Araştırma Makalesi
BibTex RIS Kaynak Göster

Eş Kanallı Açısal Pres (EKAP) Yöntemi ile Şekillendirilmiş Ti-6Al-4V Alaşımının Mekanik Özellikleri ve Makroskobik Deformasyon Davranışı Arasındaki İlişki

Yıl 2020, Cilt: 20 Sayı: 4, 672 - 682, 25.09.2020
https://doi.org/10.35414/akufemubid.715210

Öz

Bu çalışmada, Ti-6Al-4V alaşımının kaba taneli ve eşit kanallı açısal presleme (EKAP) ile üretilen ultra ince taneli durumda, quasi-statik tek eksenli çekme yüklemesi altında (yaklaşık 10-3 s-1 deformasyon hızı ile) sergilediği mekanik davranış ve makroskobik deformasyon modu (homojen vs. lokalize) karakterize edilmiştir. EKAP işleminin ve farklı kanal iç açılarının çekme dayanımı, kopma uzaması (süneklik), üniform uzama ve sertlik gibi malzemenin mekanik özelliklerine etkisi kapsamlı bir şekilde incelenmiştir. Dijital görüntü korelasyon (DIC) tekniği ile tüm çekme testleri esnasında yüzey deformasyon alanları in-situ olarak ölçülmüştür. Çift paso EKAP işlemi sonrası malzemenin çekme dayanımı, akma dayanımı ve sertliğinin sırasıyla 795,8 MPa, 660 MPa ve 255 HV’den, 120° kanal iç açılı kalıpla EKAPlanmış numunede 918,3 MPa, 850 MPa, 303 HV ve 90° kanal iç açılı kalıpla EKAPlanmış numunede ise 990,5 MPa, 890 MPa, 343 HV değerlerine ulaştığı görülmüştür. Ancak, tanelerin EKAP prosesi neticesinde incelmesi, malzemenin müteakip kırılmasını tetikleyebilecek olan erken zamanlı deformasyon lokalizasyonuna bağlı olarak üniform uzama ve kopma uzamasında önemli bir gerilemeyi beraberinde getirmektedir. DIC verileri, başlangıç numunesinde (EKAP öncesi) deformasyonun homojen olarak ilerlediğini; çift paso EKAP işlemi sonrası çekme yüklemesine tabi tutulan numunede ise deformasyonun daha ziyade inhomojen/lokalize bir mod eğilimi sergilediğini açıkça ortaya koymaktadır. Bu çalışma kapsamında elde edilen sonuçlar, EKAP sonrası plastik deformasyona tabi tutulan malzemenin makroskobik deformasyon modu ile sünekliği arasındaki ilişkiye dair yeni bakış açıları kazandırmaktadır.

