BibTex RIS Kaynak Göster

Salicylic Acid and Polyamines in Plant Salt Stress Tolerance

Yıl 2014, Cilt: 14 Sayı: 2, 7 - 22, 01.08.2014

Öz

Salinity is one of the major factors that cause crop loss worldwide. It has been estimated that about half of the yield potential of major crops are lost due to salinity. Therefore, crops with tolerance to salinity should be developed to feed the increasing world population. The conventional breeding or modern molecular biology strategies have been employed to maximize plant growth and productivity under salinity stress. However, breeding of crops for salt tolerance is limited due to its own complexities and hereditary difficulties. An alternative approach is to enhance salt tolerance through exogenous application of certain plant growth regulators. Plant growth regulators have proven to increase stress tolerance of plants such as to drought, heavy metals, salinity, low and high temperature stresses. Among these plant growth regulators salicylic acid (SA) and polyamines (PAs) have been studied most extensively. Both SA and PAs play diverse physiological roles, which are affecting plant growth and development under salinity stress. In the present review, we have described the biosynthetic pathways and physiological roles of SA and PAs. Moreover, the effects of exogenous applications of SA and PAs on the plants exposed to salinity stress have also been discussed. © Afyon Kocatepe Üniversitesi

Kaynakça

  • Abreu, M.E. and Munne-Bosch, S., 2009. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. Journal of Experimental Botany, 60, 1261– 1271.
  • Ahmed, B., Abidi, H., Manaa, F., Hajer, A.M. and Ezzeddine, Z., 2009. Salicylic acid induced changes on some physiological parameters in tomato grown under salinity. The Proceedings of International Plant Nutrition Colloquium XVI UC Davis.
  • Alcázar, R., García-Martínez, J.L., Cuevas, J.C., Tiburcio, A.F. and Altabella, T., 2005. Overexpression of ADC2 in Arabidopsis induces dwarfism and late-flowering through GA deficiency. The Plant Journal, 43, 425– 436.
  • Alcázar, R., Marco, F., Cuevas, J.C., Patron, M., Ferrando, A., Carrasco, P., Tiburcio, A.F. and Altabella, T., 2006. Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters, 28, 1867–1876.
  • Alcázar, R., Planas, J., Saxena, T., Zarza, X., Bortolotti, C., Cuevas, J., Bitrian, M., Tiburcio, A.F. and Altabella, T., 2010. Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over- expressing the homologous Arginine decarboxylase2 gene. Plant Physiology and Biochemistry, 48, 547– 552.
  • Ali, R.M., 2000. Role of putrescine in salt tolerance of Atropa belladonna plant. Plant Science, 152, 173–
  • Alverez, A.L., 2000. Salicylic acid in machinery of hypersensitive cell death and disease resistance. Plant Molecular Biology, 44, 429–442.
  • Armengaud, P., Breitling, R. and Amtmann, A., 2004. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiology, 136, 2556–2576.
  • Ashraf, M. and Foolad, M.R., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216.
  • Ashraf, M., Athar, H.R., Harris, P.J.C. and Kwon, T.R., 2008. Some prospective strategies for improving crop salt tolerance. Advances in Agronomy, 97, 45– 110.
  • Ashraf, M. and Akram, N.A., 2009. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnology Advances, 27, 744–752.
  • Ashraf, M. and Akram, N., 2010. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences, 29, 162– 190.
  • Bagni, N. and Tassoni, A., 2001. Biosynthesis, oxidation and conjugation of aliphatic polyamines in plants. Amino Acids, 20, 301–317.
  • Belozerova, N.S., Baik, A.S., Butsanets, P.A., Kusnetsov, V.V., Shugaev, A.G. and Pojidaeva, E.S., 2014. Effect of salicylic acid on the alternative pathway of yellow lupine respiration. Russian Journal of Plant Physiology, 61, 38–46.
  • Bertoldi, D., Tassoni, A., Martinelli, L. and Bagni, N., 2004. Polyamines and somatic embryogenesis in two Vitis vinifera cultivars. Physiologia Plantarum, 120, 657–666.
  • Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P.O., Nam, H.G., Lin, J.F., Wu, S.H., Swidzinski, J., Ishizaki, K. and Leaver, C.J., 2005. Comparative significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. The Plant Journal, 42, 567–585. analysis reveals
  • Cameron, R.K., 2000. Salicylic acid and its role in plant defense responses: what do we really know? Physiological and Molecular Plant Pathology, 56, 91– 93.
  • Capell, T., Bassie, L. and Christou, P., 2004. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proceedings of the National Academy of Science USA, 101, 9909– 9914.
  • Chai, Y.Y., Jiang, C.D., Shi, L., Shi, T.S. and Gu, W.B., 2010. Effects of exogenous spermine on sweet sorghum during germination under salinity. Biologia Plantarum, 54, 145–148.
  • Chen, H.-J., Hou, W.-C., Kuc, J. and Lin, Y.-H., 2001. Ca2+- dependent and Ca2+-independent excretion modes of salicylic acid in tobacco cell suspension culture. Journal of Experimental Botany, 52, 1219–1226.
  • Chinnusamy, V., Jagendorf, A. and Zhu, J.-K., 2005. Understanding and improving salt tolerance in plants. Crop Science, 45, 437–448.
  • Choudhary, S.P., Oral, H.V., Bhardwaj, R., Yu, J.-Q. and Tran, L.-S.P., 2013. Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. Journal of Experimental Botany, 63, 5659–5675.
  • Cona, A., Rea, G., Angelini, R., Federico, R. and Tavladoraki, P.,2006. Functions of amine oxidases in plant development and defence. Trends in Plant Science, 11, 80–88.
  • Couèe, I., Hummel, I., Sulmon, C., Gouesbet, C. and El Amrani, A., 2004. Involvement of polyamines in root development. Plant Cell Tissue and Organ Culture, 76, 1–10.
  • Cvikrová, M., Gemperlová, L., Martincová, O. and Vanková, R., 2013. Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing Physiology and Biochemistry, 73, 7–15. tobacco plants. Plant
  • Dean, J.V., Mohammed, L.A. and Fitzpatrick, T., 2005. The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta, 221, 287– 296.
  • Dean, J.V. and Delaney, S.P., 2008. Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyl-transferase mutants of Arabidopsis thaliana. Physiologia Plantarum, 132, 417–425.
  • Deef, H.E., 2007. Influence of salicylic acid on stress tolerance during seed germination of Triticum aestivum and Hordeum vulgare. Advances in Biological Research, 1, 40–48.
  • Dong, C., Wang, X. and Shang, Q., 2011. Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings. Scientia Horticulturae, 129, 629–636.
  • Fariduddin, Q., Hayat, S. and Ahmad, A., 2003. Salicylic net acid carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica, 41, 281–284.
  • photosynthetic rate,
  • Fienberg, A.A., Choi, J.H., Lubich, W.P. and Sung, Z.R., 1984. Developmental regulation of polyamine metabolism in growth and differentiation of carrot culture. Planta, 162, 532–539.
  • Flowers, T.J. and Yeo, A.R., 1995. Breeding for salinity resistance in crop plants: where next? Australian Journal of Plant Physiology, 22, 875–884.
  • Forouhar, F., Yang, Y., Kumar, D., Chen, Y., Fridman, E., Park, S.W., Chiang, Y., Acton, T.B., Montelione, G.T., Pichersky, E., Klessig, D.F. and Tong, L., 2005. Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proceedings of the National Academy of Science USA, 102, 1773–1778.
  • Franceschetti, M., Hanfrey, C., Scaramagli, S., Torrigiani, P., Bagni, N., Burtin, D. and Michael, A.J., 2001. Characterization of monocot and dicot plant S- adenosyl-L-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames. Biochemistry Journal, 53, 403–409.
  • Garcion, C. and Métraux, J.-P., 2006. Salicylic acid. In Signaling, Plant Hormone
  • Oxford: Blackwell Publishing Ltd. 24, 229–255.
  • Garcion, C., Lohman, A., Lamodiere, E., Catinot, J. and Buchala, A., 2008. Characterization and biological function of the ISOCHORISMATE SYNTHASE 2 gene of Arabidopsis thaliana. Plant Physiology, 147, 1279– 1287.
  • Gautam, S. and Singh, P.K., 2009. Salicylic acid-induced salinity tolerance in corn grown under NaCl stress. Acta Physiologia Plantarum, 31, 1185–1190.
  • Ge, C., Cui, X., Wang, Y., Hu, Y., Fu, Z., Zhang, D., Cheng, Z. and Li, J., 2006. BUD2, encoding an S- adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Research, 16, 446–456.
  • Gill, S.S. and Tuteja, N., 2010. Polyamines and abiotic stress tolerance in plants. Plant Signaling and Behavior, 51, 26–33.
  • Groppa, M.D. and Benavides, M.P., 2007. Polyamines and abiotic stress: recent advances. Amino Acids, 34, 35–45.
  • Grün, S., Lindermayr, C., Sell, S. and Durner, J., 2006. Nitric oxide and gene regulation in plants. Journal of Experimental Botany, 57, 507–516.
  • Gunes, A., Inal, A., Alpaslan, M., Cicek, N., Guneri, E., Eraslan, F. and Guzelordu, T., 2005. Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.). Archives of Agronomy and Soil Science, 51, 687–695.
  • Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E.G. and Cicek, N., 2007. Salicylic acid induced changes on some physiological parame- ters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164, 728–736.
