Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Dependence of Electronic Structure, Spectroscopic Features, and Interionic Weak Interactions on Alkyl Chain Length in [CnC1im][NTF2] (n=1,2, .. 8) Ionic Liquids

Yıl 2017, Cilt: 17 Sayı: 3, 1181 - 1191, 29.12.2017

Öz

In this work, electronic structure and some physical and optical properties [CnC1im][NTf2][1-alkyl-3- methylimidazolium bis(trifluoromethylsulfonyl)imide] (n = 1, 2, ... 8) were investigated theoretically via density functional theory calculations within the dependency of alkyl chain length. Geometrical structure and frequency calculations along with population analysis were performed at DFT-B3LYP/6- 311G(d,p) level of theory. Inter- and intra-molecular hydrogen bonding and van der Waals interactions were visualized by using reduced density gradient analysis. Geometrical structure and vibrational features were analyzed in detail for the strong interaction regions, and their relation to nano structural organization was explored. Characteristics of interionic interactions were fingerprinted on the basis of Becke surface and Hirshfeld analysis. Electronic transition properties were investigated by time dependent density functional theory. The reason for colored appearance comes with elongation of chain length is explained through absorbance spectra.

Kaynakça

  • Abbasian M., Balali-Mood M., Amoli H.S., and Masoumi A., 2017. A new solid-phase microextraction fiber for separation and determination of methamphetamines in human urine using sol-gel technique. Journal of Sol-Gel Science and Technology, 81(1), 247-260.
  • Becke, A. D., 1988. A multicenter numerical integration scheme for polyatomic molecules. The Journal of Chemical Physics, 88(4), 2547-2553.
  • Camper D., Bara J.E., Gin D. L. and Noble R.D., 2008. Room-Temperature Ionic Liquid−Amine Solutions: Tunable Solvents for Efficient and Reversible Capture of CO2. Industrial & Engineering Chemistry Research, 47(21), 8496-8498.
  • Chew, E. K., Lee K. Y., and Lau E. V., 2017. The role of carbon chain length in the attachment between microbubbles and aqueous solutions of ionic liquid. Journal of Colloid and Interface Science, 506, 452-459.
  • Deetlefs M., Hardacre C., Nieuwenhuyzen M., Padua A.A.H., Sheppard O., and Soper A.K., 2006. Liquid Structure of the Ionic Liquid 1,3-Dimethylimidazolium Bis{(trifluoromethyl)sulfonyl}amide. The Journal of Physical Chemistry B, 110(24), 12055-12061.
  • Dennington R., Keith T., and Millam J., 2009. GaussView. In Semichem Inc., Vol. Version 5.
  • Earle M.J., Gordon C.M., Plechkova N.V., Seddon K.R., and Welton T.,‖ 2006. Decolorization of Ionic Liquids for Spectroscopy. Analytical Chemistry, 79(2), 758-764.
  • Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016. Humphrey, William, Andrew Dalke, and Klaus Schulten 1996. VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33-38.
  • Hermann W., Cabrele C., and Herrmann C., 2012. How ionic liquids can help to stabilize native proteins. Physical Chemistry Chemical Physics, 14(2), 415-426.
  • Hiroyuki O., 2011. Electrochemical Aspects of Ionic Liquids, 2nd Edition. New York: Wiley.
  • Johnson E.R., Keinan S., Mori-Sánchez P., Contreras-García P., Cohen A.J. and Yang W., 2010. Revealing Noncovalent Interactions. Journal of the American Chemical Society, 132(18), 6498-6506.
  • Karabacak M., Karagöz D., and Kurt M., 2008. Experimental (FT-IR and FT-Raman spectra) and theoretical (ab initio HF, DFT) study of 2-chloro-5-methylaniline. Journal of Molecular Structure, 892(1–3), 25-31.
