Araştırma Makalesi
BibTex RIS Kaynak Göster

Poli (Vinil klorür)/Fe3O4 Manyetik Nanopartikül Kompozitlerinin Sentezi, Termal ve Elektriksel Özelliklerinin İncelenmesi

Yıl 2020, Cilt: 20 Sayı: 5, 802 - 809, 30.11.2020
https://doi.org/10.35414/akufemubid.761853

Öz

Çalışmada manyetik Fe3O4 nanopartikülleri birlikte çöktürme yöntemiyle sentezlendi. Sentezlenen nanopartiküllerin TEM ve partikül boyutlandırıcı ile boyutlarının 20 nm civarında olduğu ve XRD ile de yapılarının küre şeklinde olduğu belirlendi. VSM ile elde edilen manyetizasyon eğrisinden doygunluk manyetizasyon değeri (Ms) 53.28 emu/g olarak bulundu. Ardından Poli(vinil klorür) ile farklı yüzdelerde manyetik nanopartikül kullanılarak kompozitler hazırlandı. Hazırlanan kompozitlerin karekterizasyonu FT-IR spektrofotometresi ile yapıldı. TGA ve DSC ile termal analizleri yapıldı ve nanopartiküllerle hazırlanan kompozitlerde Tg değerlerinin saf PVC’ den daha yüksek olduğu görüldü. Elektriksel ölçüm sonuçlarından, MNP ilavesinin dielektrik sabitini düşürdüğü görüldü. Ayrıca AC iletkenliğinin artan frekansla artış göstermesine rağmen kompozitlerin iletkenliğinin saf PVC’ den daha düşük olduğu belirlenmiştir.

Teşekkür

Doktora dönemim boyunca danışmanlığımı yapan ve doktora sonrası çalışmalarıma yön veren değerli hocam Prof. Dr. Mehmet COŞKUN’ a ve çalışma süresince desteğini esirgemeyen değerli eşim Dr. Sibel PEKDEMİR’ e teşekkürlerimi sunarım