  • Gutierrez-Coronado, M., Trejo, C.L. and Larque- Saavedra, A., 1998. Effects of salicylic acid on the growth of roots and shoots in soybean. Plant Physiology and Biochemistry, 36, 563–565.
  • Hanzawa, Y., Takahashi, T., Michael, A.J., Burtin, D., Long, D., Pineiro, M., Coupland, G. and Komeda, Y., 2000. ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO Journal, 19, 4248–4256.
  • Hanzawa, Y., Imai, A., Michael, A.J., Komeda, Y. and Takahashi, T., 2002. Characterization of the spermidine Arabidopsis thaliana. FEBS Letters, 527, 176–180.
  • Hashimoto, T., Tamaki, K., Suzuki, K. and Yamada, Y., 1998. Molecular cloning of plant spermidine synthases. Plant and Cell Physiology, 39, 73–79.
  • Hayat, S., Fariduddin, Q., Ali, B. and Ahmad, A., 2005. Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agronomica Hungarica, 53, 433–437.
  • Hayat, Q., Hayat, S., Irfan, M. and Ahmad, A., 2010. Effect of exogenous salicylic acid under changing environment: Experimental Botany, 68, 14–25. Environmental and
  • He, Y. and Zhu, Z.J., 2008. Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. Biologia Plantarum, 52, 792–795.
  • Holuigue, L., Salinas, P., Blanco, F. and Garreton, V., 2007. Salicylic acid and reactive oxygen species in the activation of stress defense genes. In: Hayat, S., Ahmad, A. (Eds.), Salicylic Acid: A Plant Hormone. Springer, Dordrecht, The Netherlands. pp. 197–246.
  • Hummel, I., Gouesbet, G., El Amrani, A., Ainouche, A. and Couee, I., 2004. Characterization of the two arginine decarboxylase (polyamine biosynthesis) paralogues of the endemic subantarctic cruciferous species Pringlea antiscorbutica and analysis of their differential expression during development and response to environmental stress. Gene, 342, 199– 209.
  • Hussain, S.S., Ali, M., Ahmad, M. and Siddique, K.H.M., 2011. Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances, 29, 300–311.
  • Imai, R., Ali, A., Pramanik, H.R., Nakaminami, K., Sentoku, N. and Kato, H., 2004. A distinctive class of spermidine synthase is involved in chilling response in rice. Journal of Plant Physiology, 161, 883–886.
  • Janowitz, T., Kneifel, H. and Piotrowski, M., 2003. Identification and characterization of plant agmatine iminohydrolase, the last missing link in polyamine biosynthesis of plants. FEBS Letters, 544, 258–261.
  • Kakkar, R.K. and Sawhney, V.K., 2002. Polyamine research in plants. A changing perspective. Physiologia Plantarum, 116, 281–292.
  • Kavi Kishore, P.B., Sangam, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan, P. and Sreenivasulu, N., 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science, 88, 424–438.
  • Kawano, T., Furuichi, T. and Muto, S., 2004. Controlled free salicylic acid levels and corresponding signaling mechanisms in plants. Plant Biotechnology, 21, 319–
  • Kaydan, D., Yagmur, M. and Okut, N., 2007. Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L.). Tarim Bilimleri Dergisi, 13, 114–119.
  • Khodary, S.E.A., 2004. Effect of salicylic acid on growth, photosynthesis and carbohydrate metabolism in salt- stressed maize plants. International Journal of Agriculture and Biology, 6, 5–8.
  • Knott, J.M., Römer, P. and Sumper, M., 2007. Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Letters, 581, 3081–3086.
  • Kovácik, J., Klejdus, B., Hedbavny, J. and Backor, M., 2009. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology, 18, 544–554.
  • Kreps, J.A., Wu, Y., Chang, H., Zhu, T., Wang, X. and Harper, J.F., 2002. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology, 130, 2129–2141.
  • Kubiś, J., Floryszak-Wieczorek, J. and Arasimowicz- Jelonek, M., 2014. Polyamines induce adaptive responses in water deficit stressed cucumber roots. Journal of Plant Research, 127, 151–158.
  • Kuiper, P.J.C., Kuiper, D. and Schuit, J., 1988. Root functional under stress condition: an introduction. Plant and Soil, 111, 249–253.
  • Kusano, T., Yamaguchi, K., Berberich, T. and Takahashi, Y., 2007. The polyamine spermine rescues Arabidopsis from salinity and drought stresses. Plant Signaling and Behavior, 2, 250–251.
  • Kusano, T., Berberich, T., Tateda, C. and Takahashi, Y., 2008. Polyamines: essential factors for growth and survival. Planta, 228, 367–381.
  • Larher, F.R., Aziz, A., Gibon, Y., Trotel-Aziz, P., Sulpice, R. and Bouchereau, A., 2003. An assessment of the physiological properties of the so-called compatible solutes using in vitro experiments with leaf discs. Plant Physiology and Biochemistry, 41, 657–666.
  • Lee, S., Kim, S.-G. and Park, C.-M., 2010. Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 188, 626–637.
  • Lei, T., Yan, Y.C., Xi, D.H., Feng, H., Sun, X., Zhang, F., Xu, W.L., Liang, H.G. and Lin, H.H., 2008. Effects of salicylic acid on alternative pathway respiration and alternative oxidase expression in tobacco calli. Zeitschrift für Naturforschung, 63, 706–712.
  • Lei, T., Feng, H., Sun, X., Dai, Q.L., Zhang, F., Liang, H.G. and Lin, H.H., 2010. The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regulation, 60, 35–42.
  • Li, G., Peng, X., Wei, L. and Kang, G., 2013. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene, 529, 321–325.
  • Liu, K., Fu, H.H., Bei, Q.X. and Luan, S., 2000. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiology, 124, 1315–1325.
  • Liu, J.H., Kitashiba, H., Wang, J., Ban, Y. and Moriguchi, T., 2007. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnology, 24, 117–126.
  • Liu, J.H., Nakajima, I. and Moriguchi, T., 2011. Effects of salt and osmotic stresses on free polyamine content and expression of polyamine biosynthetic genes in Vitis vinifera. Biologia Plantarum, 55, 340–344.
  • Loutfy, N., El-Tayeb, M.A., Hassanen, A.M., Moustafa, M.F., Sakuma, Y. and Inouhe, M., 2012. Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum). Journal of Plant Research, 125, 173–184.
  • Lutts, S., Kinet, J.-M. and Bouharmont, J., 1996. Ethylene production in relation to salinity by leaves of rice (Oryza sativa L.) tolerance and exogenous putrescine application. Plant Science, 116, 15-25.
  • Martinez, C., Pons, E., Prats, G. and Leon, J., 2004. Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal, 37, 209–217.
  • Martin-Mex, R., Villanueva-Couoh, E., Herrera-Campos, T. and Larque-Saavedra, A., 2005. Positive effect of salicylates on the flowering of African violet. Scientica Horticulturae, 103, 499–502.
  • Michael, A.J., Furze, J.M., Rhodes, M.J.C. and Burtin, D., 1996 Molecular cloning and functional identification of Biochemistry Journal, 314, 241–248. decarboxylase cDNA.
  • Misra, N. and Saxena, P., 2009. Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science, 177, 181–189.
  • Montague, M., Koppenbrink, J. and Jaworski, E., 1978. Polyamine metabolism in embryogenic cells of Daucus carota. Changes in intracellular content and rates of synthesis. Plant Physiology, 62, 430–433.
  • Morris, K., MacKerness, S. A., Page, T., John, C. F., Murphy, A. M., Carr, J. P. and Buchanan-Wollaston, V., 2000. Salicylic acid has a role in regulating gene expression during leaf senescence. The Plant Journal, 23, 677–685.
  • Munns, R. and Tester, M., 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651– 681.
  • Nazar, R., Iqbal, N., Syeed, S. and Khan, N., 2011. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation differentially in two mungbean. Journal of Plant Physiology, 168, 807–815. metabolism
  • Noreen, S. and Ashraf, M., 2008. Alleviation of adverse effects of salt-stress on sunflower (Helianthus annuus L.) by exogenous application of salicylic acid: growth and photosynthesis. Pakistan Journal of Botany, 40, 1657–1663.
  • Pandey, S., Ranade, S., Nagar, P.K. and Kumar, N., 2000. Role of polyamines and ethylene as modulators of plant senescence. Journal of Bioscience, 25, 291–299.
  • Panicot, M., Minguet, E.G., Ferrando, A., Alcázar, R., Blázquez, M.A., Carbonell, J., Altabella, T., Koncz, C. and Tiburcio, A.F., 2002. A polyamine metabolon involving aminopropyl transferase complexes in Arabidopsis. Plant Cell, 14, 2539–2551.
  • Park, J.-E., Park, J.-Y., Kim, Y.-S., Staswick, P.E., Jeon, J., Yun, J., Kim, S.Y., Kim, J., Lee, Y.H. and Park, C.M., 2007. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. Journal of Biological Chemistry, 282, 10036–10046.
  • Paschalidis, K.A. and Roubelakis-Angelakis, K.A., 2005. Sites and regulation of polyamine catabolism in the tobacco division/expansion, cell cycle progression, and vascular development. Plant Physiology, 138, 2174– 2184. with cell
  • Peréz-Amador, M.A., Leon, J., Green, P.J. and Carbonell, J., 2002. Induction of the Arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiology, 130, 1454–1463.
  • Piotrowski, M., Janowitz, T. and Kneifel, H., 2003. Plant C–N hydrolases and the identification of a plant N- carbamoylputrescine amidohydrolase involved in polyamine biosynthesis. Journal of Biological Chemistry, 278, 1708–1712.