  • Khakan, H., and Yeganegi S., 2017. Molecular Dynamics Simulations of Amide Functionalized Imidazolium Bis(trifluoromethanesulfonyl)imide Dicationic Ionic Liquids. Journal of Physical Chemistry B, 121(31), 7455-7463.
  • Klahn, M., G. S. Lim, and P. Wu 2011. How ion properties determine the stability of a lipase enzyme in ionic liquids: A molecular dynamics study. Physical Chemistry Chemical Physics, 13(41), 18647-18660.
  • Kulkarni, P. S., and Carlos A. M. A., 2010. Deep desulfurization of diesel fuel using ionic liquids: current status and future challenges. Green Chemistry, 12(7), 1139-1149.
  • Kumar, A., and Venkatesu P., 2014. The stability of insulin in the presence of short alkyl chain imidazolium-based ionic liquids. RSC Advances, 4(9), 4487-4499.
  • Lopes C., José N. A., and Pádua A.A.H., 2006. Nanostructural Organization in Ionic Liquids. The Journal of Physical Chemistry B, 110(7), 3330-3335.
  • Maloney, A. G. P., Wood A.P., and Parsons S., 2014. Competition between hydrogen bonding and dispersion interactions in the crystal structures of the primary amines. CrystEngComm, 16(19), 3867-3882.
  • McKinnon, J.J., Spackman M.A., and Mitchell A.S., 2004. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallographica Section B, 60(6), 627-668.
  • McKinnon, J.J., Jayatilaka D., and Mark A. S., 2007. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chemical Communications, (37), 3814-3816.
  • Nagabalasubramanian P.B., Karabacak M., Periandy S., 2010. FT-IR, FT-Raman, ab initio and DFT structural and vibrational frequency analysis of 6-aminopenicillanic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(1), 183-190.
  • Plechkova, N.V., and Seddon K.R., 2008. Applications of ionic liquids in the chemical industry. Chemical Society Reviews, 37(1), 123-150.
  • Rawat, K. and Bohidara H. B., 2015. Heparin-like native protein aggregate dissociation by 1-alkyl-3-methyl imidazolium chloride ionic liquids. International Journal of Biological Macromolecules, 73, 23-30.
  • Russina O., Triolo A., Gontrani L., Caminiti R., Xiao D., Hines L.G.Jr, Bartsch R.A, Quitevis E.L., Plechkova N. and Seddon K.R., 2009. Morphology and intermolecular dynamics of 1-alkyl-3-methylimidazolium bis{(trifluoromethane)sulfonyl}amide ionic liquids: structural and dynamic evidence of nanoscale segregation. Journal of Physics: Condensed Matter, 21(42).
  • Sarangi S.S., Zhao W., Müller-Plathe F., Balasubramanian S., 2010. Correlation between dynamic heterogeneity and local structure in a room-temperature ionic liquid: a molecular dynamics study of [bmim][PF(6)]. ChemPhysChem, 11(9), 2001-10.
  • Satish L., Rana S., Arakha M., Rout L., Ekka B., Jha S., Dash P. Sahoo H., 2016. Impact of imidazolium-based ionic liquids on the structure and stability of lysozyme. Spectroscopy Letters, 49(6), 383-390.
  • Schutt T.C., Hegde G.A., Bharadwaj V.S., Johns A.J., Maupin C.M., 2017. Impact of Water-Dilution on the Solvation Properties of the Ionic Liquid 1-Methyltriethoxy-3-ethylimidazolium Acetate for Model Biomass Molecules. Journal of Physical Chemistry B, 121(4), 843-853.
  • Shoba D., Periandy S., Karabacak M., Ramalingam S., 2011. Vibrational spectroscopy (FT-IR and FT-Raman) investigation, and hybrid computational (HF and DFT) analysis on the structure of 2,3-naphthalenediol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83(1), 540-552.
  • Shvedene, N. V., Chernyshov D. V., and Pletnev I. V., 2008. Ionic liquids in electrochemical sensors. Russian Journal of General Chemistry, 78(12), 2507-2520.
  • Spackman, M. A., and Byrom P.G., 1997. A novel definition of a molecule in a crystal. Chemical Physics Letters, 267(3–4), 215-220.