Kaynakça

  • Balazs, A. C., Emrick, T., & Russell, T. P. (2006). Nanoparticle polymer composites: where two small worlds meet. science, 314(5802), 1107-1110.
  • Bayramoğlu, G., & Eşiyok, S. (2017). Polistiren-Fosfin Oksit Modifiye Kil Nanokompozitleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(2), 440-448.
  • Byrne, M. T., & Gun'ko, Y. K. (2010). Recent advances in research on carbon nanotube–polymer composites. Advanced materials, 22(15), 1672-1688.
  • Chen, C., Wesson, R., Collier, J., & Lo, Y. (1995). Studies of rigid poly (vinyl chloride)(PVC) compounds. I. Morphological characteristics of poly (vinyl chloride)/chlorinated polyethylene (PVC/CPE) blends. Journal of applied polymer science, 58(7), 1087-1091.
  • Chiscan, O., Dumitru, I., Postolache, P., Tura, V., & Stancu, A. (2012). Electrospun PVC/Fe3O4 composite nanofibers for microwave absorption applications. Materials Letters, 68, 251-254.
  • Endo, K. (2002). Synthesis and structure of poly (vinyl chloride). Progress in Polymer science, 27(10), 2021-2054.
  • Harun, H., Pekdemir, M. E., & Coşkun, M. (2019). A study on aminated PVC/oxidized MWCNT composites. Academia Journal of Scientific Research, 7(2), 086-094. doi: 10.15413/ajsr.2018.0166
  • Haruna, H., Pekdemir, M. E., Tukur, A., & Coşkun, M. (2020). Characterization, thermal and electrical properties of aminated PVC/oxidized MWCNT composites doped with nanographite. Journal of Thermal Analysis and Calorimetry, 1-9.
  • Khan, A., Aldwayyan, A. S., Alhoshan, M., & Alsalhi, M. (2010). Synthesis by in situ chemical oxidative polymerization and characterization of polyaniline/iron oxide nanoparticle composite. Polymer international, 59(12), 1690-1694.
  • Klarić, I., Vrandečić, N. S., & Roje, U. (2000). Effect of poly (vinyl chloride)/chlorinated polyethylene blend composition on thermal stability. Journal of applied polymer science, 78(1), 166-172.
  • Li, P., Miser, D. E., Rabiei, S., Yadav, R. T., & Hajaligol, M. R. (2003). The removal of carbon monoxide by iron oxide nanoparticles. Applied Catalysis B: Environmental, 43(2), 151-162.
  • Moniruzzaman, M., & Winey, K. I. (2006). Polymer nanocomposites containing carbon nanotubes. Macromolecules, 39(16), 5194-5205.
  • Pekdemir, M. E., Ertürkan, D., Külah, H., Boyacı, İ. H., Özgen, C., & Tamer, U. (2012). Ultrasensitive and selective homogeneous sandwich immunoassay detection by Surface Enhanced Raman Scattering (SERS). Analyst, 137(20), 4834-4840.
  • Reddy, K. R., Lee, K.-P., Lee, Y., & Gopalan, A. I. (2008). Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Materials Letters, 62(12-13), 1815-1818.
  • Reddy, K. R., Lee, K. P., & Gopalan, A. I. (2007). Novel electrically conductive and ferromagnetic composites of poly (aniline‐co‐aminonaphthalenesulfonic acid) with iron oxide nanoparticles: synthesis and characterization. Journal of applied polymer science, 106(2), 1181-1191.
  • Shafi, K. V., Ulman, A., Yan, X., Yang, N.-L., Estournes, C., White, H., & Rafailovich, M. (2001). Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir, 17(16), 5093-5097.
  • Sun, C., Lee, J. S., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced drug delivery reviews, 60(11), 1252-1265.
  • Sun, S., Murray, C. B., Weller, D., Folks, L., & Moser, A. (2000). Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. science, 287(5460), 1989-1992.
  • Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., & Li, G. (2004). Monodisperse mfe2o4 (m= fe, co, mn) nanoparticles. Journal of the American Chemical Society, 126(1), 273-279.
  • Tavman, İ., & Turgut, A. (2006). Mikro ve nano boyutlu tanecik katkılı polimer kompozitlerin mekanik özellikleri. Paper presented at the Proceedings of 11th International Materials Symposium.
  • Teng, X., & Yang, H. (2004). Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles. Journal of Materials Chemistry, 14(4), 774-779.
  • Thio, Y., Argon, A., Cohen, R., & Weinberg, M. (2002). Toughening of isotactic polypropylene with CaCO3 particles. Polymer, 43(13), 3661-3674.
  • Thostenson, E. T., Ren, Z., & Chou, T.-W. (2001). Advances in the science and technology of carbon nanotubes and their composites: a review. Composites science and technology, 61(13), 1899-1912.
  • Tukur, A., Pekdemir, M. E., Haruna, H., & Coşkun, M. (2020). Magnetic nanoparticle bonding to PVC with the help of click reaction: characterization, thermal and electrical investigation. Journal of Polymer Research, 27, 161.
  • Wilson, J., Poddar, P., Frey, N., Srikanth, H., Mohomed, K., Harmon, J., . . . Wachsmuth, J. (2004). Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. Journal of Applied Physics, 95(3), 1439-1443.
  • Woo, K., Hong, J., Choi, S., Lee, H.-W., Ahn, J.-P., Kim, C. S., & Lee, S. W. (2004). Easy synthesis and magnetic properties of iron oxide nanoparticles. Chemistry of materials, 16(14), 2814-2818.
  • Xie, X.-L., Liu, Q.-X., Li, R. K.-Y., Zhou, X.-P., Zhang, Q.-X., Yu, Z.-Z., & Mai, Y.-W. (2004). Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer, 45(19), 6665-6673.

Synthesis, Investigation of Thermal and Electrical Properties Poly(Vinyl chloride)/Fe3O4 Magnetic Nanoparticle Composites

Yıl 2020, Cilt: 20 Sayı: 5, 802 - 809, 30.11.2020
https://doi.org/10.35414/akufemubid.761853

Öz

In this study, magnetic Fe3O4 nanoparticles were synthesized by co-precipitation. It was determined that the dimensions of the synthesized nanoparticles with TEM and Particle Sizer were around 20 nm and their structures were spherical by XRD. Saturation magnetization value (Ms) from the magnetizaton curve obtained by VSM was found as 53.28 emu/g. Then, composites were prepared using Poly (vinyl chloride) with different percentages of magnetic nanoparticles. The PVC/magnetic Fe3O4 nanoparticles were characterized by FT-IR spectrophotometer. Thermal analyzes were carried out by DSC and TGA, and Tg values of composites were found to be higher than pure PVC. From the electrical measurement results, it was observed that the addition of MNP reduced the dielectric constant. Additionally, although AC conductivity increases with increasing frequency, it is determined that the conductivity of composites is lower than pure PVC.