  • Poór, P., Gémes, K., Horváth, F., Szepesi, A., Simon, M.L. and Tari, I., 2011. Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biology, 1, 105–114.
  • Qi, C.-H., Wang, F.-F., Zhang, H. and Liu, W.-Q., 2010. Overexpression adenosylmethionine synthetase gene promotes salt tolerance in transgenic tobacco. Acta Physiologiae Plantarum, 32, 263–269. Suadea salsa S
  • Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C. and Job, D., 2006. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiology, 141, 910–923.
  • Rao, M.V. and Davis, K.R., 1999. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. The Plant Journal, 17, 603–614.
  • Roads, D.M. and McIntosh, L., 1992. Salicylic acid regulation of respiration in higher plants: alternative oxidase expression. Plant Cell, 4, 1131–1139.
  • Ross, J.R., Nam, K.H., John, C., Auria, D. and Pichersky, E., 1999. S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases. Archives of Biochemistry and Biophysics, 367, 9–16.
  • Roychoudhury, A., Basu, S. and Sengupta, D.N., 2011. Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of Indica rice differing in their level of salt tolerance. Journal of Plant Physiology, 168, 317–328.
  • Shabala, S., Cuin, T.A. and Pottosin, I.I., 2007. Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Letters, 581, 1993–1999.
  • Shakirova, F.M., Sakhabutdinova, A.R., Bezrukova, M.V., Fatkhutdinova, R.A. and Fatkhutdinova, D.R., 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164, 317–322.
  • Shevyakova, N.I., Ilina, E.N., Stetsenko, L.A. and Kuznetsov, V.l.V., 2011. Nickel accumulation in rape shoots (Brassica napus L.) increased by putrescine. Internation Journal of Phytoremediation, 13, 345– 356.
  • Shi, H., Ye, T. and Chan, Z., 2013. Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermuda grass (Cynodon dactylon) response to salt and drought stresses. Journal of Proteome Research, 12, 4807–4829.
  • Shimakawa, A., Shiraya, T., Ishizuka, Y., Wada, K.C., Mitsui, T. and Takeno, K., 2012. Salicylic acid is involved in the regulation of starvation stress- induced flowering in Lemna paucicostata. Journal of Plant Physiology, 169, 987–991.
  • Shirasu, K., Nakajima, A., Rajshekar, K., Dixon, R.A. and Lamb, C., 1997. Salicylic acid potentiates an agonist- dependent gain control that amplifies pathogen signal in the activation of defence mechanism. Plant Cell, 9, 261–270.
  • Shu, S., Guo, S.-R., Sun, J. and Yuan, L.-Y., 2012. Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiologia Plantarum, 146, 285–296.
  • Singh, P. and Gautam, S., 2013. Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiologiae Plantarum, 35, 2345–2353.
  • Slocum, R.D., Kaur-Sawhney, R. and Galsto, A.W., 1984. The physiology and biochemistry of polyamines in plants. Archives of Biochemistry and Biophysics, 235, 283–303.
  • Snyman, M. and Cronjé, M.J., 2008. Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. Journal of Experimental Botany, 59, 2125–2132.
  • Song, J.T., 2006. Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease response in Arabidopsis thaliana. Molecular Cells, 22, 233–238.
  • Sripinyowanich, S., Klomsakul, P., Boonburapong, B., Bangyeekhun, T., Asami, T., Gu, H., Buaboocha, T. and Chadchawan, S., 2013. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress. Environmental and Experimental Botany, 86, 94–105.
  • Stevens, J., Senaratna, T. and Sivasithamparam, K., 2006. Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilization. Plant Growth Regulation, 49, 77–83.
  • Strawn, M.A., Marr, S.K., Inoue, K., Inada, N. and Zubieta, C., 2007. Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. Journal of Biological Chemistry, 282, 5919–5933.
  • Swain, S., Roy, S., Shah, J., Wees, S.V., Pieterse, C.M. and Nandi, A.K., 2011. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signaling from growth defects. Molecular Plant Pathology, 9, 855–865.
  • Szepesi, A., 2006. Salicylic acid improves the acclimation of Lycopersicon esculentum Mill. L. to high salinity by approximating its salt stress response to that of the wild species L. pennellii. Acta Biologica Szegediensis, 50, 177.
  • Takahashi, T. and Kakehi, J., 2010. Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Annals of Botany, 105, 1–6.
  • Urano, K., Yoshiba, Y., Nanjo, T., Igarashi, Y., Seki, M., Sekiguchi, F., Yamaguchi-Shinozaki, K. and Shinozaki, K., 2003. Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell and Environment, 26, 1917–1926.
  • Urano, K., Yoshiba, Y., Nanjo, T., Ito, Y., Seki, M., Yamaguchi-Shinozaki, K. and Shinozaki, K., 2004. Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochemistry and Biophysics Research Communication, 313, 369–375.
  • Urano, K., Hobo, T. and Shinozaki, K., 2005. Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Letters, 579, 1557–1564.
  • Vanderauwera, S., Zimmermann, P., Rombauts, S., Vandenabeele, S., Langebartels, C., Gruissem, W., Inze, D. and Breusegem, F., 2005. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabodopsis reveals a high light- induced anthocyanin biosynthesis. Plant Physiology, 139, 806–821. cluster involved
  • Velikova, V., Yordanov, I. and Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain- treated bean plants: protective role of exogenous polyamines. Plant Science, 151, 5966.
  • Vergnolle, C., Vaultier, M.N., Taconnat, L., Renou, J.P., Kader, J.C., Zachowski, A. and Ruelland, E., 2005. The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiology, 139, 1217–1233.
  • Verma, S. and Mishra, S.N., 2005. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. Journal of Plant Physiology, 162, 669–677.
  • Vicente, M.R.-S. and Plasencia, J., 2011. Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338.
  • Vinocur, B. and Altman, A., 2005. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16, 123–132.
  • Vlot, A., 2009. Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177–206.
  • Wada, K.C. and Takeno, K., 2010. Stress-induced flowering. Plant Signaling and Behavior, 5, 1–4.
  • Wada, K.C., Yamada, M., Shiraya, T. and Takeno, K., 2010. Salicylic acid and the flowering gene FLOWERING LOCUS T homolog are involved in poor- nutrition stress-induced flowering of Pharbitis nil. Journal of Plant Physiology, 167, 447–452.
  • Wang, X., Li, X., Meisenhelder, J., Hunter, T., Yoshida, S., Asami, T. and Chory, J., 2005a. Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Developmental Cell, 8, 855–865.
  • Wang, D., Weaver, N.D., Kesarwani, M. and Dong, X., 2005b. Induction of protein secretory pathway is required for systemic acquired resistance. Science, 308, 1036–1040.
  • Watson, M.W. and Malmberg, R.L., 1996. Regulation of Arabidopsis decarboxylase by potassium deficiency stress. Plant Physiology, 111, 1077–1083. Heynh arginine
  • Watson, M.W., Yu, W., Galloway, G.L. and Malmberg, R.L., 1997. Isolation and characterization of a second arginine decarboxylase cDNA from Arabidopsis (PGR97–114). Plant Physiology, 114, 1569.
  • Wi, S.J., Kim, W.T. and Park, K.Y., 2006. Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Reports, 25, 1111–1121.
  • Wimalasekera, R., Tebartz, F. and Scherer, G., 2011. Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Science, 181, 593–603.
  • Wildermuth, M.C., Dewdney, J., Wu, G. and Ausubel, F.M., 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414, 562–571.
  • Wildermuth, M.C., 2006. Variations on a theme: synthesis and modification of plant benzoic acids. Current Opinion in Plant Biology, 9, 288–296.
  • Xie, Z., Zhang, Z.-L., Hanzlik, S., Cook, E. and Sjen, Q.J., 2007. Salicylic acid inhibits gibberellin-induced alpha- amylase expression and seed germination via a pathway inducible WRKY gene. Plant Molecular Biology, 64, 293–303. an abscisic-acid
  • Xu, X., Shi, G., Ding, C. and Xu, Y., 2011. Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress. Plant Growth Regulation, 63, 251–258.
  • Yalpani, N., Silverman, P., Wilson, T.M.A., Kleier, D.A. and Raskin, I., 1991. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell, 3, 809–818.
  • Yoon, J.Y., Hamayun, M., Lee, S.-K. and Lee, I.-J., 2009. Methyl jasmonate alleviated salinity stress in soybean. Biotechnology, 12, 63–68. of Journal Crop Science and
  • Yusuf, M., Hasan, S.A., Ali, B., Hayat, S., Fariduddin, Q. and Ahmad, A., 2008. Effect of salicylic acid on salinity induced changes in Brassica juncea. Journal of Integrative Plant Biology, 50, 1096–1102.
  • Zhang, W., Jiang, B., Li, W., Song, H., Yu, Y. and Chen, J., 2009. Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Scientia Horticulture, 122, 200– 208.
  • Zhang, F., Zhang, H., Xia, Y., Wang, G., Xu, L. and Shen, Z., 2011. Exogenous application of salicylic acid alleviates cadmium toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa. Plant Cell Reports, 30, 1475–1483.
  • Zhao, H.Z. and Yang, H.Q., 2008. Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis Rehd. Scientia Horticulturae, 116, 442–447.

