Araştırma Makalesi
BibTex RIS Kaynak Göster

İçi Kovuk Metal Oksit Kürelerin Hazırlanmasında Blok Kopolimer İle Stabilize Edilmiş Polistiren Mikrokürelerin Şablon Olarak Kullanımı

Yıl 2020, Cilt: 20 Sayı: 3, 398 - 406, 30.06.2020
https://doi.org/10.35414/akufemubid.680013

Öz

Bu çalışmada, çift tabakalı mangan oksit@nikel oksit içi kovuk kürelerin üretiminde şablon olarak poli[2-(dietilamino)etil metakrilat-blok-2-(dimetilamino)etil metakrilat] (PDEA-b-PDMA) diblok kopolimer ile stabilize edilmiş polistiren (PS) mikroküreleri kullanıldı. Emülsiyon polimerizasyonu ile blok kopolimer ile stabilize edilmiş monodispers PS mikroküreler sert şablon olarak kullanılarak sırasıyla KMnO4 ve NiSO4’ün kontrollü çöktürme yöntemiyle metal oksit öncüsü bileşikler ile kaplandı. Kalsinasyon işlemi ile mangan oksit@nikel oksit içi kovuk çift tabakalı metal oksit küreler üretildi. PS küreler ve içi kovuk metal küreler dinamik ışık saçılması (DLS), termogravimetrik analiz (TGA), ışık mikroskobu, X-ışını kırınımı (XRD) ve taramalı elektron mikroskobu (SEM) ile karakterize edildi. Mangan oksit@nikel oksit içi kovuk kürelerin, iç tabakasında kalan mangan oksit tabakasının ağırlıkça oranı oldukça düşükken (~%4), dış tabakasında yer alan nikel oksit tabakasının ağırlıkça oldukça yüksektir (~%96). Üretilen metal oksit kürelerin 1,60-1,77 µm çapında olduğu ve bu kürelerin kabuk kalınlığının ise 200 nm civarındadır. İçi kovuk kürelerin dış tabakası, kataliz çalışmaları için önemli avantajlar sunan oldukça pürüzlü bir dış yüzeye sahip olduğu tespit edildi.

Teşekkür

PDEA-b-PDMA blok kopolimerini temin ettiğim ve bazı analizlerin yapılmasına imkan sağlayan Eskişehir Osmangazi Üniversitesi (ESOGÜ) Kimya Bölümü Öğretim Üyesi Prof. Dr. Vural BÜTÜN’e teşekkürlerimi borç bilirim. XRD analizleri için ESOGÜ Merkezi Araştırma Laboratuvarı Uygulama ve Araştırma Merkez’inde (ARUM) görevli Dr. Gökhan DİKMEN’e ayrıca teşekkür ederim.