  • Spackman, M.A. and Jayatilaka D., 2009. Hirshfeld surface analysis. CrystEngComm, 11(1), 19-32.
  • Spackman, M.A., and McKinnon J.J., 2002. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm, 4(66), 378-392.
  • Tang B., Bi W., Tian M., Row K.H., 2012. Application of ionic liquid for extraction and separation of bioactive compounds from plants. Journal of Chromatography B, 904(0), 1-21.
  • Tian L., and Chen F., 2012. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580-592.
  • Tokuda H., Hayamizu K., Ishii K., Susan A.B.H. , and Watanabe M., 2004. Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. Journal of Physical Chemistry B, 108(42), 16593-16600.
  • Tokuda H., Hayamizu K., Ishii K., Susan A.B.H. , and Watanabe M., 2005. Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. Journal of Physical Chemistry B, 109(13), 6103-6110.
  • Triolo A., Russina O., Bleif H.J., Di Cola E., 2007. Nanoscale Segregation in Room Temperature Ionic Liquids. The Journal of Physical Chemistry B, 111(18), 4641-4644.
  • Urahata, Sergio M., and Ribeiro Mauro C. C., 2005. Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations. The Journal of Chemical Physics, 122(2), 024511-9.
  • Wang H., Gurau G., and Rogers R.D., 2012. Ionic liquid processing of cellulose. Chemical Society Reviews, 41(4), 1519-1537.
  • Wang, Yanting, and Voth G.A., 2005. Unique Spatial Heterogeneity in Ionic Liquids. Journal of the American Chemical Society, 127(35), 12192-12193.
  • Wilkes, J. S. and Zaworotko M.J., 1992. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications, 0(13), 965-967.
  • Wishart J.F., and Ilya A.S., 2009. The Radiation Chemistry of Ionic Liquids and its Implications for their Use in Nuclear Fuel Processing. In Ionic Liquids: From Knowledge to Application. Pp. 119-134. ACS Symposium Series, Vol. 1030: American Chemical Society.
  • Wishart, J. F., 2009. Energy applications of ionic liquids. Energy & Environmental Science, 2(9), 956.
  • Wu B., Yamashita Y., Endo T., Takahashi K., Castner EW Jr., 2016. Structure and dynamics of ionic liquids: Trimethylsilylpropyl-substituted cations and bis(sulfonyl)amide anions. Journal of Chemical Physics, 145(24).
  • Xiao D., Hines L.G. Jr., Li S., Bartsch R.A., and Quitevis E.L., 2009. Effect of Cation Symmetry and Alkyl Chain Length on the Structure and Intermolecular Dynamics of 1,3-Dialkylimidazolium Bis(trifluoromethanesulfonyl)amide Ionic Liquids. Journal of Physical Chemistry B, 113(18), 6426-6433.
  • Xiao D., Rajian J.R., Cady A., Li S., Bartsch R.A, and Quitevis E.L., 2007. Nanostructural organization and anion effects on the temperature dependence of the optical Kerr effect spectra of ionic liquids. Journal of Physical Chemistry B, 111(18), 4669-4677.
  • Xiao D., Rajian J.R., Hines L.H.Jr., Li S., Bartsch R.A., and Quitevis E.L., 2008. Nanostructural Organization and Anion Effects in the Optical Kerr Effect Spectra of Binary Ionic Liquid Mixtures. Journal of Physical Chemistry B, 112(42), 13316-13325.
  • Yang P., Voth G.A., Xiao D., Hines L.G. Jr., Bartsch R.A., and Quitevis E.L., 2011. Nanostructural organization in carbon disulfide/ionic liquid mixtures: Molecular dynamics simulations and optical Kerr effect spectroscopy. Journal of Chemical Physics, 135(3).
  • Yang, Z.Z, Zhao Y.Y., and He L.H., 2011. CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Advances, 1(4), 545-567.
  • Zhou Jing C., Zhe L., Ai Y.H., 2017. Refractive properties of imidazolium ionic liquids with alanine anion C (n) mim Ala (n=2, 3, 4, 5, 6). Russian Journal of Physical Chemistry A, 91(10), 2044-2051.