Bitki Tuz Stresi Toleransında Salisilik Asit ve Poliaminler (021002) (7-22)

Yıl 2014, Cilt: 14 Sayı: 2, 7 - 22, 01.08.2014

Öz

Tuzluluk dünya genelinde ürün kaybına neden olan önemli faktörlerden biridir. Tarımsal açıdan önemli bitkilerde ürün potansiyelinin yaklaşık yarısının tuzluluktan dolayı kaybedildiği tahmin edilmektedir. Bu nedenle, artan nüfusun besin ihtiyacının karşılanması için tuzluluğa toleranslı tarımsal bitkiler geliştirilmelidir. Geleneksel ıslah veya modern moleküler biyoloji yaklaşımları tuz stresi altında bitki büyüme ve üretkenliğini en iyi duruma getirmek için uygulanmaktadır. Buna rağmen, tuz toleransı bakımından tarımsal bitkilerin ıslahı karmaşıklık ve kalıtsal zorluklardan dolayı sınırlanmaktadır. Alternatif bir diğer yaklaşım ise başlıca bitki büyüme düzenleyicilerinin dışsal uygulanması ile tuz toleransının arttırılmasıdır. Bitki büyüme düzenleyicilerinin kuraklık, ağır metal, tuzluluk, düşük ve yüksek sıcaklık gibi streslere karşı toleransı arttırdığı kanıtlanmıştır. Bitki büyüme düzenleyicileri arasında yer alan salisilik asit (SA) ve poliaminler (PA’lar) kapsamlı şekilde çalışılmıştır. Hem SA hem de PA’ler tuz stresi altında bitki büyüme ve gelişimini etkileyen çeşitli fizyolojik rollere sahiptir. Bu derlemede, SA ve PA’lerin biyosentetik yolları ve fizyolojik etkileri tanımlanmıştır. Ayrıca, tuz stresine maruz bırakılan bitkilerde dışsal SA ve PA uygulamalarının etkisi tartışılmıştır