Kaynakça

  • Antolovich, S.D. and Armstrong, R.W., 2014. Plastic strain localization in metals: origins and consequences. Progress in Materials Science, 59, 1-160.
  • Barao, V.M.T., Mathew, M.T., Assuncao, W.G., Yuan, J.C.C., Wimmer, M.A. and Sukotjo, C., 2012. Stability of cp-Ti and Ti6Al4V alloy for dental implants as a function of saliva pH, an electrochemical study. Clinical Oral Implants Research, 23, 1055-1062.
  • Barber, R.E., Dudo, T., Yasskin, P.B. and Hartwig, K.T., 2004. Product yield for ECAE processing. Scripta Materialia, 5, 373-377.
  • Boyer, R. R., 1995. Titanium for aerospace: rationale and applications. Advanced Performance Materials, 2, 349-368.
  • Elibol, C., 2018. Lokalisierungs- und Relaxationsphänomene in pseudoelastischen und martensitischen NiTi-Formgedächtnislegierungen. Dissertation, Technische Universität Chemnitz, Fakultät für Maschinenbau, Chemnitz, 160.
  • Elibol, C., Wagner, M.F.-X., 2018. Virtual Extensometer Analysis of Martensite Band Nucleation, Growth, and Strain Softening in Pseudoelastic NiTi Subjected to Different Load Cases. Materials, 11, 1458.
  • Estrin, Y. and Vinogradov, A., 2013. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Materialia, 61, 782-817.
  • Evstifeev A.D. and Valiev R.R., 2019. Study of the dynamic strength of the ultrafine-grained titanium VT 1-0. Materials Science and Engineering, 672, 012063.
  • Frint, P., 2015. Lokalisierungsphänomene nach kombinierter hochgradig plastischer Umformung durch Extrusion und ECAP einer 6000er-Aluminiumlegierung. Dissertation, Technische Universität Chemnitz, Fakultät für Maschinenbau, Chemnitz, 164.
  • Gleiter, H., 1989. Nanocrystalline materials. Progress in Materials Science, 33, 223-315.
  • Gleiter, H., 2000. Nanostructured materials: basic concepts and microstructure. Acta Materialia, 48, 1-29.
  • GOM Gesellschaft für optische Messtechnik mbH (Braunschweig, Germany), Software “ARAMIS” v6.3.1 Optical Deformation Analysis, 2010.
  • Hall, E.O., 1951. The Deformation and Ageing of Mild Steel: II, Characteristics of the Lüders Deformation. Proceedings of the Physical Society, 64, 742-753.
  • Han, S. Z., Lim, S. H., Kim, S., Lee, J., Goto, M., Kim, H. G., Han, B. and Kim, K. H., 2016. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound. Scientific Reports, 6, 30907.
  • Hussein, M.S and Fekry, A.M., 2019. Effect of fumed silica/chitosan/Polyvinylpyrrolidone composite coating on the electrochemical corrosion resistance of Ti-6Al-4V alloy in artificial saliva solution. ACS Omega, 4, 73-78.
  • Iwahashi, Y., Furukawa, M., Horita, Z., Nemoto, M. and Langdon, T.G., 1998. Microstructural characteristics of ultrafine-grained aluminum produced using equal-channel angular pressing. Metallurgical and Materials Transactions A, 29, 2245-2252.
  • Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G., 1998. The process of grain refinement in equal-channel angular pressing. Acta Materialia, 46, 3317-3331.
  • Iwahashi, Y., Wang, J., Horita, Z., Nemoto, M. and Langdon, T.G., 1996. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta Materialia, 35, 143-146.
  • Joshi, S.P. and Ramesh, K.T., 2008. Grain size dependent shear instabilities in body-centered and face-centered cubic materials. Materials Science and Engineering A, 493, 65-70.
  • Khereddine, A. Y., Larbi, F. H., Kawasaki, M., Baudin, T., Bradai, D. and Langdon, T. G., 2013. An examination of microstructural evolution in a Cu–Ni–Si alloy processed by HPT and ECAP. Materials Science and Engineering A, 576, 149-155.
  • Langdon, T.G., 2013. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Materialia, 61, 7035-7059.
  • Lee, W.B. and Chan K.C., 1991. A criterion for the prediction of shear band angles in F.C.C. metals. Acta Metallurgica et Materialia, 39, 411-417.
  • Leyens, C. and Peters, M., 2002. Titanium and titanium alloys. John Wiley & Son Inc, England.
  • Liu, Q., Juul Jensen, D. and Hansen, N., 1998. Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium. Acta Materialia, 46, 5819-5838.
  • Liu, J.Z., Qi, Y.G., Zheng, J.L. et al., 2018. New Approach to Achieve High Strength Powder Metallurgy Ti-6Al-4V Alloy Through a Simplified Hydrogenation Dehydrogenation Treatment. Journal of Alloys and Compounds, 763, 111-119.
  • Ma, E., 2006. Eight routes to improve the tensile ductility of bulk nanostructured materials and alloys. JOM, 58, 49-53.
  • Mehdikhani M., Aravand M., Sabuncuoglu B., Callens M.G., Lomov S.V. and Gorbatikh L., 2016. Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation. Composite Structures, 140, 192-201.
  • Moiseyev, V.N. 2006. Titanium alloys: Russian aircraft and aerospace applications. Taylor & Francis.
  • Motyka, M., Sieniawski, J. And Ziaja, W., Microstructural aspects of superplasticity in Ti-6Al-4V alloy. Materials Science and Engineering A, 599, 57-63.
