analysis of a complex nappe sequence and late orogenic basins from the Aegean Island of Samos, Greece. Journal of Structural Geology, 21, 1575–1601.
  • Rockwell, T.K., Keller, E.A. and Johnson, D.L., 1984. Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California. In: Morisawa, M. (Ed.), Tectonic Geomorphology. Proceedings of the 15th Annual Geomorphology Symposium. Allen and Unwin Publishers, Boston, MA, 183–207.
  • Saber, R., Çağlayan A. and Işık V., 2018. Relative tectonic activity assessment and kinematic analysis of the North Bozgush fault zone, NW Iran. Journal of Asian Earth Sciences, 164, 219-236.
  • Sağlam, S.,A. and Düzgün, M., 2017. Başkale fay zonunun tektonik jeomorfolojisi, Maden Tetkik ve Arama Dergisi , 155, 33-47 (in Turkish).
  • Selim, H.,H., Tüysüz, O., Karakaş, A. and Taş, K.Ü., 2013. Morphotectonic Evidence from The Southern Branch of The North Anatolian Fault (NAF) and Basins of The South Marmara Sub-Region, NW Turkey. Quaternary International, 292, 176 – 192.
  • Silva, P.G., Goy, J.L., Zazo, C. and Bardají, T., 2003. Fault-generated mountain fronts in southeast Spain: geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50, 203–225.
  • Softa, M., Emre, T., Sözbilir, H., Spencer, J. Q., and Turan, M., 2018. Geomorphic evidence for active tectonic deformation in the coastal part of Eastern Black Sea, Eastern Pontides, Turkey. Geodinamica Acta, 30(1), 249-264.
  • Sözbilir, H., Erkül, F. and Sümer, Ö., 2003a. Gümüldür (İzmir) ve Bigadiç (Balıkesir) arasında uzanan Miyosen sonrası yaşlı KD-Doğrultulu accommodation zonuna ait saha verileri, Batı Anadolu [Field evidence for post-Miocene NE-trending accomodation zone lying between Gümüldür (İzmir) and Bigadiç (Balıkesir), west Anatolia]. Geological Congress of Turkey, Ankara, Abstracts, 85–86.
  • Sözbilir, H., Sümer, Ö., Uzel, B., Ersoy, Y., Erkul, F., İnci, U. and Helvacı, C., 2005. İzmir’deki Deprem Dizilerinin Nedeni: faylardaki çiçek yapısı. Cumhuriyet Bilim Teknik Dergisi Deprem Araştırmaları, 976, 18-19. (in Turkish)
  • Sözbilir, H., Sümer, Ö., Uzel, B., Özkaymak, Ç., Ersoy, Y. Erkül, F., İncİ, U. and Helvacı, C., 2007. Batı Anadolu’da İzmir-Balıkesir transfer zonu içinde kalan aktif doğrultu-atımlı faylarla sınırlı havzaların jeolojik özellikleri [Geological features of basins bordered by active strike-slip faults that located in the İzmir- Balıkesir transfer zone, western Anatolia]. 11th Meeting of Active Tectonics Research Group, Abstracts, 42 (in Turkish).
  • Sözbilir, H., Sümer, Ö., Uzel, B., Ersoy, Y., Erkül, F., İnci, U., Helvacı, C. and Özkaymak, Ç., 2009. 17-20 Ekim 2005 Sığacık Körfezi (İzmir) depremlerinin sismik jeomorfolojisi ve bölgedeki gerilme alanları ile ilişkisi, Batı Anadolu. Türkiye Jeoloji Bülteni, 52 (2), 217-238. (in Turkish).
  • Sözbilir, H., Sarı, B., Uzel, B., Sümer, Ö. and Akkiraz, S., 2011. Tectonic implications of transtensional supradetachment basin development in an extension-parallel transfer zone: the Kocaçay Basin, Western Anatolia, Turkey. Basin Research, 23, 423–448, doi: 10.1111/j.1365-2117.2010.00496.x.
  • Strahler, A.N., 1952b. Hypsometric (area-altitude) Analysis of Erosional Topography. Geological Society of America Bulletin, 63, 1117 – 1141.
  • Strahler, A. N., 1964. Part II. Quantitative geomorphology of drainage basins and channel networks. Handbook of Applied Hydrology: McGraw-Hill, New York, 4-39.
  • Taxeidis, K., 2003. Study of historical seismicity of the Eastern Aegean Islands. PhD, University of Athens, Greece, 301 (in Greek).
  • Tarboton, D.G., Bras, R.L., and Rodriguez-Iturbe, I., 1991. On the extraction of channel networks from digital elevation data: Hydrological Processes, 5, 81-100.
  • Utlu, M., and Özdemir, H., 2018. The Role of Basin Morphometric Features in Flood Output: A Case Study of the Biga River Basin. J. Geog. 36, 49– 62. https://doi.org/10.26650/JGEOG408101
  • Uzel, B. and Sözbilir, H., 2008. A first record of a strike-slip basin in Western Anatolia and its tectonic implication: The Cumaovası Basin. Turkish Journal of Earth Sciences, 17, 559–591.
  • Uzel, B., Sözbilir, H., Özkaymak, Ç., Kaymakci, N., Langereis, C.G., 2013. Structural evidence for strike-slip deformation in the İzmir–Balıkesir Transfer Zone and consequences for late Cenozoic evolution of western Anatolia (Turkey). Journal Geodynamics, 65, 94–116.
  • Uzun, M., 2019. Evaluation of fluvial processes and formation of drainage network with morphometric indices in Dilderesi Basin (Kocaeli). International Journal of Geography and Geography Education (IGGE), 40, 454-477.
  • Walker, F. and Allen M.B., 2012. Offset rivers, drainage spacing and the record of strike-slip faulting: The Kuh Banan Fault, Iran. Tectonophysics. 530-531, 251-263.
  • Wells, S. G., Bullard, T. F., Menges, C. M., Drake, P. G., Karas, P. A. and Kelson, K. I., 1988. Regional variations in tectonic geomorphology along a segmented convergent plate boundary, Pacific coast of Costa Rica. Geomorphology, 1, 239–265.
  • Yazıcı, M., Zabcı, C., Sancar, T. and Natalin, B. A., 2018. The role of intraplate strike-slip faults in shaping the surrounding morphology: The Ovacık Fault (eastern Turkey) as a case study. Geomorphology, 321, 129-145.
  • Yıldırım, C., 2014. Relative tectonic activity assessment of the Tuz Gölü fault zone; Central Anatolia, Turkey. Tectonophysics, 630, 183–192.
  • Internet References 1-http:// www.yerbilimleri.mta.gov.tr (07.05.2021)
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Berna Geçkin 0000-0002-7804-2265