Kaynakça

  • Abreu, M.E. and Munne-Bosch, S., 2009. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. Journal of Experimental Botany, 60, 1261– 1271.
  • Ahmed, B., Abidi, H., Manaa, F., Hajer, A.M. and Ezzeddine, Z., 2009. Salicylic acid induced changes on some physiological parameters in tomato grown under salinity. The Proceedings of International Plant Nutrition Colloquium XVI UC Davis.
  • Alcázar, R., García-Martínez, J.L., Cuevas, J.C., Tiburcio, A.F. and Altabella, T., 2005. Overexpression of ADC2 in Arabidopsis induces dwarfism and late-flowering through GA deficiency. The Plant Journal, 43, 425– 436.
  • Alcázar, R., Marco, F., Cuevas, J.C., Patron, M., Ferrando, A., Carrasco, P., Tiburcio, A.F. and Altabella, T., 2006. Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters, 28, 1867–1876.
  • Alcázar, R., Planas, J., Saxena, T., Zarza, X., Bortolotti, C., Cuevas, J., Bitrian, M., Tiburcio, A.F. and Altabella, T., 2010. Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over- expressing the homologous Arginine decarboxylase2 gene. Plant Physiology and Biochemistry, 48, 547– 552.
  • Ali, R.M., 2000. Role of putrescine in salt tolerance of Atropa belladonna plant. Plant Science, 152, 173–
  • Alverez, A.L., 2000. Salicylic acid in machinery of hypersensitive cell death and disease resistance. Plant Molecular Biology, 44, 429–442.
  • Armengaud, P., Breitling, R. and Amtmann, A., 2004. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiology, 136, 2556–2576.
  • Ashraf, M. and Foolad, M.R., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216.
  • Ashraf, M., Athar, H.R., Harris, P.J.C. and Kwon, T.R., 2008. Some prospective strategies for improving crop salt tolerance. Advances in Agronomy, 97, 45– 110.
  • Ashraf, M. and Akram, N.A., 2009. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnology Advances, 27, 744–752.
  • Ashraf, M. and Akram, N., 2010. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences, 29, 162– 190.
  • Bagni, N. and Tassoni, A., 2001. Biosynthesis, oxidation and conjugation of aliphatic polyamines in plants. Amino Acids, 20, 301–317.
  • Belozerova, N.S., Baik, A.S., Butsanets, P.A., Kusnetsov, V.V., Shugaev, A.G. and Pojidaeva, E.S., 2014. Effect of salicylic acid on the alternative pathway of yellow lupine respiration. Russian Journal of Plant Physiology, 61, 38–46.
  • Bertoldi, D., Tassoni, A., Martinelli, L. and Bagni, N., 2004. Polyamines and somatic embryogenesis in two Vitis vinifera cultivars. Physiologia Plantarum, 120, 657–666.
  • Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P.O., Nam, H.G., Lin, J.F., Wu, S.H., Swidzinski, J., Ishizaki, K. and Leaver, C.J., 2005. Comparative significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. The Plant Journal, 42, 567–585. analysis reveals
  • Cameron, R.K., 2000. Salicylic acid and its role in plant defense responses: what do we really know? Physiological and Molecular Plant Pathology, 56, 91– 93.
  • Capell, T., Bassie, L. and Christou, P., 2004. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proceedings of the National Academy of Science USA, 101, 9909– 9914.
  • Chai, Y.Y., Jiang, C.D., Shi, L., Shi, T.S. and Gu, W.B., 2010. Effects of exogenous spermine on sweet sorghum during germination under salinity. Biologia Plantarum, 54, 145–148.
  • Chen, H.-J., Hou, W.-C., Kuc, J. and Lin, Y.-H., 2001. Ca2+- dependent and Ca2+-independent excretion modes of salicylic acid in tobacco cell suspension culture. Journal of Experimental Botany, 52, 1219–1226.
  • Chinnusamy, V., Jagendorf, A. and Zhu, J.-K., 2005. Understanding and improving salt tolerance in plants. Crop Science, 45, 437–448.
  • Choudhary, S.P., Oral, H.V., Bhardwaj, R., Yu, J.-Q. and Tran, L.-S.P., 2013. Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. Journal of Experimental Botany, 63, 5659–5675.
  • Cona, A., Rea, G., Angelini, R., Federico, R. and Tavladoraki, P.,2006. Functions of amine oxidases in plant development and defence. Trends in Plant Science, 11, 80–88.
  • Couèe, I., Hummel, I., Sulmon, C., Gouesbet, C. and El Amrani, A., 2004. Involvement of polyamines in root development. Plant Cell Tissue and Organ Culture, 76, 1–10.
  • Cvikrová, M., Gemperlová, L., Martincová, O. and Vanková, R., 2013. Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing Physiology and Biochemistry, 73, 7–15. tobacco plants. Plant
  • Dean, J.V., Mohammed, L.A. and Fitzpatrick, T., 2005. The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta, 221, 287– 296.
  • Dean, J.V. and Delaney, S.P., 2008. Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyl-transferase mutants of Arabidopsis thaliana. Physiologia Plantarum, 132, 417–425.
  • Deef, H.E., 2007. Influence of salicylic acid on stress tolerance during seed germination of Triticum aestivum and Hordeum vulgare. Advances in Biological Research, 1, 40–48.
  • Dong, C., Wang, X. and Shang, Q., 2011. Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings. Scientia Horticulturae, 129, 629–636.
  • Fariduddin, Q., Hayat, S. and Ahmad, A., 2003. Salicylic net acid carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica, 41, 281–284.
  • photosynthetic rate,
  • Fienberg, A.A., Choi, J.H., Lubich, W.P. and Sung, Z.R., 1984. Developmental regulation of polyamine metabolism in growth and differentiation of carrot culture. Planta, 162, 532–539.
  • Flowers, T.J. and Yeo, A.R., 1995. Breeding for salinity resistance in crop plants: where next? Australian Journal of Plant Physiology, 22, 875–884.
  • Forouhar, F., Yang, Y., Kumar, D., Chen, Y., Fridman, E., Park, S.W., Chiang, Y., Acton, T.B., Montelione, G.T., Pichersky, E., Klessig, D.F. and Tong, L., 2005. Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proceedings of the National Academy of Science USA, 102, 1773–1778.
  • Franceschetti, M., Hanfrey, C., Scaramagli, S., Torrigiani, P., Bagni, N., Burtin, D. and Michael, A.J., 2001. Characterization of monocot and dicot plant S- adenosyl-L-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames. Biochemistry Journal, 53, 403–409.
  • Garcion, C. and Métraux, J.-P., 2006. Salicylic acid. In Signaling, Plant Hormone
  • Oxford: Blackwell Publishing Ltd. 24, 229–255.
  • Garcion, C., Lohman, A., Lamodiere, E., Catinot, J. and Buchala, A., 2008. Characterization and biological function of the ISOCHORISMATE SYNTHASE 2 gene of Arabidopsis thaliana. Plant Physiology, 147, 1279– 1287.
  • Gautam, S. and Singh, P.K., 2009. Salicylic acid-induced salinity tolerance in corn grown under NaCl stress. Acta Physiologia Plantarum, 31, 1185–1190.
  • Ge, C., Cui, X., Wang, Y., Hu, Y., Fu, Z., Zhang, D., Cheng, Z. and Li, J., 2006. BUD2, encoding an S- adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Research, 16, 446–456.
  • Gill, S.S. and Tuteja, N., 2010. Polyamines and abiotic stress tolerance in plants. Plant Signaling and Behavior, 51, 26–33.
  • Groppa, M.D. and Benavides, M.P., 2007. Polyamines and abiotic stress: recent advances. Amino Acids, 34, 35–45.
  • Grün, S., Lindermayr, C., Sell, S. and Durner, J., 2006. Nitric oxide and gene regulation in plants. Journal of Experimental Botany, 57, 507–516.
  • Gunes, A., Inal, A., Alpaslan, M., Cicek, N., Guneri, E., Eraslan, F. and Guzelordu, T., 2005. Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.). Archives of Agronomy and Soil Science, 51, 687–695.
  • Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E.G. and Cicek, N., 2007. Salicylic acid induced changes on some physiological parame- ters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164, 728–736.
  • Gutierrez-Coronado, M., Trejo, C.L. and Larque- Saavedra, A., 1998. Effects of salicylic acid on the growth of roots and shoots in soybean. Plant Physiology and Biochemistry, 36, 563–565.
  • Hanzawa, Y., Takahashi, T., Michael, A.J., Burtin, D., Long, D., Pineiro, M., Coupland, G. and Komeda, Y., 2000. ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO Journal, 19, 4248–4256.
  • Hanzawa, Y., Imai, A., Michael, A.J., Komeda, Y. and Takahashi, T., 2002. Characterization of the spermidine Arabidopsis thaliana. FEBS Letters, 527, 176–180.
  • Hashimoto, T., Tamaki, K., Suzuki, K. and Yamada, Y., 1998. Molecular cloning of plant spermidine synthases. Plant and Cell Physiology, 39, 73–79.
  • Hayat, S., Fariduddin, Q., Ali, B. and Ahmad, A., 2005. Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agronomica Hungarica, 53, 433–437.
  • Hayat, Q., Hayat, S., Irfan, M. and Ahmad, A., 2010. Effect of exogenous salicylic acid under changing environment: Experimental Botany, 68, 14–25. Environmental and