  • Nagasekhar, A.V., Tick-Hon, Y. and Seow, H.P., 2007. Deformation behavior and strain homogeneity in equal channel angular extrusion/pressing. Journal of Materials Processing Technology, 192-193, 449-452.
  • Nakashima, K., Horita, Z., Nemoto, M. and Langdon, T.G., 1998. Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing. Acta Materialia, 46, 1589-1599.
  • Og-ishi, K., Zhilyaev, A.P. and Mcnelley, T.R., 2005. Effect of strain path on evolution of deformation bands during ECAP of pure aluminum. Materials Science and Engineering A, 410-411, 183-187.
  • Pan, B., Qian, K., Xie, H. and Asundi, A., 2009. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science and Technology, 20, 17pp.
  • Petch, N.J., 1953. The Cleavage Strengh of Polycrystals. The Journal of the Iron and Steel Institute, 174, 25-28.
  • Phume, L., Popoola, A.P.I., Aigbodion, V.S. and Pityana, S., 2018. In-situ formation, anti-corrosion and hardness values of Ti-6Al-4V biomaterial with niobium via laser deposition. International Journal of Surface Science and Engineering, 12, 23-39.
  • Pippan, R. and Hohenwarter, A., 2016. The importance of fracture toughness in ultrafine and nanocrystalline bulk materials. Materials Research Letters, 4, 127-136.
  • Popoola, A.P.I., Phume, L., Pityana, S. and Aigbodion, V.S., 2016. In-situ formation of laser Ti6Al4V-TiB composite coatings on Ti6Al4V alloy for biomedical application. Surface Coating Technology, 285, 161-170.
  • Sabirov, I., Barnett, M.R., Estrin, Y. and Hodgson, P.D., 2009. The effect of strain rate on the deformation mechanisms and the strain rate sensitivity of an ultra-fine-grained Al alloy. Scripta Materialia, 61, 181-184.
  • Segal, V., 1977. The method of material preparation for subsequent working. Patent, USSR Nr. 575892.
  • Segal, V.M., Dobatkin, S.V. and Valiev R.Z., 2004. Equal-channel angular pressing of metallic materials: Achievements and trends. Selection of articles: Part I, Russian Metallurgy, 1, 1-102.
  • Segal, V.M., Reznikov, A.E., Drobyshevskiy, A.E. and Kopylov, V.I., 1981. Plastic working of metals by simple shear. Russian Metallurgy, 1, 99-105.
  • Semenova, I.P., Polyakov, A.V., Polyakova, V.V. et al., 2017. Mechanical behavior and impact toughness of the ultrafine-grained Grade 5 Ti alloy processed by ECAP. Materials Science and Engineering A, 696, 166-173.
  • Senkov, O.N., Miracle, D.B. and Firstov, S.A., 2004. Metallic Materials with High Structural Efficiency, Kluwer Academic Publishers, N.Y.
  • Shin, D.H., Kim, I., Kim, J. et al., 2003. Microstructure Development During Equal-Channel Angular Pressing of Titanium. Acta Materialia, 51, 983-996.
  • Smirnova, N.A., Levit, V.I., Pilyugin, V.P., Kuznetsov, R.I., Davydova, L.S. and Sazonova, V.A., 1986. Evolution of structure of FCC single crystals during strong plastic deformation. The physics of metals and metallography, 61, 127-134.
  • Stüwe, H.P., 2003. Equivalent Strains in Severe Plastic Deformation. Advanced Engineering Materials, 5, 291-295.
  • Valiev, R.Z., Estrin, Y., Horita, Z. et al., 2016. Fundamentals of Superior Properties in Bulk NanoSPD Materials. Materials Research Letters, 4, 1-21.
  • Valiev, R.Z., Islamgaliev, R.K. and Alexandrov, I.V., 2000. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science, 45, 103-189.
  • Valiev, R.Z. and Langdon, T.G., 2006. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science, 51, 881-981.
  • Vinogradov, A.Y. and Agnew, S.R., 2004. Fatigue of Nanocrystalline Materials, in: Encyclopedia of Nanoscience and Nanotechnology, Marcel-Dekker, 2269-2288.
  • Yapici, G.G., Karaman, I. and Luo Z.P., 2006. Mechanical Twinning and Texture Evolution in Severely Deformed Ti-6Al-4V at High Temperature. Acta Materialia, 54, 3755-3771.
  • Yu, H., Yan, M., Li, J. et al.,2018. Mechanical properties and microstructure of a Ti-6Al-4V alloy subjected to cold rolling, asymmetric rolling and asymmetric cryorolling. Materials Science and Engineering A, 710, 10-16.
  • Zhang, P., Li, S.X. and Zhang Z.F., 2011. General relationship between strength and hardness. Materials Science and Engineering A, 529, 62-73.
  • Zhao, Z., Wang, G., Zhang, Y., Gao, J. and Hou, H., 2020. Microstructure Evolution and Mechanical Properties of Ti-6Al-4V Alloy Prepared by Multipass Equal Channel Angular Pressing. Journal of Materials Engineering and Performance, 1059-9495.
  • Zherebtsov, S.V., Kudryavtsev, E.A., Salishchev, G.A., Straumal, B.B. and Semiatin, S.L., 2016. Microstructure evolution and mechanical behavior of ultrafine Ti6Al4V during low-temperature superplastic deformation. Acta Materialia, 121, 152-163.
  • Zhu, Y.T., Lowe, T.C. and Langdon, T.G., 2004. Performance and applications of nanostructured materials produced by severe plastic deformation. Scripta Materialia, 51, 825-830.

