Gerçek Zamanlı Sürüş Verileri ile Sürücü Davranışlarının Belirlenmesi
Yıl 2019,
Cilt: 19 Sayı: 3, 676 - 681, 31.12.2019
Tuba Nur Serttaş
,
Ömer Nezih Gerek
Fatih Onur Hocaoğlu
Öz
Bu çalışmada aynı yol
şartlarında 2 farklı sürücü tarafından kaydedilen sürüş verileri kullanılarak
sürücülerin sürüş karakteristikleri irdelenmiştir. Akıllı telefonların ivme
ölçer sensörü ve GPS işareti üzerinden kaydedilen veriler bilgisayar ortamında
işaret işleme yöntemleri ile incelenmiştir. Sürüş karakteristikleri, sürücünün
şerit değiştirme eğilimi, hız, ivme, fren yapma gibi parametreler göz önüne
alınarak oluşturulmuştur. Çalışma sonucunda yol ve trafik şartları aynı
olmasına rağmen sürüş karakteristiklerinin nasıl değişkenlik gösterebileceği
ortaya konulmuştur. Kaydedilen veriler üzerinde karşılaştırmalı analizler
gerçekleştirilmiştir. Elde edilen analizler sürücünün risk maliyeti, karbon
emisyonu ve benzeri parametrelerin oluşturulmasında kullanılabilmektedir.
Destekleyen Kurum
Eskişehir Teknik Üniversitesi
Teşekkür
Bu çalışma Eskişehir Teknik Üniversitesi 1701F020 numaralı BAP projesi ile desteklenmiştir.
Kaynakça
- Augustynowicz, A., 2009. Preliminary classification of driving style with objective rank method. International Journal of Automotive Technology, 10, 5, 607−610.
- Choi, S., Kim, J. and Kwak, D., 2008. Analysis and Classification of Driver Behaviour using In-Vehicle CAN-Bus Information. Biennial Workshop on DSP for In-Vehicle and Mobile Systems.
- Ehmann, M. and Irmscher, M., 2004. Driver classification using ve DYNA advanced driver. SAE World Congress.
- Fernandez, S. and Ito, T., 2016. Driver classification for intelligent transportation systems using fuzzy logic. IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, 1212-1216.
- Fung, N. C., Wallace, B., Chan, A. D. C., Goubran, R., Porter, M. M., Marshall, S. and Knoefel, F., 2017. Driver identification using vehicle acceleration and deceleration events from naturalistic driving of older drivers. 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rochester, MN, 33-38.
- Hattori, H., Nakajima, Y. and Ishida, T., 2011. Learning From Humans: Agent Modeling With Individual Human Behaviors. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 41, 1, 1-9.
- Imkamon, T., Saensom, P., Tangamchit, P. and Pongpaibool, P., 2008. Detection of hazardous driving behavior using fuzzy logic. 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, 657-660.
- Júnior Ferreira, J., Carvalho , E., Ferreira, B.V., de Souza, C., Suhara, Y., Pentland, A. and Pessin, G., 2017. Driver behavior profiling: An investigation with different smartphone sensors and machine learning. PLoS ONE12 2017, 4.
- Sathyanarayana, A., Sadjadi, S. O. and Hansen, J. H. L., 2012. Leveraging sensor information from portable devices towards automatic driving maneuver recognition. 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, AK, 660-665.
- Van Ly, M., Martin, S. and Trivedi, M. M., 2013. Driver classification and driving style recognition using inertial sensors. 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, 1040-1045.
- Zhang, C., Patel, M., Buthpitiya, S., Lyons, K., Harrison, B. and Abowd, G. D., 2016. Driver Classification Based on Driving Behaviors. In Proceedings of the 21st International Conference on Intelligent User Interfaces (IUI '16), 80-84.
Yıl 2019,
Cilt: 19 Sayı: 3, 676 - 681, 31.12.2019
Tuba Nur Serttaş
,
Ömer Nezih Gerek
Fatih Onur Hocaoğlu
Kaynakça
- Augustynowicz, A., 2009. Preliminary classification of driving style with objective rank method. International Journal of Automotive Technology, 10, 5, 607−610.
- Choi, S., Kim, J. and Kwak, D., 2008. Analysis and Classification of Driver Behaviour using In-Vehicle CAN-Bus Information. Biennial Workshop on DSP for In-Vehicle and Mobile Systems.
- Ehmann, M. and Irmscher, M., 2004. Driver classification using ve DYNA advanced driver. SAE World Congress.
- Fernandez, S. and Ito, T., 2016. Driver classification for intelligent transportation systems using fuzzy logic. IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, 1212-1216.
- Fung, N. C., Wallace, B., Chan, A. D. C., Goubran, R., Porter, M. M., Marshall, S. and Knoefel, F., 2017. Driver identification using vehicle acceleration and deceleration events from naturalistic driving of older drivers. 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rochester, MN, 33-38.
- Hattori, H., Nakajima, Y. and Ishida, T., 2011. Learning From Humans: Agent Modeling With Individual Human Behaviors. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 41, 1, 1-9.
- Imkamon, T., Saensom, P., Tangamchit, P. and Pongpaibool, P., 2008. Detection of hazardous driving behavior using fuzzy logic. 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, 657-660.
- Júnior Ferreira, J., Carvalho , E., Ferreira, B.V., de Souza, C., Suhara, Y., Pentland, A. and Pessin, G., 2017. Driver behavior profiling: An investigation with different smartphone sensors and machine learning. PLoS ONE12 2017, 4.
- Sathyanarayana, A., Sadjadi, S. O. and Hansen, J. H. L., 2012. Leveraging sensor information from portable devices towards automatic driving maneuver recognition. 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, AK, 660-665.
- Van Ly, M., Martin, S. and Trivedi, M. M., 2013. Driver classification and driving style recognition using inertial sensors. 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, 1040-1045.
- Zhang, C., Patel, M., Buthpitiya, S., Lyons, K., Harrison, B. and Abowd, G. D., 2016. Driver Classification Based on Driving Behaviors. In Proceedings of the 21st International Conference on Intelligent User Interfaces (IUI '16), 80-84.