  • He, Y. and Zhu, Z.J., 2008. Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. Biologia Plantarum, 52, 792–795.
  • Holuigue, L., Salinas, P., Blanco, F. and Garreton, V., 2007. Salicylic acid and reactive oxygen species in the activation of stress defense genes. In: Hayat, S., Ahmad, A. (Eds.), Salicylic Acid: A Plant Hormone. Springer, Dordrecht, The Netherlands. pp. 197–246.
  • Hummel, I., Gouesbet, G., El Amrani, A., Ainouche, A. and Couee, I., 2004. Characterization of the two arginine decarboxylase (polyamine biosynthesis) paralogues of the endemic subantarctic cruciferous species Pringlea antiscorbutica and analysis of their differential expression during development and response to environmental stress. Gene, 342, 199– 209.
  • Hussain, S.S., Ali, M., Ahmad, M. and Siddique, K.H.M., 2011. Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances, 29, 300–311.
  • Imai, R., Ali, A., Pramanik, H.R., Nakaminami, K., Sentoku, N. and Kato, H., 2004. A distinctive class of spermidine synthase is involved in chilling response in rice. Journal of Plant Physiology, 161, 883–886.
  • Janowitz, T., Kneifel, H. and Piotrowski, M., 2003. Identification and characterization of plant agmatine iminohydrolase, the last missing link in polyamine biosynthesis of plants. FEBS Letters, 544, 258–261.
  • Kakkar, R.K. and Sawhney, V.K., 2002. Polyamine research in plants. A changing perspective. Physiologia Plantarum, 116, 281–292.
  • Kavi Kishore, P.B., Sangam, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan, P. and Sreenivasulu, N., 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science, 88, 424–438.
  • Kawano, T., Furuichi, T. and Muto, S., 2004. Controlled free salicylic acid levels and corresponding signaling mechanisms in plants. Plant Biotechnology, 21, 319–
  • Kaydan, D., Yagmur, M. and Okut, N., 2007. Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L.). Tarim Bilimleri Dergisi, 13, 114–119.
  • Khodary, S.E.A., 2004. Effect of salicylic acid on growth, photosynthesis and carbohydrate metabolism in salt- stressed maize plants. International Journal of Agriculture and Biology, 6, 5–8.
  • Knott, J.M., Römer, P. and Sumper, M., 2007. Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Letters, 581, 3081–3086.
  • Kovácik, J., Klejdus, B., Hedbavny, J. and Backor, M., 2009. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology, 18, 544–554.
  • Kreps, J.A., Wu, Y., Chang, H., Zhu, T., Wang, X. and Harper, J.F., 2002. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology, 130, 2129–2141.
  • Kubiś, J., Floryszak-Wieczorek, J. and Arasimowicz- Jelonek, M., 2014. Polyamines induce adaptive responses in water deficit stressed cucumber roots. Journal of Plant Research, 127, 151–158.
  • Kuiper, P.J.C., Kuiper, D. and Schuit, J., 1988. Root functional under stress condition: an introduction. Plant and Soil, 111, 249–253.
  • Kusano, T., Yamaguchi, K., Berberich, T. and Takahashi, Y., 2007. The polyamine spermine rescues Arabidopsis from salinity and drought stresses. Plant Signaling and Behavior, 2, 250–251.
  • Kusano, T., Berberich, T., Tateda, C. and Takahashi, Y., 2008. Polyamines: essential factors for growth and survival. Planta, 228, 367–381.
  • Larher, F.R., Aziz, A., Gibon, Y., Trotel-Aziz, P., Sulpice, R. and Bouchereau, A., 2003. An assessment of the physiological properties of the so-called compatible solutes using in vitro experiments with leaf discs. Plant Physiology and Biochemistry, 41, 657–666.
  • Lee, S., Kim, S.-G. and Park, C.-M., 2010. Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 188, 626–637.
  • Lei, T., Yan, Y.C., Xi, D.H., Feng, H., Sun, X., Zhang, F., Xu, W.L., Liang, H.G. and Lin, H.H., 2008. Effects of salicylic acid on alternative pathway respiration and alternative oxidase expression in tobacco calli. Zeitschrift für Naturforschung, 63, 706–712.
  • Lei, T., Feng, H., Sun, X., Dai, Q.L., Zhang, F., Liang, H.G. and Lin, H.H., 2010. The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regulation, 60, 35–42.
  • Li, G., Peng, X., Wei, L. and Kang, G., 2013. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene, 529, 321–325.
  • Liu, K., Fu, H.H., Bei, Q.X. and Luan, S., 2000. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiology, 124, 1315–1325.
  • Liu, J.H., Kitashiba, H., Wang, J., Ban, Y. and Moriguchi, T., 2007. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnology, 24, 117–126.
  • Liu, J.H., Nakajima, I. and Moriguchi, T., 2011. Effects of salt and osmotic stresses on free polyamine content and expression of polyamine biosynthetic genes in Vitis vinifera. Biologia Plantarum, 55, 340–344.
  • Loutfy, N., El-Tayeb, M.A., Hassanen, A.M., Moustafa, M.F., Sakuma, Y. and Inouhe, M., 2012. Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum). Journal of Plant Research, 125, 173–184.
  • Lutts, S., Kinet, J.-M. and Bouharmont, J., 1996. Ethylene production in relation to salinity by leaves of rice (Oryza sativa L.) tolerance and exogenous putrescine application. Plant Science, 116, 15-25.
  • Martinez, C., Pons, E., Prats, G. and Leon, J., 2004. Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal, 37, 209–217.
  • Martin-Mex, R., Villanueva-Couoh, E., Herrera-Campos, T. and Larque-Saavedra, A., 2005. Positive effect of salicylates on the flowering of African violet. Scientica Horticulturae, 103, 499–502.
  • Michael, A.J., Furze, J.M., Rhodes, M.J.C. and Burtin, D., 1996 Molecular cloning and functional identification of Biochemistry Journal, 314, 241–248. decarboxylase cDNA.
  • Misra, N. and Saxena, P., 2009. Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science, 177, 181–189.
  • Montague, M., Koppenbrink, J. and Jaworski, E., 1978. Polyamine metabolism in embryogenic cells of Daucus carota. Changes in intracellular content and rates of synthesis. Plant Physiology, 62, 430–433.
  • Morris, K., MacKerness, S. A., Page, T., John, C. F., Murphy, A. M., Carr, J. P. and Buchanan-Wollaston, V., 2000. Salicylic acid has a role in regulating gene expression during leaf senescence. The Plant Journal, 23, 677–685.
  • Munns, R. and Tester, M., 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651– 681.
  • Nazar, R., Iqbal, N., Syeed, S. and Khan, N., 2011. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation differentially in two mungbean. Journal of Plant Physiology, 168, 807–815. metabolism
  • Noreen, S. and Ashraf, M., 2008. Alleviation of adverse effects of salt-stress on sunflower (Helianthus annuus L.) by exogenous application of salicylic acid: growth and photosynthesis. Pakistan Journal of Botany, 40, 1657–1663.
  • Pandey, S., Ranade, S., Nagar, P.K. and Kumar, N., 2000. Role of polyamines and ethylene as modulators of plant senescence. Journal of Bioscience, 25, 291–299.
  • Panicot, M., Minguet, E.G., Ferrando, A., Alcázar, R., Blázquez, M.A., Carbonell, J., Altabella, T., Koncz, C. and Tiburcio, A.F., 2002. A polyamine metabolon involving aminopropyl transferase complexes in Arabidopsis. Plant Cell, 14, 2539–2551.
  • Park, J.-E., Park, J.-Y., Kim, Y.-S., Staswick, P.E., Jeon, J., Yun, J., Kim, S.Y., Kim, J., Lee, Y.H. and Park, C.M., 2007. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. Journal of Biological Chemistry, 282, 10036–10046.
  • Paschalidis, K.A. and Roubelakis-Angelakis, K.A., 2005. Sites and regulation of polyamine catabolism in the tobacco division/expansion, cell cycle progression, and vascular development. Plant Physiology, 138, 2174– 2184. with cell
  • Peréz-Amador, M.A., Leon, J., Green, P.J. and Carbonell, J., 2002. Induction of the Arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiology, 130, 1454–1463.
  • Piotrowski, M., Janowitz, T. and Kneifel, H., 2003. Plant C–N hydrolases and the identification of a plant N- carbamoylputrescine amidohydrolase involved in polyamine biosynthesis. Journal of Biological Chemistry, 278, 1708–1712.
  • Poór, P., Gémes, K., Horváth, F., Szepesi, A., Simon, M.L. and Tari, I., 2011. Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biology, 1, 105–114.
  • Qi, C.-H., Wang, F.-F., Zhang, H. and Liu, W.-Q., 2010. Overexpression adenosylmethionine synthetase gene promotes salt tolerance in transgenic tobacco. Acta Physiologiae Plantarum, 32, 263–269. Suadea salsa S
  • Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C. and Job, D., 2006. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiology, 141, 910–923.
