Yıl 2019, Cilt 19 , Sayı 3, Sayfalar 662 - 668 2019-12-31

Çok Katmanlı Perceptron Yapay Sinir Ağı Kullanılarak Maya Hücrelerinin Yaşam Döngüsü Parametrelerinin Araştırılması
Investigation of Yeast Cells Life Cycle Parameters by Using Multi-Layer Perceptron Artificial Neural Network

Eyyüp GÜLBANDILAR [1] , Serel ÖZMEN AKYOL [2] , Aysel GÜLBANDILAR [3] , Gıyasettin ÖZCAN [4] , Necati KARAKUŞ [5]


Gıda endüstrisinde maya hücrelerinin büyüme parametrelerinin incelenmesi hem zaman hem de işçilik maliyetlerinde artışa neden olmaktadır. Bu maliyetleri azaltmak için simülasyon modelleri öne sürülebilir. Bu çalışmada Çok Katmanlı Perceptron Sinir Ağı (MLPNN) kullanarak Saccharomyces cerevisiae'nin büyüme döngüsü parametreleri için bir simülasyon modeli tasarlanması amaçlanmıştır. Bu modelde, ekim zamanı girdi parametresi olarak tanımlanmışken, saatteki büyüme oranı ve hücre sayısı çıktı parametreleri olarak belirlenmiştir. Tasarlanan modelde iki gizli katmanlı geri yayılımlı sinir ağı tercih edilmiştir. İlk gizli katmanda 10 düğümün kullanılırken ikinci gizli katmanı 2 düğüm kullanılmıştır. Modelin eğitimi için 144 deneysel veri kullanılırken, bu deneysel verilerin 72'si eğitilmiş modeli test etmek için kullanılmıştır. Geliştirilen model, büyüme eğrisi ve büyüme hızı için hem eğitim hem de test aşamasında yüksek bir korelasyon göstermiştir (büyüme eğrisi için, R2training = 0,9993 ve R2test = 0,9993; büyüme oranı için R2training = 0.9381 ve R2test = 0.9404). Sonuçlar, geliştirilen modelimizin gıda endüstrisinde deneysel çalışmaların yerine hücre kültürü çalışmalarında başarılı bir şekilde kullanılabileceğini göstermektedir.

Examining the growth parameters of yeast cells in the food industry causes to increase both time and labor costs. Simulation models can be put forward to reduce these costs. In this study aimed that design a simulation model for growth cycle parameters of Saccharomyces cerevisiae by using the Multi-Layer Perceptron Neural Network (MLPNN). While cultivation time is defined as input parameter in this model, the cell count per hour and growth rate is determined as output parameters. In the designed model, two hidden layer back propagation neural networks are preferred. The first hidden layer uses 10 nodes, while the second hidden layer uses 2 nodes. For the training of this model, 144 experimental data are used, whereas 72 of these experimental data were used for testing the trained model. The developed model showed a high correlation on the growth curve and growth rate in the process both training and test (R2training=0.9993 and R2test=0.9993 for growth curve; R2training=0.9381 and R2test=0.9404 for growth rate). The results demonstrate that our developed model can be successfully used in culture in experimental work in the food industry.
  • Dogan, A. and Gonullu, G., 2018. Current Debates in Sustainable Architecture Urban Design & Environmental Studies, (Chapter Editors: Kara, Ç., Özden, G., Karacasu, M., Sarıçiçek, İ.: Artificial Neural Network Modelling for Mode Choice Prediction in Transportation Planning), IJOPEC Publication Limited, İstanbul, pp.102-110.
  • Garcia-Gimeno, R.M., Hervas-Martinez, C., de Siloniz, M. I., 2002. Improving artificial neural networks with a pruning methodology and genetic algorithms for their application in microbial growth prediction in food. International Journal of Food Microbiology, 72, 9–30.
  • Gulbandilar, E., 1996. Effects of pulsing electromagnetic field on the growth of saccharomyces cerevisiae. (Master Thesis, in Turkish), Osmangazi University, Institute of Health Sciences, Eskisehir, Turkey.
  • Gulbandilar, E., 2005. Effects of pulsing electromagnetic field on the growth of Saccharomyces cerevisiae. Journal of Science and Technology of Dumlupinar University, 9, 55-64.
  • Gulbandilar, E. and Gulbandilar, A., 2016. Modeling of Growth Curve of Saccharomyces cerevisiae yeast Cell with ANFIS, in 4th International Symposium on Innovative Technologies in Engineering and Science 3-5 November 2016 (ISITES2016), 2016, Alanya/Antalya-Turkey.
  • Gurgun, V. and Halkman, A.K., 1990. Counting Methods in Microbiology, 2nd ed.. Gıda Teknolojisi Yayınları, Ankara, (In Turkish).
  • Hajmeer, M.N., Basheer, L.A., Marsden J.L. and Fung, D.Y.C., 2000. New Approach for Modeling Generalized Microbial Growth Curves Using Artificial Neural Networks. Journal of Rapid Methods and Automation in Microbiology, 8, 265-283.
  • Hajmeera, M. and Basheer, I., 2002. A probabilistic neural network approach for modeling and classification of bacterial growth/no-growth data. Journal of Microbiological Methods, 51, 217-226.
  • Jeyamkondan , S., Jayas, D.S. and Holley. R.A., 2001. Microbial growth modelling with artificial neural networks. International Journal of Food Microbiology, 6, 343–354.
  • Karakus, N., 2019. Modeling of Growth Curve Of Yeast Cells with Expert Systems. (Master Thesis, in Turkish), Kutahya Dumlupinar University, Institute of Science and Technology, Kutahya, Turkey.
  • Simon, L. and Kariml, M. N., 2001. Probabilistic neural networks using Bayesian decision strategies and a modified Gompertz model for growth phase classification in the batch culture of Bacillus subtili. Biochemical Engineering Journal, 7, 41-48.
  • Web sources1-Cerevisiae.S.(2017) https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae (04.2017)
Birincil Dil en
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orcid: 0000-0001-5559-5281
Yazar: Eyyüp GÜLBANDILAR (Sorumlu Yazar)
Kurum: ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ, MÜHENDİSLİK-MİMARLIK FAKÜLTESİ
Ülke: Turkey


