GaAs Alttaş Üzerine Büyütülen GaAs/GaAlAs Heteroyapılarının Yüksek Çözünürlüklü X- Işını Kırınım Yöntemi Kullanılarak Karakterizasyonu
Yıl 2020,
Cilt: 20 Sayı: 4, 558 - 564, 25.09.2020
Habibe Sayraç
,
Muhammed Sayraç
,
Sezai Elagöz
Öz
Nano yapıların X- ışını kırınımı (XRD) yöntemi kullanılarak karakterizasyonu, bu yapıların bileşimi, örgü zorlanması ve heteroepitaksiyel katmanları hakkında bilgi verir. Bu bilgiler optoelektronik cihazların üretiminde önemli rol oynamaktadır. Bu makalede, yaygın olarak kullanılan GaAlAs malzemesi hakkında genel bilgilerden bahsedilmektedir. Ek olarak, X- ışını kırınım yönteminin malzemelerin karakterizasyonu için önemi, malzemelerin büyütme ve yapının oluşum süreci hakkında önemli bilgiler sağlamasıdır. Epitaksiyel olarak büyütülmüş GaAs/GaAlAs heteroyapılarının yapısal karakterizasyonu X- ışını kırınım yöntemi kullanılarak analiz edilmiştir. Deneysel sonuçları karşılaştırmak için Rigaku Global Fit simülasyon programı kullanıldı, simülasyon ile deneysel sonuçların yüksek oranda uyumlu olduğu görüldü.
Kaynakça
- Ashcroft N. W. and Mermin N. D., 1976. Solid State Physics. Saunders College Publishing, Orlando.
- Auvray P., Baudet M. and Regreny A., 1987. X‐ray diffraction study of intentionally disordered GaAlAs‐GaAs superlattices. Journal of Applied Physics, 62, 456-460.
- Börnstein L., 1999. Semiconductors II-VI and I-VII Compounds; Semimagnetic Compounds. Springer Materials, 41B.
- Hayashi M. and Marcon R., 2000. High Resolution X-ray diffraction to characterize semiconductor materials. Physicae, 1, 21-27.
- Horikoshi Y., Kawashima M. and Yamaguchi H., 1986. Low-temperature growth of GaAs and AlAs-GaAs quantum-well layers by modified molecular beam epitaxy. Japanese Journal of Applied Physics, 25, L868-L870.
- Kato T., Susawa H., Hirotani M., Saka T., Ohashi Y., Shichi E. and Shibata S., 1991. GaAs/GaAlAs surface emitting IR LED with Bragg reflector grown by MOCVD. Journal of Crystal Growth, 107, 832-835.
- Kish F. A., Caracci S. J., N. H. Jr., Dallesasse J. M., Höfler G. E., Burnham R. D. and Smith S. C., 1991. Low‐threshold disorder‐defined native‐oxide delineated buried‐heterostructure AlxGa1−xAs‐GaAs quantum well lasers. Applied Physics Letters, 58, 1765-1767.
- Liu C. Y., Yuan S., Dong J. R. and Chua S. J., 2004. Temperature dependence of photoluminescence intensity from AlGaInP/GaInP multi-quantum well laser structures. Journal of Crystal Growth, 268, 426-431.
- Liu X. Q., Fetzer C. M., Rehder E., Cotal H., Mesropian S., Law D. and King R. R., 2012. Organometallic vapor phase epitaxy growth of upright metamorphic multijunction solar cells. Journal of Crystal Growth, 352, 186-189.
- Neamen D. A., 2003. Semiconductor Physics and Devices. Avenue of the Americas.
- Pahuja O. P. Dr., 2005. Solid State Physics. SP/Laxmi Publications, New Delhi.
- Quinn J. J. and Yi K.-S., 2009. Solid State Physics Principles and Modern Applications. Springer.
- Schubert E. F., 2006. Light-Emitting Diodes. Cambridge University Press, Edingburgh Building.
- Thompson A. G., 1997. MOCVD technology for semiconductors. Materials Letters, 30, 255-263.
Characterization of GaAs/GaAlAs Heterostructures Grown on GaAs Substrate using High Resolution X-ray Diffraction Method
Yıl 2020,
Cilt: 20 Sayı: 4, 558 - 564, 25.09.2020
Habibe Sayraç
,
Muhammed Sayraç
,
Sezai Elagöz
Öz
Characterization of nanostructures using X-ray diffraction (XRD) method gives information on the composition, the lattice strain, and heteroepitaxial layers of the structures. These information are useful for fabrication process of optoelectronic devices. In this paper, we give fundamental description to the commonly used material, GaAlAs. In addition, the importance of X ray diffraction method for characterization of the materials provides crucial information for the growth and development process of the materials. Structural characterization of epitaxial growth GaAs/GaAlAs heterostructures are analyzed using the X- ray diffraction (XRD) method. Rigaku Global Fit simulation program is performed to compare the experimental results, and the simulation and the experimental results agree with each other.
Kaynakça
- Ashcroft N. W. and Mermin N. D., 1976. Solid State Physics. Saunders College Publishing, Orlando.
- Auvray P., Baudet M. and Regreny A., 1987. X‐ray diffraction study of intentionally disordered GaAlAs‐GaAs superlattices. Journal of Applied Physics, 62, 456-460.
- Börnstein L., 1999. Semiconductors II-VI and I-VII Compounds; Semimagnetic Compounds. Springer Materials, 41B.
- Hayashi M. and Marcon R., 2000. High Resolution X-ray diffraction to characterize semiconductor materials. Physicae, 1, 21-27.
- Horikoshi Y., Kawashima M. and Yamaguchi H., 1986. Low-temperature growth of GaAs and AlAs-GaAs quantum-well layers by modified molecular beam epitaxy. Japanese Journal of Applied Physics, 25, L868-L870.
- Kato T., Susawa H., Hirotani M., Saka T., Ohashi Y., Shichi E. and Shibata S., 1991. GaAs/GaAlAs surface emitting IR LED with Bragg reflector grown by MOCVD. Journal of Crystal Growth, 107, 832-835.
- Kish F. A., Caracci S. J., N. H. Jr., Dallesasse J. M., Höfler G. E., Burnham R. D. and Smith S. C., 1991. Low‐threshold disorder‐defined native‐oxide delineated buried‐heterostructure AlxGa1−xAs‐GaAs quantum well lasers. Applied Physics Letters, 58, 1765-1767.
- Liu C. Y., Yuan S., Dong J. R. and Chua S. J., 2004. Temperature dependence of photoluminescence intensity from AlGaInP/GaInP multi-quantum well laser structures. Journal of Crystal Growth, 268, 426-431.
- Liu X. Q., Fetzer C. M., Rehder E., Cotal H., Mesropian S., Law D. and King R. R., 2012. Organometallic vapor phase epitaxy growth of upright metamorphic multijunction solar cells. Journal of Crystal Growth, 352, 186-189.
- Neamen D. A., 2003. Semiconductor Physics and Devices. Avenue of the Americas.
- Pahuja O. P. Dr., 2005. Solid State Physics. SP/Laxmi Publications, New Delhi.
- Quinn J. J. and Yi K.-S., 2009. Solid State Physics Principles and Modern Applications. Springer.
- Schubert E. F., 2006. Light-Emitting Diodes. Cambridge University Press, Edingburgh Building.
- Thompson A. G., 1997. MOCVD technology for semiconductors. Materials Letters, 30, 255-263.