Relationship between Mechanical Behavior and Macroscopic Deformation Mode of Ti-6Al-4V Alloy Processed by ECAP

Yıl 2020, Cilt: 20 Sayı: 4, 672 - 682, 25.09.2020
https://doi.org/10.35414/akufemubid.715210

Öz

In this study, the mechanical behavior and the macroscopic deformation mode with respect to localized vs. homogenous deformation under quasi-static uniaxial tensile loading (at the strain rate of about 10-3 s-1) of Ti-6Al-4V alloy in the as-received (coarse-grained) and the ultrafine-grained (UFG) state produced by equal-channel angular pressing (ECAP) are characterized. The effect of ECAP process and different intersecting channel angles on the mechanical properties such as the tensile strength, the ultimate strain (ductility), the uniform elongation and the hardness is studied extensively. Digital image correlation (DIC) is used to document the surface strain fields in situ during all the tensile tests. It is shown that the tensile strength, the yield strength and the hardness of the material increased from 795,8 MPa, 660 MPa and 255 HV to 918,3 MPa, 850 MPa, 303 HV and 990,5 MPa, 890 MPa, 343 HV by applying two passes of ECAP using a mold with an intersecting channel angle of 120° and 90°, respectively. However, a refinement of the grains by ECAP leads to a significant decrease in the uniform elongation and ultimate strain due to the early stage strain localization, which may provide the nuclei for subsequent fracture of the material. DIC-images clearly indicate that in the as-received state, the deformation proceeds homogeneously, whereas after two passes of ECAP, the deformation tends to an inhomogeneous/localized macroscopic mode. The results presented in this work provide new insights into the relationship between the macroscopic deformation mode and the ductility of the ECAPed material.