Orcid: 0000-0002-5344-4065
Yazar: Serel ÖZMEN AKYOL

Orcid: 0000-0001-9075-9923
Yazar: Aysel GÜLBANDILAR

Orcid: 0000-0002-1166-5919
Yazar: Gıyasettin ÖZCAN

Orcid: 0000-0002-8633-2385
Yazar: Necati KARAKUŞ

Tarihler

Başvuru Tarihi : 5 Mart 2019
Yayımlanma Tarihi : 31 Aralık 2019

Bibtex @araştırma makalesi { akufemubid535991, journal = {Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi}, issn = {}, eissn = {2149-3367}, address = {}, publisher = {Afyon Kocatepe Üniversitesi}, year = {2019}, volume = {19}, pages = {662 - 668}, doi = {}, title = {Çok Katmanlı Perceptron Yapay Sinir Ağı Kullanılarak Maya Hücrelerinin Yaşam Döngüsü Parametrelerinin Araştırılması}, key = {cite}, author = {GÜLBANDILAR, Eyyüp and ÖZMEN AKYOL, Serel and GÜLBANDILAR, Aysel and ÖZCAN, Gıyasettin and KARAKUŞ, Necati} }
APA GÜLBANDILAR, E , ÖZMEN AKYOL, S , GÜLBANDILAR, A , ÖZCAN, G , KARAKUŞ, N . (2019). Çok Katmanlı Perceptron Yapay Sinir Ağı Kullanılarak Maya Hücrelerinin Yaşam Döngüsü Parametrelerinin Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi , 19 (3) , 662-668 . Retrieved from https://dergipark.org.tr/tr/pub/akufemubid/issue/51083/535991
MLA GÜLBANDILAR, E , ÖZMEN AKYOL, S , GÜLBANDILAR, A , ÖZCAN, G , KARAKUŞ, N . "Çok Katmanlı Perceptron Yapay Sinir Ağı Kullanılarak Maya Hücrelerinin Yaşam Döngüsü Parametrelerinin Araştırılması". Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19 (2019 ): 662-668 <https://dergipark.org.tr/tr/pub/akufemubid/issue/51083/535991>
Chicago GÜLBANDILAR, E , ÖZMEN AKYOL, S , GÜLBANDILAR, A , ÖZCAN, G , KARAKUŞ, N . "Çok Katmanlı Perceptron Yapay Sinir Ağı Kullanılarak Maya Hücrelerinin Yaşam Döngüsü Parametrelerinin Araştırılması". Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19 (2019 ): 662-668
RIS TY - JOUR T1 - Çok Katmanlı Perceptron Yapay Sinir Ağı Kullanılarak Maya Hücrelerinin Yaşam Döngüsü Parametrelerinin Araştırılması AU - Eyyüp GÜLBANDILAR , Serel ÖZMEN AKYOL , Aysel GÜLBANDILAR , Gıyasettin ÖZCAN , Necati KARAKUŞ Y1 - 2019 PY - 2019 N1 - DO - T2 - Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi JF - Journal JO - JOR SP - 662 EP - 668 VL - 19 IS - 3 SN - -2149-3367 M3 - UR - Y2 - 2019 ER -
EndNote %0 Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi Çok Katmanlı Perceptron Yapay Sinir Ağı Kullanılarak Maya Hücrelerinin Yaşam Döngüsü Parametrelerinin Araştırılması %A Eyyüp GÜLBANDILAR , Serel ÖZMEN AKYOL , Aysel GÜLBANDILAR , Gıyasettin ÖZCAN , Necati KARAKUŞ %T Çok Katmanlı Perceptron Yapay Sinir Ağı Kullanılarak Maya Hücrelerinin Yaşam Döngüsü Parametrelerinin Araştırılması %D 2019 %J Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi %P -2149-3367 %V 19 %N 3 %R %U
ISNAD GÜLBANDILAR, Eyyüp , ÖZMEN AKYOL, Serel , GÜLBANDILAR, Aysel , ÖZCAN, Gıyasettin , KARAKUŞ, Necati . "Çok Katmanlı Perceptron Yapay Sinir Ağı Kullanılarak Maya Hücrelerinin Yaşam Döngüsü Parametrelerinin Araştırılması". Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19 / 3 (Aralık 2020): 662-668 .
AMA GÜLBANDILAR E , ÖZMEN AKYOL S , GÜLBANDILAR A , ÖZCAN G , KARAKUŞ N . Çok Katmanlı Perceptron Yapay Sinir Ağı Kullanılarak Maya Hücrelerinin Yaşam Döngüsü Parametrelerinin Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019; 19(3): 662-668.
Vancouver GÜLBANDILAR E , ÖZMEN AKYOL S , GÜLBANDILAR A , ÖZCAN G , KARAKUŞ N . Çok Katmanlı Perceptron Yapay Sinir Ağı Kullanılarak Maya Hücrelerinin Yaşam Döngüsü Parametrelerinin Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019; 19(3): 668-662.