[CnC1im][NTF2] (n = 1, 2, … 8) İyonik Sıvılarında Elektronik Yapı, Spektroskopik Özellikler ve İyonlar Arası Zayıf Etkileşmelerin Alkali Zincir Uzunluğuna Bağlılığının İncelenmesi

Yıl 2017, Cilt: 17 Sayı: 3, 1181 - 1191, 29.12.2017

Öz

Bu çalışmada, [CnC1im][NTf2][1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide] (n = 1, 2, … 8) için değişen alkali zincir uzunluğuna göre elektronik yapı, bazı fiziksel ve optik özelliklerin değişimi yoğunluk fonksiyonu teorisi (DFT) metotları kullanarak teorik olarak incelendi. Geometrik yapı ve frekans hesaplamaları popülasyon analizi ile birlikte DFT-B3LYP/6-311G(d,p) teori ve baz seti kullanılarak yapıldı. İndirgenmiş yoğunluk değişimleri analizi yapılarak iyon içi ve iyonlar arası hidrojen bağlanmaları ve van der Waals etkileşmeleri görüntülendi. Etkileşmelerin yoğun olduğu bölgeler için geometrik yapı ve titreşimsel özellikleri analiz edilerek nano yapısal organizasyonla ilişkisi araştırıldı. Becke yüzeyi ve Hirsfeld analizi temel alınarak iyonlar arası etkileşmelerin karakteristikleri tanımlandı. Elektronik geçiş özellikleri zamana bağlı yoğunluk fonksiyonu teorisi kullanılarak incelendi. Soğurma spektrumları ile iyonik sıvılarda zincir uzunluğuna bağlı olarak gözlenen renk değişimlerinin sebebi açıklandı.

