Araştırma Makalesi
BibTex RIS Kaynak Göster

Çift Dizilerin Fuzzy n-Normlu Uzaylarda Lacunary 𝓘𝟐-Yakınsaklığı ve Bazı Özellikleri Üzerine

Yıl 2018, Cilt: 18 Sayı: 3, 868 - 877, 30.12.2018

Öz

Bu çalışmada çift dizilerin lacunary ideal yakınsaklığı fuzzy n-norm kullanarak yeniden tanımlanmıştır. Çalışmada ilk olarak fuzzy n-normlu uzaylarda çift diziler için lacunary ideal yakınsaklık kavramına yer verilmiş, daha sonra bu yakınsama ile ilgili temel teoremlere değinilmiştir. İkinci olarak 𝜃-yakınsaklık kavramını fuzzy n-normlu uzaylarda çift diziler için tanıtıp, 𝜃-yakınsaklık ile lacunary ideal yakınsaklık arasındaki ilişki fuzzy n-normlu uzaylarda çift diziler için incelenmiştir. Son olarak, fuzzy n-normlu uzaylarda 𝐹𝑛𝜃2-Cauchy ve 𝐹𝑛ℐ2𝜃-Cauchy kavramları ve bu kavramlarla ilgili teoremlerin ifadeleri verilmiştir.

Kaynakça

  • Bag, T. and Samanta, S. K., 2008. Fixed point theorems in Felbin’s type fuzzy normed linear spaces. J. Fuzzy Math., 16(1), 243–260.
  • Debnath, P., 2012. Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces. Computers &Mathematics With Applications, 63(3), 708–715.
  • Diamond, P. and Kloeden, P., 1994. Metric Spaces of Fuzzy Sets-Theory and Applications. World Scientific Publishing, Singapore.
  • Dündar, E. and Talo, Ö., 2013a. ℐ2-convergence of double sequences of fuzzy numbers. Iranian Journal of Fuzzy Systems, 10(3), 37–50.
  • Dündar, E. and Talo, Ö., 2013b. ℐ2-Cauchy Double Sequences of Fuzzy Numbers. Gen. Math. Notes, 16(2), 103-114.
  • Dündar, E. and Altay, B., 2014. ℐ2-convergence and ℐ2-Cauchy of double sequences. Acta Mathematica Scientia, 34(2), 343–353.
  • Dündar, E., Ulusu, U. and Pancaroğlu, N., 2016. Strongly ℐ2-Lacunary Convergence and ℐ2-Lacunary Cauchy Double Sequences of Sets. The Aligarh Bulletin of Mathematics, 35(1,2), 1–15.
  • Fast, H., 1951. Sur la convergence statistique Colloq. Math., 2, 241–244.
  • Felbin, C., 1992. Finite-dimensional fuzzy normed linear space. Fuzzy Sets and Systems, 48(2), 239–248.
  • Fridy, J. A., 1985. On statistical convergence. Analysis, 5, 301–313.
  • Fridy, J. A. and Orhan, C., 1993a. Lacunary statistical summability. Jour Math. Anal. Appl., 173(2), 497-504.
  • Fridy, J. A. and Orhan, C., 1993b. Lacunary statistical convergence. Pacific Journal of Mathematics, 160(1), 43--51.
  • Hazarika, B., 2013. On ideal convergent sequences in fuzzy normed linear spaces. Afrika Matematika, 25(4), 987–999.
  • Hazarika, B. and Kumar, V., 2014. Fuzzy real valued ℐ-convergent double sequences in fuzzy normed spaces. Journal of Intelligent and Fuzzy Systems, 26, 2323–2332.
  • Hazarika, B., 2016. Lacunary ideal convergence of multiple sequences. Journal of the Egyptian Mathematical Society, 24, 54–59.
  • Kara, E. E. and İlkhan, M., 2016. Lacunary ℐ- convergent and lacunary ℐ -bounded sequence spaces defined by an Orlicz function. Electron. J. Math. Anal. Appl., 4(2), 150-159.
  • Kara, E. E., Dastan, M. and İlkhan, M., 2017. On Lacunary ideal convergence of some sequences. New Trends in Mathematical Sciences, 5(1), 234-242.
  • Katsaras, A. K., 1984. Fuzzy topological vector spaces. Fuzzy sets and systems, 12, 143—154.
  • Kostyrko, P., Šalát, T. and Wilczyński, W., 2000. ℐ-Convergence. Real Analysis Exchange, 26(2), 669—686.
  • Kostyrko, P., Macaj, M., Šalát, T. and Sleziak, M., 2005. ℐ-Convergence and Extermal ℐ-limits points. Mathematica Slovaca, 55, 443--464.
  • Kumar, V., 2007. On ℐ and ℐ∗-convergence of double sequences. Math. Commun., 12. 171–181.
  • Matloka, M., 1986. Sequences of fuzzy numbers. Busefal, 28. 28–37.
  • Mizumoto, M. and Tanaka, K., 1979. Some properties of fuzzy numbers Advances in Fuzzy Set Theory and Applications. North-Holland Amsterdam.
  • Mursaleen, M. and Edely, O. H. H., 2003. Statistical convergence of double sequences. J. Math. Anal. Appl., 28, 223–231.
  • Nanda, S., 1989. On sequences of fuzzy numbers. Fuzzy Sets Systems, 33, 123–126.
  • Narayan, A. L. and Vijayabalaji, S., 2005. Fuzzy n-normed linear space. International journal of mathematics and mathematical sciences, 24, 3963-3977
  • Nuray, F., 1989. Lacunary statistical convergence of sequences of fuzzy numbers. Fuzzy Sets and Systems, 99, 353–355.
  • Nuray, F. and Savaş, E., 1995. Statistical convergence of sequences of fuzzy numbers. Math. Slovaca, 45(3), 269–273.
  • Pringsheim, A., 1900. Zur theorie der zweifach unendlichen Zahlenfolgen. Math. Ann., 53, 289–321.
  • Rath, D. and Tripaty, B. C., 1994. On statistically convergence and statistically Cauchy sequences. Indian J. Pure Appl. Math., 25(4), 381–386.
  • Reddy, B. S., 2010. Statistical convergence in n-normed spaces. International Mathematical Forum, 5(24), 1185-1193.
  • Reddy, B. S. and Srinivas, M., 2015. Statistical Convergence in Fuzzy n-Normed Spaces. International Journal of Pure and Applied Mathematics, 104(1), 29-42.
  • Šalát, T., 1980. On statistically convergent sequences of real numbers. Math. Slovaca, 30, 139–150.
  • Šalát, T., Tripaty, B. C. and Ziman, M., 2005. On ℐ-convergence field. Ital. J. Pure Appl. Math., 17, 45–54.
  • Schoenberg, I. J., 1959. The integrability of certain functions and related summability methods. Amer. Math. Monthly, 66, 361–375.
  • Sencimen, C. and Pehlivan, S., 2008. Statistical convergence in fuzzy normed linear spaces. Fuzzy Sets and Systems, 159, 361–370.
  • Tripathy, B. and Tripathy, B. C., 2005. On ℐ-convergent double sequences. Soochow J. Math., 31,549–560.
  • Tripathy, B. C., Hazarika, B. and Choudhary, B., 2012. Lacunary ℐ-convergent sequences. Kyungpook Math. J., 52, 473–482.
  • Türkmen, M. R., 2019a. On Lacunary ideal convergence and some properties in fuzzy normed spaces. under communication.
  • Türkmen, M. R. and Çınar, M., 2017. Lacunary Statistical Convergence in Fuzzy Normed Linear Spaces. Applied and Computational Mathematics, 6(5), 233–237.
  • Türkmen, M. R. and Çınar, M., 2018. λ-Statistical Convergence in Fuzzy Normed Linear Spaces. Journal of Intelligent and Fuzzy Systems, 34(6), 4023–4030.
  • Türkmen, M. R. and Dündar, E., 2018. On Lacunary Statistical Convergence of Double Sequences and Some Properties in Fuzzy Normed Spaces. Journal of Intelligent and Fuzzy Systems DOI:10. 3233/JIFS-18841.
  • Türkmen, M. R., 2019b. On Lacunary İdeal Convergence and Some Properties in Fuzzy n-Normed Spaces. under communication.
  • Türkmen, M. R., 2018. On Lacunary Statistical Convergence and Some Properties in Fuzzy n-Normed Spaces. i-manager’s Journal on Mathematics.,7(3), preprint. Zadeh, L. A., 1965. Fuzzy sets. Inform. Contr., 8, 29-44.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Muhammed Recai Türkmen