Kaynakça

  • Abdullah, J. A., Al Lafi, A. G., Amin, Y. and Alnama, T. (2018). A Styrofoam-nano manganese oxide based composite: Preparation and application for the treatment of wastewater. Applied Radiation and Isotopes, 136, 73-81.
  • Amalvy, J. I., Unali, G. F., Li, Y., Granger-Bevan, S., Armes, S. P., Binks, B. P., Rodrigues, J. A. and Whitby, C. P. (2004). Synthesis of sterically stabilized polystyrene latex particles using cationic block copolymers and macromonomers and their application as stimulus-responsive particulate emulsifiers for oil-in-water emulsions. Langmuir, 20, 11, 4345-4354.
  • Amari, H., Guerrouache, M., Mahouche-Chergui, S., Abderrahim, R. and Carbonnier, B. (2017). 2-Aminothiazole-functionalized triazine-modified polystyrene decorated with gold nanoparticles as composite catalyst for the reduction of 4-nitrophenol. Reactive & Functional Polymers, 121, 58-66.
  • Bousquet, A., Ibarboure, E., Heroguez, V., Papon, E., Labrugere, C. and Rodriguez-Hernandez, J. (2010). Single-Step Process to Produce Functionalized Multiresponsive Polymeric Particles. Journal of Polymer Science Part a-Polymer Chemistry, 48, 16, 3523-3533.
  • Bütün, V., Kaynak, B., Esenoğlu, E. and Gül, G. (2004). Tersiyer amin merakrilatlara dayalı suda çözünebilen kopolimerlerin sentezi, seçimli kuaternizasyonu ve stabilizör olarak lateks sentezinde kullanılması. Paper presented at the Polimer İşleme ve Geri Kazanımı Sempozyumu ve Sergisi (POLYSEM2004), Mersin.
  • Cai, W. J., Wang, W. Q., Yang, Y. Q., Ren, G. H. and Chen, T. (2014). Sulfonated polystyrene spheres as template for fabricating hollow compact silver spheres via silver-mirror reaction at low temperature. Rsc Advances, 4, 5, 2295-2299.
  • Deng, Z. W., Chen, M., Gu, G. X. and Wu, L. M. (2008). A facile method to fabricate ZnO hollow spheres and their photocatalytic property. Journal of Physical Chemistry B, 112, 1, 16-22.
  • Fei, J. B., Cui, Y., Yan, X. H., Qi, W., Yang, Y., Wang, K. W., He, Q. and Li, J. B. (2008). Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Advanced Materials, 20, 3, 452-456.
  • Gawande, M. B., Pandey, R. K. and Jayaram, R. V. (2012). Role of mixed metal oxides in catalysis science-versatile applications in organic synthesis. Catalysis Science & Technology, 2, 6, 1113-1125.
  • Han, X., Zhou, L. H., Liu, H. L. and Hu, Y. (2007). Effect of in situ oxidization with potassium permanganate on the morphologies of SEBS membranes. Polymer Degradation and Stability, 92, 1, 75-85.
  • Hu, J., Chen, M., Fang, X. S. and Wu, L. W. (2011). Fabrication and application of inorganic hollow spheres. Chemical Society Reviews, 40, 11, 5472-5491.
  • Huang, S. B., Yu, X. J., Dong, Y. M., Li, L. and Guo, X. H. (2012). Spherical polyelectrolyte brushes: Ideal templates for preparing pH-sensitive core-shell and hollow silica nanoparticles. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 415, 22-30.
  • Itoh, T., Abe, I., Tamamitsu, T., Shimomoto, H., Inoue, K. and Ihara, E. (2014). Surface structure of stimuli-responsive polystyrene particles prepared by dispersion polymerization with a polystyrene/poly(L-lysine) block copolymer as a stabilizer. Polymer, 55, 16, 3961-3969.
  • Kawahashi, N., Persson, C. and Matijevic, E. (1991). Zirconium Compounds as Coatings on Polystyrene Latex and as Hollow Spheres. Journal of Materials Chemistry, 1, 4, 577-582. Kawahashi, N. and Shiho, H. (2000). Copper and copper compounds as coatings on polystyrene particles and as hollow spheres. Journal of Materials Chemistry, 10, 10, 2294-2297.
  • Li, B. X., Rong, G. X., Xie, Y., Huang, L. F. and Feng, C. Q. (2006). Low-temperature synthesis of alpha-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorganic Chemistry, 45, 16, 6404-6410.
  • Lu, Y., Hoffmann, M., Yelamanchili, R. S., Terrenoire, A., Schrinner, M., Drechsler, M., Moller, M. W., Breu, J. and Ballauff, M. (2009). Well-Defined Crystalline TiO2 Nanoparticles Generated and Immobilized on a Colloidal Nanoreactor. Macromolecular Chemistry and Physics, 210, 5, 377-386.
  • Munoz-Bonilla, A., van Herk, A. M. and Heuts, J. P. A. (2010). Adding stimuli-responsive extensions to antifouling hairy particles. Polymer Chemistry, 1, 5, 624-627. Nie, G., Li, G., Wang, L. and Zhang, X. (2016). Nanocomposites of polymer brush and inorganic nanoparticles: preparation, characterization and application. Polymer Chemistry, 7, 4, 753-769.
  • Ohnishi, M., Kozuka, Y., Ye, Q. L., Yoshikawa, H., Awaga, K., Matsuno, R., Kobayashi, M., Takahara, A., Yokoyama, T., Bandow, S. and Iijima, S. (2006). Phase selective preparations and surface modifications of spherical hollow nanomagnets. Journal of Materials Chemistry, 16, 31, 3215-3220.
  • Pal, J. and Pal, T. (2015). Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis. Nanoscale, 7, 34, 14159-14190.
  • Polzer, F., Holub-Krappe, E., Rossner, H., Erko, A., Kirmse, H., Plamper, F., Schmalz, A., Muller, A. H. E. and Ballauff, M. (2013). Structural analysis of colloidal MnOx composites. Colloid and Polymer Science, 291, 3, 469-481.
  • Qian, H. S., Lin, G. F., Zhang, Y. X., Gunawan, P. and Xu, R. (2007). A new approach to synthesize uniform metal oxide hollow nanospheres via controlled precipitation. Nanotechnology, 18, 35.
  • Reis, B. M., Armes, S. P., Fujii, S. and Biggs, S. (2010). Characterisation of the dispersion stability of a stimulus responsive core-shell colloidal latex. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 353, 2-3, 210-215.
  • Sun, X. M., Liu, J. F. and Li, Y. D. (2006). Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chemistry-a European Journal, 12, 7, 2039-2047.
  • Tong, G. X., Liu, F. T., Wu, W. H., Shen, J. P., Hu, X. and Liang, Y. (2012). Polymorphous alpha- and beta-Ni(OH)(2) complex architectures: morphological and phasal evolution mechanisms and enhanced catalytic activity as non-enzymatic glucose sensors. Crystengcomm, 14, 18, 5963-5973.
  • Wang, D. B., Song, C. X., Hu, Z. S. and Fu, X. (2005). Fabrication of hollow spheres and thin films of nickel hydroxide and nickel oxide with hierarchical structures. Journal of Physical Chemistry B, 109, 3, 1125-1129.
  • Wang, X. J., Feng, J., Bai, Y. C., Zhang, Q. and Yin, Y. D. (2016). Synthesis, Properties, and Applications of Hollow Micro-/Nanostructures. Chemical Reviews, 116, 18, 10983-11060. Watanabe, M., Aritomo, H., Yamaguchi, I., Shinagawa, T., Tamai, T., Tasaka, A. and Izaki, M. (2007). Selective preparation of zinc oxide nanostructures by electrodeposition on the templates of surface-functionalized polymer particles. Chemistry Letters, 36, 5, 680-681.
  • Wu, X. F., Chen, Y. F., Li, Q. Y. and Wei, L. Q. (2007). Preparation and characterization of integral hollow microspheres of nickel hydroxide and nickel oxide. Nanoscience and Technology, Pts 1 and 2, 121-123, 187-190.
  • Yang, L. L., Kong, X. W., Wang, J., Pan, M. Q., Yang, W. Q., Yang, J. H. and Jiang, W. L. (2016). Synthesis and photocatalytic performance of ZnO hollow spheres and porous nanosheets. Journal of Materials Science-Materials in Electronics, 27, 1, 203-209.
  • Ye, Q. L., Yoshikawa, H. and Awaga, K. (2010). Magnetic and Optical Properties of Submicron-Size Hollow Spheres. Materials, 3, 2, 1244-1268.
  • Yoon, S. (2014). Facile microwave synthesis of CoFe2O4 spheres and their application as an anode for lithium-ion batteries. Journal of Applied Electrochemistry, 44, 9, 1069-1074.
  • Zhang, P. P., Ma, X. M., Guo, Y. M., Cheng, Q. Q. and Yang, L. (2012). Size-controlled synthesis of hierarchical NiO hollow microspheres and the adsorption for Congo red in water. Chemical Engineering Journal, 189, 188-195.
  • Zhu, Y., Chen, K. M., Wang, X. and Guo, X. H. (2012). Spherical polyelectrolyte brushes as a nanoreactor for synthesis of ultrafine magnetic nanoparticles. Nanotechnology, 23, 26.