Kaynakça

  • Antolovich, S.D. and Armstrong, R.W., 2014. Plastic strain localization in metals: origins and consequences. Progress in Materials Science, 59, 1-160.
  • Barao, V.M.T., Mathew, M.T., Assuncao, W.G., Yuan, J.C.C., Wimmer, M.A. and Sukotjo, C., 2012. Stability of cp-Ti and Ti6Al4V alloy for dental implants as a function of saliva pH, an electrochemical study. Clinical Oral Implants Research, 23, 1055-1062.
  • Barber, R.E., Dudo, T., Yasskin, P.B. and Hartwig, K.T., 2004. Product yield for ECAE processing. Scripta Materialia, 5, 373-377.
  • Boyer, R. R., 1995. Titanium for aerospace: rationale and applications. Advanced Performance Materials, 2, 349-368.
  • Elibol, C., 2018. Lokalisierungs- und Relaxationsphänomene in pseudoelastischen und martensitischen NiTi-Formgedächtnislegierungen. Dissertation, Technische Universität Chemnitz, Fakultät für Maschinenbau, Chemnitz, 160.
  • Elibol, C., Wagner, M.F.-X., 2018. Virtual Extensometer Analysis of Martensite Band Nucleation, Growth, and Strain Softening in Pseudoelastic NiTi Subjected to Different Load Cases. Materials, 11, 1458.
  • Estrin, Y. and Vinogradov, A., 2013. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Materialia, 61, 782-817.
  • Evstifeev A.D. and Valiev R.R., 2019. Study of the dynamic strength of the ultrafine-grained titanium VT 1-0. Materials Science and Engineering, 672, 012063.
  • Frint, P., 2015. Lokalisierungsphänomene nach kombinierter hochgradig plastischer Umformung durch Extrusion und ECAP einer 6000er-Aluminiumlegierung. Dissertation, Technische Universität Chemnitz, Fakultät für Maschinenbau, Chemnitz, 164.
  • Gleiter, H., 1989. Nanocrystalline materials. Progress in Materials Science, 33, 223-315.
  • Gleiter, H., 2000. Nanostructured materials: basic concepts and microstructure. Acta Materialia, 48, 1-29.
  • GOM Gesellschaft für optische Messtechnik mbH (Braunschweig, Germany), Software “ARAMIS” v6.3.1 Optical Deformation Analysis, 2010.
  • Hall, E.O., 1951. The Deformation and Ageing of Mild Steel: II, Characteristics of the Lüders Deformation. Proceedings of the Physical Society, 64, 742-753.
  • Han, S. Z., Lim, S. H., Kim, S., Lee, J., Goto, M., Kim, H. G., Han, B. and Kim, K. H., 2016. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound. Scientific Reports, 6, 30907.
  • Hussein, M.S and Fekry, A.M., 2019. Effect of fumed silica/chitosan/Polyvinylpyrrolidone composite coating on the electrochemical corrosion resistance of Ti-6Al-4V alloy in artificial saliva solution. ACS Omega, 4, 73-78.
  • Iwahashi, Y., Furukawa, M., Horita, Z., Nemoto, M. and Langdon, T.G., 1998. Microstructural characteristics of ultrafine-grained aluminum produced using equal-channel angular pressing. Metallurgical and Materials Transactions A, 29, 2245-2252.
  • Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G., 1998. The process of grain refinement in equal-channel angular pressing. Acta Materialia, 46, 3317-3331.
  • Iwahashi, Y., Wang, J., Horita, Z., Nemoto, M. and Langdon, T.G., 1996. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta Materialia, 35, 143-146.
  • Joshi, S.P. and Ramesh, K.T., 2008. Grain size dependent shear instabilities in body-centered and face-centered cubic materials. Materials Science and Engineering A, 493, 65-70.
  • Khereddine, A. Y., Larbi, F. H., Kawasaki, M., Baudin, T., Bradai, D. and Langdon, T. G., 2013. An examination of microstructural evolution in a Cu–Ni–Si alloy processed by HPT and ECAP. Materials Science and Engineering A, 576, 149-155.
  • Langdon, T.G., 2013. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Materialia, 61, 7035-7059.
  • Lee, W.B. and Chan K.C., 1991. A criterion for the prediction of shear band angles in F.C.C. metals. Acta Metallurgica et Materialia, 39, 411-417.
  • Leyens, C. and Peters, M., 2002. Titanium and titanium alloys. John Wiley & Son Inc, England.
  • Liu, Q., Juul Jensen, D. and Hansen, N., 1998. Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium. Acta Materialia, 46, 5819-5838.
  • Liu, J.Z., Qi, Y.G., Zheng, J.L. et al., 2018. New Approach to Achieve High Strength Powder Metallurgy Ti-6Al-4V Alloy Through a Simplified Hydrogenation Dehydrogenation Treatment. Journal of Alloys and Compounds, 763, 111-119.
  • Ma, E., 2006. Eight routes to improve the tensile ductility of bulk nanostructured materials and alloys. JOM, 58, 49-53.
  • Mehdikhani M., Aravand M., Sabuncuoglu B., Callens M.G., Lomov S.V. and Gorbatikh L., 2016. Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation. Composite Structures, 140, 192-201.
  • Moiseyev, V.N. 2006. Titanium alloys: Russian aircraft and aerospace applications. Taylor & Francis.
  • Motyka, M., Sieniawski, J. And Ziaja, W., Microstructural aspects of superplasticity in Ti-6Al-4V alloy. Materials Science and Engineering A, 599, 57-63.