Yayımlanma Tarihi 30 Aralık 2018
Gönderilme Tarihi 24 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 18 Sayı: 3

Kaynak Göster

APA Türkmen, M. R. (2018). Çift Dizilerin Fuzzy n-Normlu Uzaylarda Lacunary 𝓘𝟐-Yakınsaklığı ve Bazı Özellikleri Üzerine. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 18(3), 868-877.
AMA Türkmen MR. Çift Dizilerin Fuzzy n-Normlu Uzaylarda Lacunary 𝓘𝟐-Yakınsaklığı ve Bazı Özellikleri Üzerine. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Aralık 2018;18(3):868-877.
Chicago Türkmen, Muhammed Recai. “Çift Dizilerin Fuzzy N-Normlu Uzaylarda Lacunary 𝓘𝟐-Yakınsaklığı Ve Bazı Özellikleri Üzerine”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18, sy. 3 (Aralık 2018): 868-77.
EndNote Türkmen MR (01 Aralık 2018) Çift Dizilerin Fuzzy n-Normlu Uzaylarda Lacunary 𝓘𝟐-Yakınsaklığı ve Bazı Özellikleri Üzerine. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18 3 868–877.
IEEE M. R. Türkmen, “Çift Dizilerin Fuzzy n-Normlu Uzaylarda Lacunary 𝓘𝟐-Yakınsaklığı ve Bazı Özellikleri Üzerine”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 18, sy. 3, ss. 868–877, 2018.
ISNAD Türkmen, Muhammed Recai. “Çift Dizilerin Fuzzy N-Normlu Uzaylarda Lacunary 𝓘𝟐-Yakınsaklığı Ve Bazı Özellikleri Üzerine”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18/3 (Aralık 2018), 868-877.
JAMA Türkmen MR. Çift Dizilerin Fuzzy n-Normlu Uzaylarda Lacunary 𝓘𝟐-Yakınsaklığı ve Bazı Özellikleri Üzerine. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2018;18:868–877.
MLA Türkmen, Muhammed Recai. “Çift Dizilerin Fuzzy N-Normlu Uzaylarda Lacunary 𝓘𝟐-Yakınsaklığı Ve Bazı Özellikleri Üzerine”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 18, sy. 3, 2018, ss. 868-77.
Vancouver Türkmen MR. Çift Dizilerin Fuzzy n-Normlu Uzaylarda Lacunary 𝓘𝟐-Yakınsaklığı ve Bazı Özellikleri Üzerine. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2018;18(3):868-77.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.