Use of Block Copolymer Stabilized Polystyrene Microspheres as Templates for Preparation of Hollow Metal Oxide Spheres

Yıl 2020, Cilt: 20 Sayı: 3, 398 - 406, 30.06.2020
https://doi.org/10.35414/akufemubid.680013

Öz

In this study, poly[2-(diethylamino) ethyl methacrylate-block-2-(dimethylamino) ethyl methacrylate] (PDEA-b-PDMA) diblock copolymer stabilized polystyrene (PS) microspheres were used as a template in the production of double layer manganese oxide@nickel oxide hollow spheres. Monodispers PS microspheres stabilized with block copolymer by emulsion polymerization were coated with metal oxide precursors using the controlled precipitation method of KMnO4 and NiSO4, respectively. Double layer manganese oxide@nickel oxide hollow spheres were produced by calcination process. PS spheres and hollow metal spheres were characterized by dynamic light scattering (DLS), thermogravimetric analysis (TGA), light microscope, X-ray diffraction (XRD) and scanning electron microscope (SEM). The weight of the manganese oxide@nickel oxide hollow spheres in the inner layer of the manganese oxide is quite low (~4%), while the outer layer of the nickel oxide layer is quite high (~96%). The produced metal oxide spheres have a diameter of 1.60-1.77 µm and the shell thickness of the spheres is around 200 nm. The outer layer of hollow spheres was found to have a rather rough outer surface, which offers significant advantages for catalysis studies

