Bu çalışmada, yatay yönde yer sarsıntısına maruz kalan prizmatik bir tankta gerçekleşen çalkalanma modellemesi düzgünleştirilmiş parçacık hidrodinamiği yöntemiyle (SPH) gerçekleştirilmiştir. SPH yöntemi sonuçları bir deney ve ANSYS Fluent modeli sonuçlarıyla doğrulanmıştır. Deneyden ve Fluent modeliyle elde edilen çalkalanma profilleri burada ele alınan SPH yöntemi sonucuyla müthiş bir uyumluluk göstermektedir. Bu çalışma irdelenen SPH yöntemi, süreksizlikleri yakalama ve hareketli sınırları ele almada oldukça etkilidir.
Batchelor, G.K., 1974. An Introduction to Fluid Mechanics, 4th. Edn. Cambridge University Press, Cambridge.
Bulian, G, Cercos-Pita, J.L. 2018. Co-simulation of ship motions and sloshing in tanks, Ocean Engineering, 152:353–376 Crespo, A.J.C., 2008. Application of the Smoothed Particle Hydrodynamics Model SPHysics to Freesurface Hydrodynamics, PhD Thesis, Tese de doutorado, Universidade de Vigo, Espanha.
Chen, J.Y, Lien, F.S., 2018, Simulations for soil explosion and its effects on structures using SPH method, International Journal of Impact Engineering, 112: 41-51.
Desbrun, M., Gascuel, M.P., 1996, Smoothed Particles: A new paradigm for animating highly deformable bodies, Proceedings of Eurographics Workshop on Computer Animation and Simulation ‘96, pp. 61-76, Springer.
El Damatty A.A., Sweedan A.M.I., 2006, Equivalent mechanical analog for dynamic analysis of pure conical tanks, Thin Walled Structures, 44: 429-440.
Frandsen, J.B., 2004, Sloshing motions in excited tanks, Journal of Computational Physics, 196:53-87
Gingold, R.A., Monaghan, J.J., 1977, Smoothed particle hydrodynamics: Theory and application to the non-spherical stars, Mon. Not. R. Astron. Soc.,181:375-389.
Graham, E.W., Rodriguez, A.M., 1952,The characteristics of fuel motion which affect the motion of the airplane dynamics, Applied Mechanics,19: 381-388.
Hanson, R.D., 1973, Behavior of Liquid Storage Tanks, The Great Alaska Earthquake of 1964, National Academy of Science, Washington D.C.,7:331-339.
Haroun, M.A., Housner, G.W., 1981, Seismic Design of Liquid-Storage Tanks, Journal of Technical Councils, ASCE, 107: 191-207.
Housner, G.W., 1963, The dynamic behaviour of water tanks, Bulletin of the Seismological Society of America, 53: 381-387.
Khanpour, M., Zarrati, A.R., Kolahdoozan, M., Shakibaeinia , A., Amirshahi, S.M., 2016, Mesh-Free SPH Modeling of Sediment Scouring and Flushing, Computers and Fluids, 129: 67–78.
Liu, G.R., Liu, M.B., 2003, Smoothed Particle Hydrodynamics, a meshfree particle method, 59-101, World Scientific Publishing Co. Pte.Ltd., Singapore.
Lucy, L.B., 1977, A numerical approach to the testing of the fission hypothesis, Astron. J., 83: 1013-1024.
Monaghan, J.J., 1989, On the Problem of Penetration in Particle Methods, Journal of Computational Physics, 82(1): 1–15.
Monaghan, J.J., 1995, Heat Conduction with discontinuous conductivity, Applied Mathematics Reports and Preprints 95/18, Monash University, Melbourne, Australia.
Morris, J.P., Fox, P.J., Zhu, Y., 1997, Modeling Low Reynolds Number Incompressible Flows Using SPH, Journal of Computational Physics, 136: 214-226.
Nakayama, T., Washizu, K., 1981, The Boundary Element Method Applied to The Analysis of Two-Dimensional Nonlinear Sloshing Problems, International Journal For Numerical Methods in Engineering, 17: 1631-1646.
Sames, P.C., Marcouly, D., Schellin, T.E., 2002, Sloshing in rectangular and cylindrical tanks, J. Ship Res., 46:186-200.
Steinbrugge, K.V., Rodrigo, F.A., 1963, The Chilean Earthquakes of May 1960: A Structural Engineering Viewpoint, Bulletin of the Seismological Society of America, 53: 225-307.
Vignjevic, R., Campbell, J., 2009, Review of the development of the smooth particle hydrodynamics (SPH) method, in S.Hiermaier, editor, Predictive modeling of dynamic processes, 367-396, Springer, Dordrecht Heidelberg London New York.
Wang, L., Wang, Z., Li, Y., 2013, A SPH simulation on large-amplitude sloshing for fluids in a two-dimensional tank, Earthq Eng & Eng Vib, 12: 135-142.
Wu, G.X., Ma, Q.W., Taylor, R.E., 1998, Numerical simulation of sloshing waves in a 3D tank based on a finite element method, Appl. Ocean Res., 20: 337-355.
Batchelor, G.K., 1974. An Introduction to Fluid Mechanics, 4th. Edn. Cambridge University Press, Cambridge.
Bulian, G, Cercos-Pita, J.L. 2018. Co-simulation of ship motions and sloshing in tanks, Ocean Engineering, 152:353–376 Crespo, A.J.C., 2008. Application of the Smoothed Particle Hydrodynamics Model SPHysics to Freesurface Hydrodynamics, PhD Thesis, Tese de doutorado, Universidade de Vigo, Espanha.
Chen, J.Y, Lien, F.S., 2018, Simulations for soil explosion and its effects on structures using SPH method, International Journal of Impact Engineering, 112: 41-51.