  • Nagasekhar, A.V., Tick-Hon, Y. and Seow, H.P., 2007. Deformation behavior and strain homogeneity in equal channel angular extrusion/pressing. Journal of Materials Processing Technology, 192-193, 449-452.
  • Nakashima, K., Horita, Z., Nemoto, M. and Langdon, T.G., 1998. Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing. Acta Materialia, 46, 1589-1599.
  • Og-ishi, K., Zhilyaev, A.P. and Mcnelley, T.R., 2005. Effect of strain path on evolution of deformation bands during ECAP of pure aluminum. Materials Science and Engineering A, 410-411, 183-187.
  • Pan, B., Qian, K., Xie, H. and Asundi, A., 2009. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science and Technology, 20, 17pp.
  • Petch, N.J., 1953. The Cleavage Strengh of Polycrystals. The Journal of the Iron and Steel Institute, 174, 25-28.
  • Phume, L., Popoola, A.P.I., Aigbodion, V.S. and Pityana, S., 2018. In-situ formation, anti-corrosion and hardness values of Ti-6Al-4V biomaterial with niobium via laser deposition. International Journal of Surface Science and Engineering, 12, 23-39.
  • Pippan, R. and Hohenwarter, A., 2016. The importance of fracture toughness in ultrafine and nanocrystalline bulk materials. Materials Research Letters, 4, 127-136.
  • Popoola, A.P.I., Phume, L., Pityana, S. and Aigbodion, V.S., 2016. In-situ formation of laser Ti6Al4V-TiB composite coatings on Ti6Al4V alloy for biomedical application. Surface Coating Technology, 285, 161-170.
  • Sabirov, I., Barnett, M.R., Estrin, Y. and Hodgson, P.D., 2009. The effect of strain rate on the deformation mechanisms and the strain rate sensitivity of an ultra-fine-grained Al alloy. Scripta Materialia, 61, 181-184.
  • Segal, V., 1977. The method of material preparation for subsequent working. Patent, USSR Nr. 575892.
  • Segal, V.M., Dobatkin, S.V. and Valiev R.Z., 2004. Equal-channel angular pressing of metallic materials: Achievements and trends. Selection of articles: Part I, Russian Metallurgy, 1, 1-102.
  • Segal, V.M., Reznikov, A.E., Drobyshevskiy, A.E. and Kopylov, V.I., 1981. Plastic working of metals by simple shear. Russian Metallurgy, 1, 99-105.
  • Semenova, I.P., Polyakov, A.V., Polyakova, V.V. et al., 2017. Mechanical behavior and impact toughness of the ultrafine-grained Grade 5 Ti alloy processed by ECAP. Materials Science and Engineering A, 696, 166-173.
  • Senkov, O.N., Miracle, D.B. and Firstov, S.A., 2004. Metallic Materials with High Structural Efficiency, Kluwer Academic Publishers, N.Y.
  • Shin, D.H., Kim, I., Kim, J. et al., 2003. Microstructure Development During Equal-Channel Angular Pressing of Titanium. Acta Materialia, 51, 983-996.
  • Smirnova, N.A., Levit, V.I., Pilyugin, V.P., Kuznetsov, R.I., Davydova, L.S. and Sazonova, V.A., 1986. Evolution of structure of FCC single crystals during strong plastic deformation. The physics of metals and metallography, 61, 127-134.
  • Stüwe, H.P., 2003. Equivalent Strains in Severe Plastic Deformation. Advanced Engineering Materials, 5, 291-295.
  • Valiev, R.Z., Estrin, Y., Horita, Z. et al., 2016. Fundamentals of Superior Properties in Bulk NanoSPD Materials. Materials Research Letters, 4, 1-21.
  • Valiev, R.Z., Islamgaliev, R.K. and Alexandrov, I.V., 2000. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science, 45, 103-189.
  • Valiev, R.Z. and Langdon, T.G., 2006. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science, 51, 881-981.
  • Vinogradov, A.Y. and Agnew, S.R., 2004. Fatigue of Nanocrystalline Materials, in: Encyclopedia of Nanoscience and Nanotechnology, Marcel-Dekker, 2269-2288.
  • Yapici, G.G., Karaman, I. and Luo Z.P., 2006. Mechanical Twinning and Texture Evolution in Severely Deformed Ti-6Al-4V at High Temperature. Acta Materialia, 54, 3755-3771.
  • Yu, H., Yan, M., Li, J. et al.,2018. Mechanical properties and microstructure of a Ti-6Al-4V alloy subjected to cold rolling, asymmetric rolling and asymmetric cryorolling. Materials Science and Engineering A, 710, 10-16.
  • Zhang, P., Li, S.X. and Zhang Z.F., 2011. General relationship between strength and hardness. Materials Science and Engineering A, 529, 62-73.
  • Zhao, Z., Wang, G., Zhang, Y., Gao, J. and Hou, H., 2020. Microstructure Evolution and Mechanical Properties of Ti-6Al-4V Alloy Prepared by Multipass Equal Channel Angular Pressing. Journal of Materials Engineering and Performance, 1059-9495.
  • Zherebtsov, S.V., Kudryavtsev, E.A., Salishchev, G.A., Straumal, B.B. and Semiatin, S.L., 2016. Microstructure evolution and mechanical behavior of ultrafine Ti6Al4V during low-temperature superplastic deformation. Acta Materialia, 121, 152-163.
  • Zhu, Y.T., Lowe, T.C. and Langdon, T.G., 2004. Performance and applications of nanostructured materials produced by severe plastic deformation. Scripta Materialia, 51, 825-830.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Çağatay Elibol 0000-0002-3595-5259

