BibTex RIS Kaynak Göster

Flotation Behavior of Bituminous and Lignite Coals in Salty Water

Yıl 2013, Cilt: 13 Sayı: 1, 1 - 14, 01.04.2013
https://doi.org/10.5578/fmbd.5218

Öz

High salt concentrations have a significant effect on bulk and interfacial water structure, and colloidal interactions between bubbles and particles hence affect flotation of minerals. In this study, the floatability of Turkish coals in the presence of NaCl, KCl, CaCl2, MgCl2 salts without the use of any flotation chemicals (collector and frother) was investigated in detail. In addition, zeta potential and foam stability tests were performed. The flotation experiments showed that it is possible to float the natural hydrophobic coal in salt solutions in the absence of collector and frother. On the other hand, the flotation of lignite coals is generally difficult. Additionally, MgCl2 and KCl solutions showed the highest and the lowest flotation performance improvements, respectively. The froth stability tests at 1 M salt concentration indicated that there is a correlation between the flotation recovery and froth stability. These results also clearly indicated that Na+, K+, Ca2+, Mg2+ ions have a strong ion specific effect on the flotation of coal particles. © Afyon Kocatepe Üniversitesi

Kaynakça

  • Aplan F. F., 1993. Coal properties dictate coal flotation strategies. Miner. Eng., 45(1), 83-88.
  • Aplan F. F. and Arnold B. J., 1991. Part 2: Wet fine particle concentration. Section 3: Flotation. Coal Preparation, J. W. L. a. B. C. Hardinge, Littleton, Colorado, SME.
  • Arnold B. J. and Aplan F. F., 1986a. The effect of clay slimes on coal flotation, part I: The nature of the clay. International Journal of Mineral Processing, 17(3-4), 225-242.
  • Barbian N., Ventura-Medina E. and Cilliers J. J., 2003. Dynamic froth stability in froth flotation. Minerals Engineering, 16(11), 1111-1116.
  • Binks B. P. and Horozov T. S., Eds. (2006), Colloidal particles at liquid interfaces, Cambridge, Cambridge University Press.
  • Burdukova E., Laskowski J. S. and Forbes G. R., 2009. Precipitation of dodecyl amine in KCl-NaCl saturated brine and attachment of amine particles to KCl and NaCl surfaces. International Journal of Mineral Processing, 93(1), 34-40.
  • Cheng F. Q., Zhang Y. N., Du H., Liu J., Nalaskowski J. and Miller J. D., 2008. Surface chemistry features in the flotation of KCl. In Proceedings of the XXIV International Mineral Processing Congress, Beijing, China.
  • Craig V. S. J., Ninham B. W. and Pashley R. M., 1993. Effect of electrolytes on bubble coalescence. Nature, 364(6435), 317-319.
  • Demir C., Abramov A. A. and Çelik M. S., 2001. Flotation separation of Na-feldspar from K-feldspar by monovalent salts. Miner. Eng., 14(7), 733-740.
  • ETKB-BİKAF, 2008. Enerji ve Tabii Kaynaklar Bakanlığı ile Bağlı ve İlgili Kuruluşlarının Amaç ve Faaliyetleri. Enerji ve Tabii Kaynaklar Bakanlığı Yayını, Ankara, 247 s.
  • ETKB, 2008. 2008 Yılı Bütçe Sunumu. Enerji ve Tabii Kaynaklar Bakanlığı,
  • Fuerstenau D. W. and Fuerstenau M. C., 1956. Ionic size in flotation collection of alkali halides. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 4156-B205.
  • George C., 1996. The Mt Keith operation. Australasian Institute of Mining and Metallurgy, 9-23.
  • Gourram-Badri F., Conil P. and Morizot G., 1997. Measurements of selectivity due to coalescence between characterization of MIBC action on froth flotation. International Journal of Mineral Processing, 51(1-4), 197-208. bubbles and
  • Guimarães R. C. and Peres A. E. C., 1999. Interfering ions in the flotation of a phosphate ore in a batch column. Miner. Eng., 12(7), 757-768.