Kaynakça

  • Abdullah, J. A., Al Lafi, A. G., Amin, Y. and Alnama, T. (2018). A Styrofoam-nano manganese oxide based composite: Preparation and application for the treatment of wastewater. Applied Radiation and Isotopes, 136, 73-81.
  • Amalvy, J. I., Unali, G. F., Li, Y., Granger-Bevan, S., Armes, S. P., Binks, B. P., Rodrigues, J. A. and Whitby, C. P. (2004). Synthesis of sterically stabilized polystyrene latex particles using cationic block copolymers and macromonomers and their application as stimulus-responsive particulate emulsifiers for oil-in-water emulsions. Langmuir, 20, 11, 4345-4354.
  • Amari, H., Guerrouache, M., Mahouche-Chergui, S., Abderrahim, R. and Carbonnier, B. (2017). 2-Aminothiazole-functionalized triazine-modified polystyrene decorated with gold nanoparticles as composite catalyst for the reduction of 4-nitrophenol. Reactive & Functional Polymers, 121, 58-66.
  • Bousquet, A., Ibarboure, E., Heroguez, V., Papon, E., Labrugere, C. and Rodriguez-Hernandez, J. (2010). Single-Step Process to Produce Functionalized Multiresponsive Polymeric Particles. Journal of Polymer Science Part a-Polymer Chemistry, 48, 16, 3523-3533.
  • Bütün, V., Kaynak, B., Esenoğlu, E. and Gül, G. (2004). Tersiyer amin merakrilatlara dayalı suda çözünebilen kopolimerlerin sentezi, seçimli kuaternizasyonu ve stabilizör olarak lateks sentezinde kullanılması. Paper presented at the Polimer İşleme ve Geri Kazanımı Sempozyumu ve Sergisi (POLYSEM2004), Mersin.
  • Cai, W. J., Wang, W. Q., Yang, Y. Q., Ren, G. H. and Chen, T. (2014). Sulfonated polystyrene spheres as template for fabricating hollow compact silver spheres via silver-mirror reaction at low temperature. Rsc Advances, 4, 5, 2295-2299.
  • Deng, Z. W., Chen, M., Gu, G. X. and Wu, L. M. (2008). A facile method to fabricate ZnO hollow spheres and their photocatalytic property. Journal of Physical Chemistry B, 112, 1, 16-22.
  • Fei, J. B., Cui, Y., Yan, X. H., Qi, W., Yang, Y., Wang, K. W., He, Q. and Li, J. B. (2008). Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Advanced Materials, 20, 3, 452-456.
  • Gawande, M. B., Pandey, R. K. and Jayaram, R. V. (2012). Role of mixed metal oxides in catalysis science-versatile applications in organic synthesis. Catalysis Science & Technology, 2, 6, 1113-1125.
  • Han, X., Zhou, L. H., Liu, H. L. and Hu, Y. (2007). Effect of in situ oxidization with potassium permanganate on the morphologies of SEBS membranes. Polymer Degradation and Stability, 92, 1, 75-85.
  • Hu, J., Chen, M., Fang, X. S. and Wu, L. W. (2011). Fabrication and application of inorganic hollow spheres. Chemical Society Reviews, 40, 11, 5472-5491.
  • Huang, S. B., Yu, X. J., Dong, Y. M., Li, L. and Guo, X. H. (2012). Spherical polyelectrolyte brushes: Ideal templates for preparing pH-sensitive core-shell and hollow silica nanoparticles. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 415, 22-30.
  • Itoh, T., Abe, I., Tamamitsu, T., Shimomoto, H., Inoue, K. and Ihara, E. (2014). Surface structure of stimuli-responsive polystyrene particles prepared by dispersion polymerization with a polystyrene/poly(L-lysine) block copolymer as a stabilizer. Polymer, 55, 16, 3961-3969.
  • Kawahashi, N., Persson, C. and Matijevic, E. (1991). Zirconium Compounds as Coatings on Polystyrene Latex and as Hollow Spheres. Journal of Materials Chemistry, 1, 4, 577-582. Kawahashi, N. and Shiho, H. (2000). Copper and copper compounds as coatings on polystyrene particles and as hollow spheres. Journal of Materials Chemistry, 10, 10, 2294-2297.
  • Li, B. X., Rong, G. X., Xie, Y., Huang, L. F. and Feng, C. Q. (2006). Low-temperature synthesis of alpha-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorganic Chemistry, 45, 16, 6404-6410.
  • Lu, Y., Hoffmann, M., Yelamanchili, R. S., Terrenoire, A., Schrinner, M., Drechsler, M., Moller, M. W., Breu, J. and Ballauff, M. (2009). Well-Defined Crystalline TiO2 Nanoparticles Generated and Immobilized on a Colloidal Nanoreactor. Macromolecular Chemistry and Physics, 210, 5, 377-386.