  • Rao, M.V. and Davis, K.R., 1999. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. The Plant Journal, 17, 603–614.
  • Roads, D.M. and McIntosh, L., 1992. Salicylic acid regulation of respiration in higher plants: alternative oxidase expression. Plant Cell, 4, 1131–1139.
  • Ross, J.R., Nam, K.H., John, C., Auria, D. and Pichersky, E., 1999. S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases. Archives of Biochemistry and Biophysics, 367, 9–16.
  • Roychoudhury, A., Basu, S. and Sengupta, D.N., 2011. Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of Indica rice differing in their level of salt tolerance. Journal of Plant Physiology, 168, 317–328.
  • Shabala, S., Cuin, T.A. and Pottosin, I.I., 2007. Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Letters, 581, 1993–1999.
  • Shakirova, F.M., Sakhabutdinova, A.R., Bezrukova, M.V., Fatkhutdinova, R.A. and Fatkhutdinova, D.R., 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164, 317–322.
  • Shevyakova, N.I., Ilina, E.N., Stetsenko, L.A. and Kuznetsov, V.l.V., 2011. Nickel accumulation in rape shoots (Brassica napus L.) increased by putrescine. Internation Journal of Phytoremediation, 13, 345– 356.
  • Shi, H., Ye, T. and Chan, Z., 2013. Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermuda grass (Cynodon dactylon) response to salt and drought stresses. Journal of Proteome Research, 12, 4807–4829.
  • Shimakawa, A., Shiraya, T., Ishizuka, Y., Wada, K.C., Mitsui, T. and Takeno, K., 2012. Salicylic acid is involved in the regulation of starvation stress- induced flowering in Lemna paucicostata. Journal of Plant Physiology, 169, 987–991.
  • Shirasu, K., Nakajima, A., Rajshekar, K., Dixon, R.A. and Lamb, C., 1997. Salicylic acid potentiates an agonist- dependent gain control that amplifies pathogen signal in the activation of defence mechanism. Plant Cell, 9, 261–270.
  • Shu, S., Guo, S.-R., Sun, J. and Yuan, L.-Y., 2012. Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiologia Plantarum, 146, 285–296.
  • Singh, P. and Gautam, S., 2013. Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiologiae Plantarum, 35, 2345–2353.
  • Slocum, R.D., Kaur-Sawhney, R. and Galsto, A.W., 1984. The physiology and biochemistry of polyamines in plants. Archives of Biochemistry and Biophysics, 235, 283–303.
  • Snyman, M. and Cronjé, M.J., 2008. Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. Journal of Experimental Botany, 59, 2125–2132.
  • Song, J.T., 2006. Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease response in Arabidopsis thaliana. Molecular Cells, 22, 233–238.
  • Sripinyowanich, S., Klomsakul, P., Boonburapong, B., Bangyeekhun, T., Asami, T., Gu, H., Buaboocha, T. and Chadchawan, S., 2013. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress. Environmental and Experimental Botany, 86, 94–105.
  • Stevens, J., Senaratna, T. and Sivasithamparam, K., 2006. Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilization. Plant Growth Regulation, 49, 77–83.
  • Strawn, M.A., Marr, S.K., Inoue, K., Inada, N. and Zubieta, C., 2007. Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. Journal of Biological Chemistry, 282, 5919–5933.
  • Swain, S., Roy, S., Shah, J., Wees, S.V., Pieterse, C.M. and Nandi, A.K., 2011. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signaling from growth defects. Molecular Plant Pathology, 9, 855–865.
  • Szepesi, A., 2006. Salicylic acid improves the acclimation of Lycopersicon esculentum Mill. L. to high salinity by approximating its salt stress response to that of the wild species L. pennellii. Acta Biologica Szegediensis, 50, 177.
  • Takahashi, T. and Kakehi, J., 2010. Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Annals of Botany, 105, 1–6.
  • Urano, K., Yoshiba, Y., Nanjo, T., Igarashi, Y., Seki, M., Sekiguchi, F., Yamaguchi-Shinozaki, K. and Shinozaki, K., 2003. Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell and Environment, 26, 1917–1926.
  • Urano, K., Yoshiba, Y., Nanjo, T., Ito, Y., Seki, M., Yamaguchi-Shinozaki, K. and Shinozaki, K., 2004. Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochemistry and Biophysics Research Communication, 313, 369–375.
  • Urano, K., Hobo, T. and Shinozaki, K., 2005. Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Letters, 579, 1557–1564.
  • Vanderauwera, S., Zimmermann, P., Rombauts, S., Vandenabeele, S., Langebartels, C., Gruissem, W., Inze, D. and Breusegem, F., 2005. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabodopsis reveals a high light- induced anthocyanin biosynthesis. Plant Physiology, 139, 806–821. cluster involved
  • Velikova, V., Yordanov, I. and Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain- treated bean plants: protective role of exogenous polyamines. Plant Science, 151, 5966.
  • Vergnolle, C., Vaultier, M.N., Taconnat, L., Renou, J.P., Kader, J.C., Zachowski, A. and Ruelland, E., 2005. The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiology, 139, 1217–1233.
  • Verma, S. and Mishra, S.N., 2005. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. Journal of Plant Physiology, 162, 669–677.
  • Vicente, M.R.-S. and Plasencia, J., 2011. Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338.
  • Vinocur, B. and Altman, A., 2005. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16, 123–132.
  • Vlot, A., 2009. Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177–206.
  • Wada, K.C. and Takeno, K., 2010. Stress-induced flowering. Plant Signaling and Behavior, 5, 1–4.
  • Wada, K.C., Yamada, M., Shiraya, T. and Takeno, K., 2010. Salicylic acid and the flowering gene FLOWERING LOCUS T homolog are involved in poor- nutrition stress-induced flowering of Pharbitis nil. Journal of Plant Physiology, 167, 447–452.
  • Wang, X., Li, X., Meisenhelder, J., Hunter, T., Yoshida, S., Asami, T. and Chory, J., 2005a. Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Developmental Cell, 8, 855–865.
  • Wang, D., Weaver, N.D., Kesarwani, M. and Dong, X., 2005b. Induction of protein secretory pathway is required for systemic acquired resistance. Science, 308, 1036–1040.
  • Watson, M.W. and Malmberg, R.L., 1996. Regulation of Arabidopsis decarboxylase by potassium deficiency stress. Plant Physiology, 111, 1077–1083. Heynh arginine
  • Watson, M.W., Yu, W., Galloway, G.L. and Malmberg, R.L., 1997. Isolation and characterization of a second arginine decarboxylase cDNA from Arabidopsis (PGR97–114). Plant Physiology, 114, 1569.
  • Wi, S.J., Kim, W.T. and Park, K.Y., 2006. Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Reports, 25, 1111–1121.
  • Wimalasekera, R., Tebartz, F. and Scherer, G., 2011. Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Science, 181, 593–603.
  • Wildermuth, M.C., Dewdney, J., Wu, G. and Ausubel, F.M., 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414, 562–571.
  • Wildermuth, M.C., 2006. Variations on a theme: synthesis and modification of plant benzoic acids. Current Opinion in Plant Biology, 9, 288–296.
  • Xie, Z., Zhang, Z.-L., Hanzlik, S., Cook, E. and Sjen, Q.J., 2007. Salicylic acid inhibits gibberellin-induced alpha- amylase expression and seed germination via a pathway inducible WRKY gene. Plant Molecular Biology, 64, 293–303. an abscisic-acid
  • Xu, X., Shi, G., Ding, C. and Xu, Y., 2011. Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress. Plant Growth Regulation, 63, 251–258.
  • Yalpani, N., Silverman, P., Wilson, T.M.A., Kleier, D.A. and Raskin, I., 1991. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell, 3, 809–818.
  • Yoon, J.Y., Hamayun, M., Lee, S.-K. and Lee, I.-J., 2009. Methyl jasmonate alleviated salinity stress in soybean. Biotechnology, 12, 63–68. of Journal Crop Science and
  • Yusuf, M., Hasan, S.A., Ali, B., Hayat, S., Fariduddin, Q. and Ahmad, A., 2008. Effect of salicylic acid on salinity induced changes in Brassica juncea. Journal of Integrative Plant Biology, 50, 1096–1102.
  • Zhang, W., Jiang, B., Li, W., Song, H., Yu, Y. and Chen, J., 2009. Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Scientia Horticulture, 122, 200– 208.
  • Zhang, F., Zhang, H., Xia, Y., Wang, G., Xu, L. and Shen, Z., 2011. Exogenous application of salicylic acid alleviates cadmium toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa. Plant Cell Reports, 30, 1475–1483.
  • Zhao, H.Z. and Yang, H.Q., 2008. Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis Rehd. Scientia Horticulturae, 116, 442–447.
Toplam 146 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Mustafa Yıldız Bu kişi benim