  • Hancer M., Celik M. S. and Miller J. D., 2001. The significance of interfacial water structure in soluble salt flotation systems. Journal of Colloid and Interface Science 235(1), 150-161.
  • Harvey P. A., Nguyen A. V. and Evans G. M., 2002. Influence of electrical double-layer interaction on coal flotation. Journal of Colloid and Interface Science, 250(2), 337-343.
  • Horsley R. M. and Smith H. G., 1951. Principles of coal flotation. 3054-63.
  • Johansson G. and Pugh R. J., 1992. The influence of particle size and hydrophobicity on the stability of mineralized froths. International Journal of Mineral Processing, 34(1-2), 1-21.
  • Klassen V. I. and Mokrousov V. A., 1963. An Introduction to the Theory of Flotation. London, Butterworths.
  • Kunz W., Lo Nostro P. and Ninham B. W., 2004. The present state of affairs with Hofmeister effects. Current Opinion in Colloid & Interface Science, 91-18.
  • Kurniawan A. U., Ozdemir O., Nguyen A. V., Ofori P. and Firth B., 2011. Flotation of coal particles in MgCl2, NaCl, and NaClO3 solutions in the absence and presence of Dowfroth 250. International Journal of Mineral Processing, 98(3-4), 137-144.
  • Li C. and Somasundaran P., 1991. Reversal of bubble charge in multivalent inorganic salt solutions-Effect of magnesium. Journal of Colloid and Interface Science, 146(1), 215-218.
  • Miller J. D., Yalamanchili M. R. and Kellar J. J., 1992. Surface charge of alkali halide particles as determined Langmuir, 8(5), 1464-1469. electrophoresis.
  • Mishra S. K., 1978. The slime problem in Australian coal flotation. Australiasian I.M.M., Mill Operators Conference. Mt Isa159-168.
  • MTA, 2008. Enerji Hammadde Etüt ve Arama Dairesi Başkanlığı 2008 Yılı ve Aylık Faaliyet Raporu. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara, 31 s.
  • Nguyen A. V. and Schulze H. J., 2004. Colloidal Science of Flotation. New York, Marcel Dekker.
  • Oats W. J., Ozdemir O. and Nguyen A. V., 2010. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation. Minerals Engineering, 23(5), 413-419.
  • Ozdemir O., Celik M. S., Nickolov Z. S. and Miller J. D., 2007. Water structure and its influence on the flotation of carbonate and bicarbonate salts. Journal of Colloid and Interface Science, 314(2), 545-551.
  • Ozdemir O., Karaguzel C., Nguyen A. V., Celik M. S. and Miller J. D., 2009a. Contact angle and bubble attachment studies in the flotation of trona and other soluble carbonate salts. Minerals Engineering, 22(2), 168-175.
  • Ozdemir O., Taran E., Hampton M. A., Karakashev S. I. and Nguyen A. V., 2009b. Surface chemistry aspects of coal flotation in bore water. International Journal of Mineral Processing, 92(3-4), 177-183.
  • Paulson O. and Pugh R. J., 1996. Flotation of inherently hydrophobic particles in aqueous solutions of inorganic electrolytes. Langmuir, 12(20), 4808-4813.
  • Quast K., Ding L., Fornasiero D. and Ralston J., 2008. Effect of slime clay particles on coal flotation. Proceedings of Chemeca 2008, Newcastle, Sept 28- Oct 1, Australia.
  • Rogers J. and Schulman J. H., 1957. A mechanism of the selective flotation of soluble salts in the saturated solutions. In: Electrical phenomena and solid/liquid interface. Proceedings of the Second International Congress of Surface Activity III.
  • Schubert H., 1988. The mechanisms of collector adsorption on salt-type minerals from solutions containing Aufbereitungs-Technik, 29(8), 427-435. concentrations.
  • Wilson I. D., Ed. (2007), Encyclopedia of Separation Science Amsterdam, Elsevier.
  • Yoon R. H., 1982. Flotation of coal using micro-bubbles and inorganic salts. Mining Congress Journal, 68, 76- 80.