  • Munoz-Bonilla, A., van Herk, A. M. and Heuts, J. P. A. (2010). Adding stimuli-responsive extensions to antifouling hairy particles. Polymer Chemistry, 1, 5, 624-627. Nie, G., Li, G., Wang, L. and Zhang, X. (2016). Nanocomposites of polymer brush and inorganic nanoparticles: preparation, characterization and application. Polymer Chemistry, 7, 4, 753-769.
  • Ohnishi, M., Kozuka, Y., Ye, Q. L., Yoshikawa, H., Awaga, K., Matsuno, R., Kobayashi, M., Takahara, A., Yokoyama, T., Bandow, S. and Iijima, S. (2006). Phase selective preparations and surface modifications of spherical hollow nanomagnets. Journal of Materials Chemistry, 16, 31, 3215-3220.
  • Pal, J. and Pal, T. (2015). Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis. Nanoscale, 7, 34, 14159-14190.
  • Polzer, F., Holub-Krappe, E., Rossner, H., Erko, A., Kirmse, H., Plamper, F., Schmalz, A., Muller, A. H. E. and Ballauff, M. (2013). Structural analysis of colloidal MnOx composites. Colloid and Polymer Science, 291, 3, 469-481.
  • Qian, H. S., Lin, G. F., Zhang, Y. X., Gunawan, P. and Xu, R. (2007). A new approach to synthesize uniform metal oxide hollow nanospheres via controlled precipitation. Nanotechnology, 18, 35.
  • Reis, B. M., Armes, S. P., Fujii, S. and Biggs, S. (2010). Characterisation of the dispersion stability of a stimulus responsive core-shell colloidal latex. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 353, 2-3, 210-215.
  • Sun, X. M., Liu, J. F. and Li, Y. D. (2006). Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chemistry-a European Journal, 12, 7, 2039-2047.
  • Tong, G. X., Liu, F. T., Wu, W. H., Shen, J. P., Hu, X. and Liang, Y. (2012). Polymorphous alpha- and beta-Ni(OH)(2) complex architectures: morphological and phasal evolution mechanisms and enhanced catalytic activity as non-enzymatic glucose sensors. Crystengcomm, 14, 18, 5963-5973.
  • Wang, D. B., Song, C. X., Hu, Z. S. and Fu, X. (2005). Fabrication of hollow spheres and thin films of nickel hydroxide and nickel oxide with hierarchical structures. Journal of Physical Chemistry B, 109, 3, 1125-1129.
  • Wang, X. J., Feng, J., Bai, Y. C., Zhang, Q. and Yin, Y. D. (2016). Synthesis, Properties, and Applications of Hollow Micro-/Nanostructures. Chemical Reviews, 116, 18, 10983-11060. Watanabe, M., Aritomo, H., Yamaguchi, I., Shinagawa, T., Tamai, T., Tasaka, A. and Izaki, M. (2007). Selective preparation of zinc oxide nanostructures by electrodeposition on the templates of surface-functionalized polymer particles. Chemistry Letters, 36, 5, 680-681.
  • Wu, X. F., Chen, Y. F., Li, Q. Y. and Wei, L. Q. (2007). Preparation and characterization of integral hollow microspheres of nickel hydroxide and nickel oxide. Nanoscience and Technology, Pts 1 and 2, 121-123, 187-190.
  • Yang, L. L., Kong, X. W., Wang, J., Pan, M. Q., Yang, W. Q., Yang, J. H. and Jiang, W. L. (2016). Synthesis and photocatalytic performance of ZnO hollow spheres and porous nanosheets. Journal of Materials Science-Materials in Electronics, 27, 1, 203-209.
  • Ye, Q. L., Yoshikawa, H. and Awaga, K. (2010). Magnetic and Optical Properties of Submicron-Size Hollow Spheres. Materials, 3, 2, 1244-1268.
  • Yoon, S. (2014). Facile microwave synthesis of CoFe2O4 spheres and their application as an anode for lithium-ion batteries. Journal of Applied Electrochemistry, 44, 9, 1069-1074.
  • Zhang, P. P., Ma, X. M., Guo, Y. M., Cheng, Q. Q. and Yang, L. (2012). Size-controlled synthesis of hierarchical NiO hollow microspheres and the adsorption for Congo red in water. Chemical Engineering Journal, 189, 188-195.
  • Zhu, Y., Chen, K. M., Wang, X. and Guo, X. H. (2012). Spherical polyelectrolyte brushes as a nanoreactor for synthesis of ultrafine magnetic nanoparticles. Nanotechnology, 23, 26.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gökhan Koçak 0000-0002-1169-6934