Desbrun, M., Gascuel, M.P., 1996, Smoothed Particles: A new paradigm for animating highly deformable bodies, Proceedings of Eurographics Workshop on Computer Animation and Simulation ‘96, pp. 61-76, Springer.
El Damatty A.A., Sweedan A.M.I., 2006, Equivalent mechanical analog for dynamic analysis of pure conical tanks, Thin Walled Structures, 44: 429-440.
Frandsen, J.B., 2004, Sloshing motions in excited tanks, Journal of Computational Physics, 196:53-87
Gingold, R.A., Monaghan, J.J., 1977, Smoothed particle hydrodynamics: Theory and application to the non-spherical stars, Mon. Not. R. Astron. Soc.,181:375-389.
Graham, E.W., Rodriguez, A.M., 1952,The characteristics of fuel motion which affect the motion of the airplane dynamics, Applied Mechanics,19: 381-388.
Hanson, R.D., 1973, Behavior of Liquid Storage Tanks, The Great Alaska Earthquake of 1964, National Academy of Science, Washington D.C.,7:331-339.
Haroun, M.A., Housner, G.W., 1981, Seismic Design of Liquid-Storage Tanks, Journal of Technical Councils, ASCE, 107: 191-207.
Housner, G.W., 1963, The dynamic behaviour of water tanks, Bulletin of the Seismological Society of America, 53: 381-387.
Khanpour, M., Zarrati, A.R., Kolahdoozan, M., Shakibaeinia , A., Amirshahi, S.M., 2016, Mesh-Free SPH Modeling of Sediment Scouring and Flushing, Computers and Fluids, 129: 67–78.
Liu, G.R., Liu, M.B., 2003, Smoothed Particle Hydrodynamics, a meshfree particle method, 59-101, World Scientific Publishing Co. Pte.Ltd., Singapore.
Lucy, L.B., 1977, A numerical approach to the testing of the fission hypothesis, Astron. J., 83: 1013-1024.
Monaghan, J.J., 1989, On the Problem of Penetration in Particle Methods, Journal of Computational Physics, 82(1): 1–15.
Monaghan, J.J., 1995, Heat Conduction with discontinuous conductivity, Applied Mathematics Reports and Preprints 95/18, Monash University, Melbourne, Australia.
Morris, J.P., Fox, P.J., Zhu, Y., 1997, Modeling Low Reynolds Number Incompressible Flows Using SPH, Journal of Computational Physics, 136: 214-226.
Nakayama, T., Washizu, K., 1981, The Boundary Element Method Applied to The Analysis of Two-Dimensional Nonlinear Sloshing Problems, International Journal For Numerical Methods in Engineering, 17: 1631-1646.
Sames, P.C., Marcouly, D., Schellin, T.E., 2002, Sloshing in rectangular and cylindrical tanks, J. Ship Res., 46:186-200.
Steinbrugge, K.V., Rodrigo, F.A., 1963, The Chilean Earthquakes of May 1960: A Structural Engineering Viewpoint, Bulletin of the Seismological Society of America, 53: 225-307.
Vignjevic, R., Campbell, J., 2009, Review of the development of the smooth particle hydrodynamics (SPH) method, in S.Hiermaier, editor, Predictive modeling of dynamic processes, 367-396, Springer, Dordrecht Heidelberg London New York.
Wang, L., Wang, Z., Li, Y., 2013, A SPH simulation on large-amplitude sloshing for fluids in a two-dimensional tank, Earthq Eng & Eng Vib, 12: 135-142.
Wu, G.X., Ma, Q.W., Taylor, R.E., 1998, Numerical simulation of sloshing waves in a 3D tank based on a finite element method, Appl. Ocean Res., 20: 337-355.
Güray, E., Yazıcı, G., & Aksel, M. (2018). Prizmatik Sıvı Tanklarında oluşan Sismik Çalkalanmaların SPH Yöntemiyle İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 18(1), 375-381.
AMA
Güray E, Yazıcı G, Aksel M. Prizmatik Sıvı Tanklarında oluşan Sismik Çalkalanmaların SPH Yöntemiyle İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Nisan 2018;18(1):375-381.
Chicago
Güray, Ersan, Gökhan Yazıcı, ve Murat Aksel. “Prizmatik Sıvı Tanklarında oluşan Sismik Çalkalanmaların SPH Yöntemiyle İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18, sy. 1 (Nisan 2018): 375-81.
EndNote
Güray E, Yazıcı G, Aksel M (01 Nisan 2018) Prizmatik Sıvı Tanklarında oluşan Sismik Çalkalanmaların SPH Yöntemiyle İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18 1 375–381.
IEEE
E. Güray, G. Yazıcı, ve M. Aksel, “Prizmatik Sıvı Tanklarında oluşan Sismik Çalkalanmaların SPH Yöntemiyle İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 18, sy. 1, ss. 375–381, 2018.
ISNAD
Güray, Ersan vd. “Prizmatik Sıvı Tanklarında oluşan Sismik Çalkalanmaların SPH Yöntemiyle İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18/1 (Nisan 2018), 375-381.
JAMA
Güray E, Yazıcı G, Aksel M. Prizmatik Sıvı Tanklarında oluşan Sismik Çalkalanmaların SPH Yöntemiyle İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2018;18:375–381.
MLA
Güray, Ersan vd. “Prizmatik Sıvı Tanklarında oluşan Sismik Çalkalanmaların SPH Yöntemiyle İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 18, sy. 1, 2018, ss. 375-81.
Vancouver
Güray E, Yazıcı G, Aksel M. Prizmatik Sıvı Tanklarında oluşan Sismik Çalkalanmaların SPH Yöntemiyle İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2018;18(1):375-81.