Taşkömürü ve Linyit Kömürlerinin Tuzlu Su İçerisinde Flotasyon Davranışları (015801) (1-14)

Yıl 2013, Cilt: 13 Sayı: 1, 1 - 14, 01.04.2013
https://doi.org/10.5578/fmbd.5218

Öz

Yüksek konsantrasyondaki inorganik iyonların solüsyon ve ara yüzeyleri etkilediği, kabarcıklar ile taneler arasındaki kolloidal etkileşimleri değiştirdiği dolayısıyla da minerallerin flotasyonunu etkilediği öteden beri bilinmektedir. Bu çalışmada NaCl, KCl, CaCl2, MgCl2 tuzları içerisinde Türk linyit ve taşkömürlerinin hiçbir flotasyon kimyasalı (kollektör ve köpürtücü) kullanılmadan yüzebilirliği araştırılmıştır. Bunun yanı sıra zeta potansiyel ve köpük stabilite testleri de yapılmıştır. Flotasyon deneyleri, taşkömürünün hiçbir kimyasal kullanılmadan sadece tuzlu su ortamında yüzmesinin mümkün olduğunu gösterirken linyit kömürünün yüzmesinin mümkün olmadığını ortaya koymuştur. Kullanılan tuzlar arasında en iyi yüzdürme özelliği olan tuzun MgCl2, en düşük yüzdürme özelliği olanın da KCl olduğu ortaya çıkmıştır. 1 M tuz konsantrasyonunda yapılan köpük stabilite deney sonuçları da flotasyonla benzer eğilim sergilemiştir. Bu sonuçlar Na+, K+, Ca+2, Mg+2 iyonlarının kömür flotasyonu üzerinde iyon spesifik etkisini de ortaya koymuştur