Kaynakça

  • Abbasian M., Balali-Mood M., Amoli H.S., and Masoumi A., 2017. A new solid-phase microextraction fiber for separation and determination of methamphetamines in human urine using sol-gel technique. Journal of Sol-Gel Science and Technology, 81(1), 247-260.
  • Becke, A. D., 1988. A multicenter numerical integration scheme for polyatomic molecules. The Journal of Chemical Physics, 88(4), 2547-2553.
  • Camper D., Bara J.E., Gin D. L. and Noble R.D., 2008. Room-Temperature Ionic Liquid−Amine Solutions: Tunable Solvents for Efficient and Reversible Capture of CO2. Industrial & Engineering Chemistry Research, 47(21), 8496-8498.
  • Chew, E. K., Lee K. Y., and Lau E. V., 2017. The role of carbon chain length in the attachment between microbubbles and aqueous solutions of ionic liquid. Journal of Colloid and Interface Science, 506, 452-459.
  • Deetlefs M., Hardacre C., Nieuwenhuyzen M., Padua A.A.H., Sheppard O., and Soper A.K., 2006. Liquid Structure of the Ionic Liquid 1,3-Dimethylimidazolium Bis{(trifluoromethyl)sulfonyl}amide. The Journal of Physical Chemistry B, 110(24), 12055-12061.
  • Dennington R., Keith T., and Millam J., 2009. GaussView. In Semichem Inc., Vol. Version 5.
  • Earle M.J., Gordon C.M., Plechkova N.V., Seddon K.R., and Welton T.,‖ 2006. Decolorization of Ionic Liquids for Spectroscopy. Analytical Chemistry, 79(2), 758-764.
  • Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016. Humphrey, William, Andrew Dalke, and Klaus Schulten 1996. VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33-38.
  • Hermann W., Cabrele C., and Herrmann C., 2012. How ionic liquids can help to stabilize native proteins. Physical Chemistry Chemical Physics, 14(2), 415-426.
  • Hiroyuki O., 2011. Electrochemical Aspects of Ionic Liquids, 2nd Edition. New York: Wiley.
  • Johnson E.R., Keinan S., Mori-Sánchez P., Contreras-García P., Cohen A.J. and Yang W., 2010. Revealing Noncovalent Interactions. Journal of the American Chemical Society, 132(18), 6498-6506.
  • Karabacak M., Karagöz D., and Kurt M., 2008. Experimental (FT-IR and FT-Raman spectra) and theoretical (ab initio HF, DFT) study of 2-chloro-5-methylaniline. Journal of Molecular Structure, 892(1–3), 25-31.
  • Khakan, H., and Yeganegi S., 2017. Molecular Dynamics Simulations of Amide Functionalized Imidazolium Bis(trifluoromethanesulfonyl)imide Dicationic Ionic Liquids. Journal of Physical Chemistry B, 121(31), 7455-7463.
  • Klahn, M., G. S. Lim, and P. Wu 2011. How ion properties determine the stability of a lipase enzyme in ionic liquids: A molecular dynamics study. Physical Chemistry Chemical Physics, 13(41), 18647-18660.
  • Kulkarni, P. S., and Carlos A. M. A., 2010. Deep desulfurization of diesel fuel using ionic liquids: current status and future challenges. Green Chemistry, 12(7), 1139-1149.
  • Kumar, A., and Venkatesu P., 2014. The stability of insulin in the presence of short alkyl chain imidazolium-based ionic liquids. RSC Advances, 4(9), 4487-4499.
  • Lopes C., José N. A., and Pádua A.A.H., 2006. Nanostructural Organization in Ionic Liquids. The Journal of Physical Chemistry B, 110(7), 3330-3335.
  • Maloney, A. G. P., Wood A.P., and Parsons S., 2014. Competition between hydrogen bonding and dispersion interactions in the crystal structures of the primary amines. CrystEngComm, 16(19), 3867-3882.
  • McKinnon, J.J., Spackman M.A., and Mitchell A.S., 2004. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallographica Section B, 60(6), 627-668.
  • McKinnon, J.J., Jayatilaka D., and Mark A. S., 2007. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chemical Communications, (37), 3814-3816.
  • Nagabalasubramanian P.B., Karabacak M., Periandy S., 2010. FT-IR, FT-Raman, ab initio and DFT structural and vibrational frequency analysis of 6-aminopenicillanic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(1), 183-190.
  • Plechkova, N.V., and Seddon K.R., 2008. Applications of ionic liquids in the chemical industry. Chemical Society Reviews, 37(1), 123-150.
  • Rawat, K. and Bohidara H. B., 2015. Heparin-like native protein aggregate dissociation by 1-alkyl-3-methyl imidazolium chloride ionic liquids. International Journal of Biological Macromolecules, 73, 23-30.
  • Russina O., Triolo A., Gontrani L., Caminiti R., Xiao D., Hines L.G.Jr, Bartsch R.A, Quitevis E.L., Plechkova N. and Seddon K.R., 2009. Morphology and intermolecular dynamics of 1-alkyl-3-methylimidazolium bis{(trifluoromethane)sulfonyl}amide ionic liquids: structural and dynamic evidence of nanoscale segregation. Journal of Physics: Condensed Matter, 21(42).
  • Sarangi S.S., Zhao W., Müller-Plathe F., Balasubramanian S., 2010. Correlation between dynamic heterogeneity and local structure in a room-temperature ionic liquid: a molecular dynamics study of [bmim][PF(6)]. ChemPhysChem, 11(9), 2001-10.
