Bir Cartan Uzayının Hemen Hemen Kähler Modeli Üzerindeki Hamilton-Jakobi Denklemleri
Yıl 2015,
Cilt: 15 Sayı: 3, 1 - 4, 31.12.2015
Ahmet Mollaoğulları
,
Mehmet Tekkoyun
Öz
Bilindiği üzere Hamilton modelleri modern geometride giderek önem kazanmaktadır. Çünkü bu
modeller mekanik sistemlerin farklı modellerini tasvir etmek için daha kolay bir yöntem sağlamaktadır .
Bundan dolayı çalışmada bahsi geçen model kullanılarak Bir Cartan Uzayının Hemen Hemen Kähler
modeli üzerinde Hamilton-Jakobi hareket denklemlerini elde edilmiştir. Sonuç kısmında ise ilgili
mekanik sistemler üzerinde elde edilen bulgular tartışılmıştır.
Kaynakça
- de Leon M., Rodrigues P. R., 1989, Methods of differential geometry in analytical mechanics, North-Hol. Math.St.,152, Elsevier Sc. Pub. Com. Inc., Amsterdam.
- Miron R., Hrimiuc D., Shimada H., Sabau S. V., 2001, The Geometry of Hamilton and Lagrange spaces, Hingham,MA, USA: Kluwer Academic Publishers.
- Tekkoyun M., Yayli Y., 2011, Mechanical systems on generalized-quaternionic IJGMMP, Vol.8, 7, 1-13. Kähler manifolds,
- Tekkoyun M., Çelik O., 2013, Mechanical systems on an almost Kähler model of Finsler manifold, International Journal of Geometric Methods in Modern Physics (IJGMMP), Vol. 10, 10, 18-27
- de León M., Rodrigues P. R., 1985, Generalized classical mechanics and field theory, North- Holland Mathematics Studies, North-Holland, Amsterdam.
- Crandall M., Lions P. L., 1983, Viscosity solutions of Hamilton-Jacobi equations, Trans.Amer. Math. Soc., 277 , 1-42.
- Zhu X., 2014, The optimal control related to Riemannian manifolds and the viscosity solutions to Hamilton- Jacobi-Bellman equations, Systems & Control Letters , 69, , 7-15
- Lions P. L., Papanicolaou G., and Varadhan S. R. S., Homogenization of Hamilton.Jacobi equations, unpublished.
- Graber P. J., 2014, Optimal control of first-order Hamilton-Jacobi bounded Hamiltonian, Applied Mathematics & Optimization, October 2014, 70, 185-224.