Kaynakça

  • Aplan F. F., 1993. Coal properties dictate coal flotation strategies. Miner. Eng., 45(1), 83-88.
  • Aplan F. F. and Arnold B. J., 1991. Part 2: Wet fine particle concentration. Section 3: Flotation. Coal Preparation, J. W. L. a. B. C. Hardinge, Littleton, Colorado, SME.
  • Arnold B. J. and Aplan F. F., 1986a. The effect of clay slimes on coal flotation, part I: The nature of the clay. International Journal of Mineral Processing, 17(3-4), 225-242.
  • Barbian N., Ventura-Medina E. and Cilliers J. J., 2003. Dynamic froth stability in froth flotation. Minerals Engineering, 16(11), 1111-1116.
  • Binks B. P. and Horozov T. S., Eds. (2006), Colloidal particles at liquid interfaces, Cambridge, Cambridge University Press.
  • Burdukova E., Laskowski J. S. and Forbes G. R., 2009. Precipitation of dodecyl amine in KCl-NaCl saturated brine and attachment of amine particles to KCl and NaCl surfaces. International Journal of Mineral Processing, 93(1), 34-40.
  • Cheng F. Q., Zhang Y. N., Du H., Liu J., Nalaskowski J. and Miller J. D., 2008. Surface chemistry features in the flotation of KCl. In Proceedings of the XXIV International Mineral Processing Congress, Beijing, China.
  • Craig V. S. J., Ninham B. W. and Pashley R. M., 1993. Effect of electrolytes on bubble coalescence. Nature, 364(6435), 317-319.
  • Demir C., Abramov A. A. and Çelik M. S., 2001. Flotation separation of Na-feldspar from K-feldspar by monovalent salts. Miner. Eng., 14(7), 733-740.
  • ETKB-BİKAF, 2008. Enerji ve Tabii Kaynaklar Bakanlığı ile Bağlı ve İlgili Kuruluşlarının Amaç ve Faaliyetleri. Enerji ve Tabii Kaynaklar Bakanlığı Yayını, Ankara, 247 s.
  • ETKB, 2008. 2008 Yılı Bütçe Sunumu. Enerji ve Tabii Kaynaklar Bakanlığı,
  • Fuerstenau D. W. and Fuerstenau M. C., 1956. Ionic size in flotation collection of alkali halides. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 4156-B205.
  • George C., 1996. The Mt Keith operation. Australasian Institute of Mining and Metallurgy, 9-23.
  • Gourram-Badri F., Conil P. and Morizot G., 1997. Measurements of selectivity due to coalescence between characterization of MIBC action on froth flotation. International Journal of Mineral Processing, 51(1-4), 197-208. bubbles and
  • Guimarães R. C. and Peres A. E. C., 1999. Interfering ions in the flotation of a phosphate ore in a batch column. Miner. Eng., 12(7), 757-768.
  • Hancer M., Celik M. S. and Miller J. D., 2001. The significance of interfacial water structure in soluble salt flotation systems. Journal of Colloid and Interface Science 235(1), 150-161.
  • Harvey P. A., Nguyen A. V. and Evans G. M., 2002. Influence of electrical double-layer interaction on coal flotation. Journal of Colloid and Interface Science, 250(2), 337-343.
  • Horsley R. M. and Smith H. G., 1951. Principles of coal flotation. 3054-63.
  • Johansson G. and Pugh R. J., 1992. The influence of particle size and hydrophobicity on the stability of mineralized froths. International Journal of Mineral Processing, 34(1-2), 1-21.
  • Klassen V. I. and Mokrousov V. A., 1963. An Introduction to the Theory of Flotation. London, Butterworths.
  • Kunz W., Lo Nostro P. and Ninham B. W., 2004. The present state of affairs with Hofmeister effects. Current Opinion in Colloid & Interface Science, 91-18.
  • Kurniawan A. U., Ozdemir O., Nguyen A. V., Ofori P. and Firth B., 2011. Flotation of coal particles in MgCl2, NaCl, and NaClO3 solutions in the absence and presence of Dowfroth 250. International Journal of Mineral Processing, 98(3-4), 137-144.
  • Li C. and Somasundaran P., 1991. Reversal of bubble charge in multivalent inorganic salt solutions-Effect of magnesium. Journal of Colloid and Interface Science, 146(1), 215-218.
  • Miller J. D., Yalamanchili M. R. and Kellar J. J., 1992. Surface charge of alkali halide particles as determined Langmuir, 8(5), 1464-1469. electrophoresis.
  • Mishra S. K., 1978. The slime problem in Australian coal flotation. Australiasian I.M.M., Mill Operators Conference. Mt Isa159-168.
  • MTA, 2008. Enerji Hammadde Etüt ve Arama Dairesi Başkanlığı 2008 Yılı ve Aylık Faaliyet Raporu. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara, 31 s.
  • Nguyen A. V. and Schulze H. J., 2004. Colloidal Science of Flotation. New York, Marcel Dekker.
  • Oats W. J., Ozdemir O. and Nguyen A. V., 2010. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation. Minerals Engineering, 23(5), 413-419.
  • Ozdemir O., Celik M. S., Nickolov Z. S. and Miller J. D., 2007. Water structure and its influence on the flotation of carbonate and bicarbonate salts. Journal of Colloid and Interface Science, 314(2), 545-551.
  • Ozdemir O., Karaguzel C., Nguyen A. V., Celik M. S. and Miller J. D., 2009a. Contact angle and bubble attachment studies in the flotation of trona and other soluble carbonate salts. Minerals Engineering, 22(2), 168-175.
  • Ozdemir O., Taran E., Hampton M. A., Karakashev S. I. and Nguyen A. V., 2009b. Surface chemistry aspects of coal flotation in bore water. International Journal of Mineral Processing, 92(3-4), 177-183.
  • Paulson O. and Pugh R. J., 1996. Flotation of inherently hydrophobic particles in aqueous solutions of inorganic electrolytes. Langmuir, 12(20), 4808-4813.
  • Quast K., Ding L., Fornasiero D. and Ralston J., 2008. Effect of slime clay particles on coal flotation. Proceedings of Chemeca 2008, Newcastle, Sept 28- Oct 1, Australia.
  • Rogers J. and Schulman J. H., 1957. A mechanism of the selective flotation of soluble salts in the saturated solutions. In: Electrical phenomena and solid/liquid interface. Proceedings of the Second International Congress of Surface Activity III.
  • Schubert H., 1988. The mechanisms of collector adsorption on salt-type minerals from solutions containing Aufbereitungs-Technik, 29(8), 427-435. concentrations.
  • Wilson I. D., Ed. (2007), Encyclopedia of Separation Science Amsterdam, Elsevier.
  • Yoon R. H., 1982. Flotation of coal using micro-bubbles and inorganic salts. Mining Congress Journal, 68, 76- 80.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Orhan Özdemir Bu kişi benim