  • Satish L., Rana S., Arakha M., Rout L., Ekka B., Jha S., Dash P. Sahoo H., 2016. Impact of imidazolium-based ionic liquids on the structure and stability of lysozyme. Spectroscopy Letters, 49(6), 383-390.
  • Schutt T.C., Hegde G.A., Bharadwaj V.S., Johns A.J., Maupin C.M., 2017. Impact of Water-Dilution on the Solvation Properties of the Ionic Liquid 1-Methyltriethoxy-3-ethylimidazolium Acetate for Model Biomass Molecules. Journal of Physical Chemistry B, 121(4), 843-853.
  • Shoba D., Periandy S., Karabacak M., Ramalingam S., 2011. Vibrational spectroscopy (FT-IR and FT-Raman) investigation, and hybrid computational (HF and DFT) analysis on the structure of 2,3-naphthalenediol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83(1), 540-552.
  • Shvedene, N. V., Chernyshov D. V., and Pletnev I. V., 2008. Ionic liquids in electrochemical sensors. Russian Journal of General Chemistry, 78(12), 2507-2520.
  • Spackman, M. A., and Byrom P.G., 1997. A novel definition of a molecule in a crystal. Chemical Physics Letters, 267(3–4), 215-220.
  • Spackman, M.A. and Jayatilaka D., 2009. Hirshfeld surface analysis. CrystEngComm, 11(1), 19-32.
  • Spackman, M.A., and McKinnon J.J., 2002. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm, 4(66), 378-392.
  • Tang B., Bi W., Tian M., Row K.H., 2012. Application of ionic liquid for extraction and separation of bioactive compounds from plants. Journal of Chromatography B, 904(0), 1-21.
  • Tian L., and Chen F., 2012. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580-592.
  • Tokuda H., Hayamizu K., Ishii K., Susan A.B.H. , and Watanabe M., 2004. Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. Journal of Physical Chemistry B, 108(42), 16593-16600.
  • Tokuda H., Hayamizu K., Ishii K., Susan A.B.H. , and Watanabe M., 2005. Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. Journal of Physical Chemistry B, 109(13), 6103-6110.
  • Triolo A., Russina O., Bleif H.J., Di Cola E., 2007. Nanoscale Segregation in Room Temperature Ionic Liquids. The Journal of Physical Chemistry B, 111(18), 4641-4644.
  • Urahata, Sergio M., and Ribeiro Mauro C. C., 2005. Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations. The Journal of Chemical Physics, 122(2), 024511-9.
  • Wang H., Gurau G., and Rogers R.D., 2012. Ionic liquid processing of cellulose. Chemical Society Reviews, 41(4), 1519-1537.
  • Wang, Yanting, and Voth G.A., 2005. Unique Spatial Heterogeneity in Ionic Liquids. Journal of the American Chemical Society, 127(35), 12192-12193.
  • Wilkes, J. S. and Zaworotko M.J., 1992. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications, 0(13), 965-967.
  • Wishart J.F., and Ilya A.S., 2009. The Radiation Chemistry of Ionic Liquids and its Implications for their Use in Nuclear Fuel Processing. In Ionic Liquids: From Knowledge to Application. Pp. 119-134. ACS Symposium Series, Vol. 1030: American Chemical Society.
  • Wishart, J. F., 2009. Energy applications of ionic liquids. Energy & Environmental Science, 2(9), 956.
  • Wu B., Yamashita Y., Endo T., Takahashi K., Castner EW Jr., 2016. Structure and dynamics of ionic liquids: Trimethylsilylpropyl-substituted cations and bis(sulfonyl)amide anions. Journal of Chemical Physics, 145(24).
  • Xiao D., Hines L.G. Jr., Li S., Bartsch R.A., and Quitevis E.L., 2009. Effect of Cation Symmetry and Alkyl Chain Length on the Structure and Intermolecular Dynamics of 1,3-Dialkylimidazolium Bis(trifluoromethanesulfonyl)amide Ionic Liquids. Journal of Physical Chemistry B, 113(18), 6426-6433.
  • Xiao D., Rajian J.R., Cady A., Li S., Bartsch R.A, and Quitevis E.L., 2007. Nanostructural organization and anion effects on the temperature dependence of the optical Kerr effect spectra of ionic liquids. Journal of Physical Chemistry B, 111(18), 4669-4677.
  • Xiao D., Rajian J.R., Hines L.H.Jr., Li S., Bartsch R.A., and Quitevis E.L., 2008. Nanostructural Organization and Anion Effects in the Optical Kerr Effect Spectra of Binary Ionic Liquid Mixtures. Journal of Physical Chemistry B, 112(42), 13316-13325.
  • Yang P., Voth G.A., Xiao D., Hines L.G. Jr., Bartsch R.A., and Quitevis E.L., 2011. Nanostructural organization in carbon disulfide/ionic liquid mixtures: Molecular dynamics simulations and optical Kerr effect spectroscopy. Journal of Chemical Physics, 135(3).
  • Yang, Z.Z, Zhao Y.Y., and He L.H., 2011. CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Advances, 1(4), 545-567.
  • Zhou Jing C., Zhe L., Ai Y.H., 2017. Refractive properties of imidazolium ionic liquids with alanine anion C (n) mim Ala (n=2, 3, 4, 5, 6). Russian Journal of Physical Chemistry A, 91(10), 2044-2051.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fehmi Bardak