Yayımlanma Tarihi 25 Eylül 2020
Gönderilme Tarihi 5 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 20 Sayı: 4

Kaynak Göster

APA Elibol, Ç. (2020). Eş Kanallı Açısal Pres (EKAP) Yöntemi ile Şekillendirilmiş Ti-6Al-4V Alaşımının Mekanik Özellikleri ve Makroskobik Deformasyon Davranışı Arasındaki İlişki. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(4), 672-682. https://doi.org/10.35414/akufemubid.715210
AMA Elibol Ç. Eş Kanallı Açısal Pres (EKAP) Yöntemi ile Şekillendirilmiş Ti-6Al-4V Alaşımının Mekanik Özellikleri ve Makroskobik Deformasyon Davranışı Arasındaki İlişki. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Eylül 2020;20(4):672-682. doi:10.35414/akufemubid.715210
Chicago Elibol, Çağatay. “Eş Kanallı Açısal Pres (EKAP) Yöntemi Ile Şekillendirilmiş Ti-6Al-4V Alaşımının Mekanik Özellikleri Ve Makroskobik Deformasyon Davranışı Arasındaki İlişki”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, sy. 4 (Eylül 2020): 672-82. https://doi.org/10.35414/akufemubid.715210.
EndNote Elibol Ç (01 Eylül 2020) Eş Kanallı Açısal Pres (EKAP) Yöntemi ile Şekillendirilmiş Ti-6Al-4V Alaşımının Mekanik Özellikleri ve Makroskobik Deformasyon Davranışı Arasındaki İlişki. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 4 672–682.
IEEE Ç. Elibol, “Eş Kanallı Açısal Pres (EKAP) Yöntemi ile Şekillendirilmiş Ti-6Al-4V Alaşımının Mekanik Özellikleri ve Makroskobik Deformasyon Davranışı Arasındaki İlişki”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 20, sy. 4, ss. 672–682, 2020, doi: 10.35414/akufemubid.715210.
ISNAD Elibol, Çağatay. “Eş Kanallı Açısal Pres (EKAP) Yöntemi Ile Şekillendirilmiş Ti-6Al-4V Alaşımının Mekanik Özellikleri Ve Makroskobik Deformasyon Davranışı Arasındaki İlişki”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/4 (Eylül 2020), 672-682. https://doi.org/10.35414/akufemubid.715210.
JAMA Elibol Ç. Eş Kanallı Açısal Pres (EKAP) Yöntemi ile Şekillendirilmiş Ti-6Al-4V Alaşımının Mekanik Özellikleri ve Makroskobik Deformasyon Davranışı Arasındaki İlişki. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:672–682.
MLA Elibol, Çağatay. “Eş Kanallı Açısal Pres (EKAP) Yöntemi Ile Şekillendirilmiş Ti-6Al-4V Alaşımının Mekanik Özellikleri Ve Makroskobik Deformasyon Davranışı Arasındaki İlişki”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 20, sy. 4, 2020, ss. 672-8, doi:10.35414/akufemubid.715210.
Vancouver Elibol Ç. Eş Kanallı Açısal Pres (EKAP) Yöntemi ile Şekillendirilmiş Ti-6Al-4V Alaşımının Mekanik Özellikleri ve Makroskobik Deformasyon Davranışı Arasındaki İlişki. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(4):672-8.