Hakan Terzi Bu kişi benim

Nermin Akçalı Bu kişi benim

Yayımlanma Tarihi 1 Ağustos 2014
Gönderilme Tarihi 8 Ağustos 2015
Yayımlandığı Sayı Yıl 2014 Cilt: 14 Sayı: 2

Kaynak Göster

APA Yıldız, M., Terzi, H., & Akçalı, N. (2014). Bitki Tuz Stresi Toleransında Salisilik Asit ve Poliaminler (021002) (7-22). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 14(2), 7-22.
AMA Yıldız M, Terzi H, Akçalı N. Bitki Tuz Stresi Toleransında Salisilik Asit ve Poliaminler (021002) (7-22). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ağustos 2014;14(2):7-22.
Chicago Yıldız, Mustafa, Hakan Terzi, ve Nermin Akçalı. “Bitki Tuz Stresi Toleransında Salisilik Asit Ve Poliaminler (021002) (7-22)”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 14, sy. 2 (Ağustos 2014): 7-22.
EndNote Yıldız M, Terzi H, Akçalı N (01 Ağustos 2014) Bitki Tuz Stresi Toleransında Salisilik Asit ve Poliaminler (021002) (7-22). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 14 2 7–22.
IEEE M. Yıldız, H. Terzi, ve N. Akçalı, “Bitki Tuz Stresi Toleransında Salisilik Asit ve Poliaminler (021002) (7-22)”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 14, sy. 2, ss. 7–22, 2014.
ISNAD Yıldız, Mustafa vd. “Bitki Tuz Stresi Toleransında Salisilik Asit Ve Poliaminler (021002) (7-22)”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 14/2 (Ağustos 2014), 7-22.
JAMA Yıldız M, Terzi H, Akçalı N. Bitki Tuz Stresi Toleransında Salisilik Asit ve Poliaminler (021002) (7-22). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2014;14:7–22.
MLA Yıldız, Mustafa vd. “Bitki Tuz Stresi Toleransında Salisilik Asit Ve Poliaminler (021002) (7-22)”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 14, sy. 2, 2014, ss. 7-22.
Vancouver Yıldız M, Terzi H, Akçalı N. Bitki Tuz Stresi Toleransında Salisilik Asit ve Poliaminler (021002) (7-22). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2014;14(2):7-22.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.