Yayımlanma Tarihi 29 Aralık 2017
Gönderilme Tarihi 4 Ocak 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 17 Sayı: 3

Kaynak Göster

APA Bardak, F. (2017). Investigation of Dependence of Electronic Structure, Spectroscopic Features, and Interionic Weak Interactions on Alkyl Chain Length in [CnC1im][NTF2] (n=1,2, .. 8) Ionic Liquids. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(3), 1181-1191.
AMA Bardak F. Investigation of Dependence of Electronic Structure, Spectroscopic Features, and Interionic Weak Interactions on Alkyl Chain Length in [CnC1im][NTF2] (n=1,2, . 8) Ionic Liquids. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Aralık 2017;17(3):1181-1191.
Chicago Bardak, Fehmi. “Investigation of Dependence of Electronic Structure, Spectroscopic Features, and Interionic Weak Interactions on Alkyl Chain Length in [CnC1im][NTF2] (n=1,2, . 8) Ionic Liquids”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17, sy. 3 (Aralık 2017): 1181-91.
EndNote Bardak F (01 Aralık 2017) Investigation of Dependence of Electronic Structure, Spectroscopic Features, and Interionic Weak Interactions on Alkyl Chain Length in [CnC1im][NTF2] (n=1,2, . 8) Ionic Liquids. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17 3 1181–1191.
IEEE F. Bardak, “Investigation of Dependence of Electronic Structure, Spectroscopic Features, and Interionic Weak Interactions on Alkyl Chain Length in [CnC1im][NTF2] (n=1,2, .. 8) Ionic Liquids”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 17, sy. 3, ss. 1181–1191, 2017.
ISNAD Bardak, Fehmi. “Investigation of Dependence of Electronic Structure, Spectroscopic Features, and Interionic Weak Interactions on Alkyl Chain Length in [CnC1im][NTF2] (n=1,2, . 8) Ionic Liquids”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17/3 (Aralık 2017), 1181-1191.
JAMA Bardak F. Investigation of Dependence of Electronic Structure, Spectroscopic Features, and Interionic Weak Interactions on Alkyl Chain Length in [CnC1im][NTF2] (n=1,2, . 8) Ionic Liquids. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2017;17:1181–1191.
MLA Bardak, Fehmi. “Investigation of Dependence of Electronic Structure, Spectroscopic Features, and Interionic Weak Interactions on Alkyl Chain Length in [CnC1im][NTF2] (n=1,2, . 8) Ionic Liquids”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 17, sy. 3, 2017, ss. 1181-9.
Vancouver Bardak F. Investigation of Dependence of Electronic Structure, Spectroscopic Features, and Interionic Weak Interactions on Alkyl Chain Length in [CnC1im][NTF2] (n=1,2, . 8) Ionic Liquids. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2017;17(3):1181-9.