Kenan Çinku Bu kişi benim

Tuğba Uslu Bu kişi benim

Emine Kılıç Bu kişi benim

Mehmet Sabri Çelik Bu kişi benim

Yayımlanma Tarihi 1 Nisan 2013
Gönderilme Tarihi 8 Ağustos 2015
Yayımlandığı Sayı Yıl 2013 Cilt: 13 Sayı: 1

Kaynak Göster

APA Özdemir, O., Çinku, K., Uslu, T., Kılıç, E., vd. (2013). Taşkömürü ve Linyit Kömürlerinin Tuzlu Su İçerisinde Flotasyon Davranışları (015801) (1-14). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 13(1), 1-14. https://doi.org/10.5578/fmbd.5218
AMA Özdemir O, Çinku K, Uslu T, Kılıç E, Çelik MS. Taşkömürü ve Linyit Kömürlerinin Tuzlu Su İçerisinde Flotasyon Davranışları (015801) (1-14). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Nisan 2013;13(1):1-14. doi:10.5578/fmbd.5218
Chicago Özdemir, Orhan, Kenan Çinku, Tuğba Uslu, Emine Kılıç, ve Mehmet Sabri Çelik. “Taşkömürü Ve Linyit Kömürlerinin Tuzlu Su İçerisinde Flotasyon Davranışları (015801) (1-14)”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 13, sy. 1 (Nisan 2013): 1-14. https://doi.org/10.5578/fmbd.5218.
EndNote Özdemir O, Çinku K, Uslu T, Kılıç E, Çelik MS (01 Nisan 2013) Taşkömürü ve Linyit Kömürlerinin Tuzlu Su İçerisinde Flotasyon Davranışları (015801) (1-14). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 13 1 1–14.
IEEE O. Özdemir, K. Çinku, T. Uslu, E. Kılıç, ve M. S. Çelik, “Taşkömürü ve Linyit Kömürlerinin Tuzlu Su İçerisinde Flotasyon Davranışları (015801) (1-14)”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 13, sy. 1, ss. 1–14, 2013, doi: 10.5578/fmbd.5218.
ISNAD Özdemir, Orhan vd. “Taşkömürü Ve Linyit Kömürlerinin Tuzlu Su İçerisinde Flotasyon Davranışları (015801) (1-14)”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 13/1 (Nisan 2013), 1-14. https://doi.org/10.5578/fmbd.5218.
JAMA Özdemir O, Çinku K, Uslu T, Kılıç E, Çelik MS. Taşkömürü ve Linyit Kömürlerinin Tuzlu Su İçerisinde Flotasyon Davranışları (015801) (1-14). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2013;13:1–14.
MLA Özdemir, Orhan vd. “Taşkömürü Ve Linyit Kömürlerinin Tuzlu Su İçerisinde Flotasyon Davranışları (015801) (1-14)”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 13, sy. 1, 2013, ss. 1-14, doi:10.5578/fmbd.5218.
Vancouver Özdemir O, Çinku K, Uslu T, Kılıç E, Çelik MS. Taşkömürü ve Linyit Kömürlerinin Tuzlu Su İçerisinde Flotasyon Davranışları (015801) (1-14). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2013;13(1):1-14.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.