Hasan Sözbilir 0000-0002-3777-4830

Çağlar Özkaymak 0000-0002-0377-1324

Mustafa Softa 0000-0001-5064-9260

Proje Numarası 117Y190
Yayımlanma Tarihi 31 Ekim 2021
Gönderilme Tarihi 1 Haziran 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Geçkin, B., Sözbilir, H., Özkaymak, Ç., Softa, M. (2021). Active Tectonics of Gülbahçe Fault Zone (GBFZ) by Using Geomorphic Indices, İzmir Province, Western Anatolia, Turkey. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(5), 1195-1209. https://doi.org/10.35414/akufemubid.946298
AMA Geçkin B, Sözbilir H, Özkaymak Ç, Softa M. Active Tectonics of Gülbahçe Fault Zone (GBFZ) by Using Geomorphic Indices, İzmir Province, Western Anatolia, Turkey. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ekim 2021;21(5):1195-1209. doi:10.35414/akufemubid.946298
Chicago Geçkin, Berna, Hasan Sözbilir, Çağlar Özkaymak, ve Mustafa Softa. “Active Tectonics of Gülbahçe Fault Zone (GBFZ) by Using Geomorphic Indices, İzmir Province, Western Anatolia, Turkey”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, sy. 5 (Ekim 2021): 1195-1209. https://doi.org/10.35414/akufemubid.946298.
EndNote Geçkin B, Sözbilir H, Özkaymak Ç, Softa M (01 Ekim 2021) Active Tectonics of Gülbahçe Fault Zone (GBFZ) by Using Geomorphic Indices, İzmir Province, Western Anatolia, Turkey. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 5 1195–1209.
IEEE B. Geçkin, H. Sözbilir, Ç. Özkaymak, ve M. Softa, “Active Tectonics of Gülbahçe Fault Zone (GBFZ) by Using Geomorphic Indices, İzmir Province, Western Anatolia, Turkey”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 5, ss. 1195–1209, 2021, doi: 10.35414/akufemubid.946298.
ISNAD Geçkin, Berna vd. “Active Tectonics of Gülbahçe Fault Zone (GBFZ) by Using Geomorphic Indices, İzmir Province, Western Anatolia, Turkey”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/5 (Ekim 2021), 1195-1209. https://doi.org/10.35414/akufemubid.946298.
JAMA Geçkin B, Sözbilir H, Özkaymak Ç, Softa M. Active Tectonics of Gülbahçe Fault Zone (GBFZ) by Using Geomorphic Indices, İzmir Province, Western Anatolia, Turkey. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:1195–1209.
MLA Geçkin, Berna vd. “Active Tectonics of Gülbahçe Fault Zone (GBFZ) by Using Geomorphic Indices, İzmir Province, Western Anatolia, Turkey”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 5, 2021, ss. 1195-09, doi:10.35414/akufemubid.946298.
Vancouver Geçkin B, Sözbilir H, Özkaymak Ç, Softa M. Active Tectonics of Gülbahçe Fault Zone (GBFZ) by Using Geomorphic Indices, İzmir Province, Western Anatolia, Turkey. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(5):1195-209.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.