Yayımlanma Tarihi 30 Haziran 2020
Gönderilme Tarihi 25 Ocak 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 20 Sayı: 3

Kaynak Göster

APA Koçak, G. (2020). İçi Kovuk Metal Oksit Kürelerin Hazırlanmasında Blok Kopolimer İle Stabilize Edilmiş Polistiren Mikrokürelerin Şablon Olarak Kullanımı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(3), 398-406. https://doi.org/10.35414/akufemubid.680013
AMA Koçak G. İçi Kovuk Metal Oksit Kürelerin Hazırlanmasında Blok Kopolimer İle Stabilize Edilmiş Polistiren Mikrokürelerin Şablon Olarak Kullanımı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Haziran 2020;20(3):398-406. doi:10.35414/akufemubid.680013
Chicago Koçak, Gökhan. “İçi Kovuk Metal Oksit Kürelerin Hazırlanmasında Blok Kopolimer İle Stabilize Edilmiş Polistiren Mikrokürelerin Şablon Olarak Kullanımı”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, sy. 3 (Haziran 2020): 398-406. https://doi.org/10.35414/akufemubid.680013.
EndNote Koçak G (01 Haziran 2020) İçi Kovuk Metal Oksit Kürelerin Hazırlanmasında Blok Kopolimer İle Stabilize Edilmiş Polistiren Mikrokürelerin Şablon Olarak Kullanımı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 3 398–406.
IEEE G. Koçak, “İçi Kovuk Metal Oksit Kürelerin Hazırlanmasında Blok Kopolimer İle Stabilize Edilmiş Polistiren Mikrokürelerin Şablon Olarak Kullanımı”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 20, sy. 3, ss. 398–406, 2020, doi: 10.35414/akufemubid.680013.
ISNAD Koçak, Gökhan. “İçi Kovuk Metal Oksit Kürelerin Hazırlanmasında Blok Kopolimer İle Stabilize Edilmiş Polistiren Mikrokürelerin Şablon Olarak Kullanımı”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/3 (Haziran 2020), 398-406. https://doi.org/10.35414/akufemubid.680013.
JAMA Koçak G. İçi Kovuk Metal Oksit Kürelerin Hazırlanmasında Blok Kopolimer İle Stabilize Edilmiş Polistiren Mikrokürelerin Şablon Olarak Kullanımı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:398–406.
MLA Koçak, Gökhan. “İçi Kovuk Metal Oksit Kürelerin Hazırlanmasında Blok Kopolimer İle Stabilize Edilmiş Polistiren Mikrokürelerin Şablon Olarak Kullanımı”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 20, sy. 3, 2020, ss. 398-06, doi:10.35414/akufemubid.680013.
Vancouver Koçak G. İçi Kovuk Metal Oksit Kürelerin Hazırlanmasında Blok Kopolimer İle Stabilize Edilmiş Polistiren Mikrokürelerin Şablon Olarak Kullanımı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(3):398-406.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.