Kaynakça

  • Balazs, A. C., Emrick, T., & Russell, T. P. (2006). Nanoparticle polymer composites: where two small worlds meet. science, 314(5802), 1107-1110.
  • Bayramoğlu, G., & Eşiyok, S. (2017). Polistiren-Fosfin Oksit Modifiye Kil Nanokompozitleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(2), 440-448.
  • Byrne, M. T., & Gun'ko, Y. K. (2010). Recent advances in research on carbon nanotube–polymer composites. Advanced materials, 22(15), 1672-1688.
  • Chen, C., Wesson, R., Collier, J., & Lo, Y. (1995). Studies of rigid poly (vinyl chloride)(PVC) compounds. I. Morphological characteristics of poly (vinyl chloride)/chlorinated polyethylene (PVC/CPE) blends. Journal of applied polymer science, 58(7), 1087-1091.
  • Chiscan, O., Dumitru, I., Postolache, P., Tura, V., & Stancu, A. (2012). Electrospun PVC/Fe3O4 composite nanofibers for microwave absorption applications. Materials Letters, 68, 251-254.
  • Endo, K. (2002). Synthesis and structure of poly (vinyl chloride). Progress in Polymer science, 27(10), 2021-2054.
  • Harun, H., Pekdemir, M. E., & Coşkun, M. (2019). A study on aminated PVC/oxidized MWCNT composites. Academia Journal of Scientific Research, 7(2), 086-094. doi: 10.15413/ajsr.2018.0166
  • Haruna, H., Pekdemir, M. E., Tukur, A., & Coşkun, M. (2020). Characterization, thermal and electrical properties of aminated PVC/oxidized MWCNT composites doped with nanographite. Journal of Thermal Analysis and Calorimetry, 1-9.
  • Khan, A., Aldwayyan, A. S., Alhoshan, M., & Alsalhi, M. (2010). Synthesis by in situ chemical oxidative polymerization and characterization of polyaniline/iron oxide nanoparticle composite. Polymer international, 59(12), 1690-1694.
  • Klarić, I., Vrandečić, N. S., & Roje, U. (2000). Effect of poly (vinyl chloride)/chlorinated polyethylene blend composition on thermal stability. Journal of applied polymer science, 78(1), 166-172.
  • Li, P., Miser, D. E., Rabiei, S., Yadav, R. T., & Hajaligol, M. R. (2003). The removal of carbon monoxide by iron oxide nanoparticles. Applied Catalysis B: Environmental, 43(2), 151-162.
  • Moniruzzaman, M., & Winey, K. I. (2006). Polymer nanocomposites containing carbon nanotubes. Macromolecules, 39(16), 5194-5205.
  • Pekdemir, M. E., Ertürkan, D., Külah, H., Boyacı, İ. H., Özgen, C., & Tamer, U. (2012). Ultrasensitive and selective homogeneous sandwich immunoassay detection by Surface Enhanced Raman Scattering (SERS). Analyst, 137(20), 4834-4840.
  • Reddy, K. R., Lee, K.-P., Lee, Y., & Gopalan, A. I. (2008). Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Materials Letters, 62(12-13), 1815-1818.
  • Reddy, K. R., Lee, K. P., & Gopalan, A. I. (2007). Novel electrically conductive and ferromagnetic composites of poly (aniline‐co‐aminonaphthalenesulfonic acid) with iron oxide nanoparticles: synthesis and characterization. Journal of applied polymer science, 106(2), 1181-1191.
  • Shafi, K. V., Ulman, A., Yan, X., Yang, N.-L., Estournes, C., White, H., & Rafailovich, M. (2001). Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir, 17(16), 5093-5097.
  • Sun, C., Lee, J. S., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced drug delivery reviews, 60(11), 1252-1265.
  • Sun, S., Murray, C. B., Weller, D., Folks, L., & Moser, A. (2000). Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. science, 287(5460), 1989-1992.
  • Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., & Li, G. (2004). Monodisperse mfe2o4 (m= fe, co, mn) nanoparticles. Journal of the American Chemical Society, 126(1), 273-279.
  • Tavman, İ., & Turgut, A. (2006). Mikro ve nano boyutlu tanecik katkılı polimer kompozitlerin mekanik özellikleri. Paper presented at the Proceedings of 11th International Materials Symposium.
  • Teng, X., & Yang, H. (2004). Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles. Journal of Materials Chemistry, 14(4), 774-779.
  • Thio, Y., Argon, A., Cohen, R., & Weinberg, M. (2002). Toughening of isotactic polypropylene with CaCO3 particles. Polymer, 43(13), 3661-3674.
  • Thostenson, E. T., Ren, Z., & Chou, T.-W. (2001). Advances in the science and technology of carbon nanotubes and their composites: a review. Composites science and technology, 61(13), 1899-1912.
  • Tukur, A., Pekdemir, M. E., Haruna, H., & Coşkun, M. (2020). Magnetic nanoparticle bonding to PVC with the help of click reaction: characterization, thermal and electrical investigation. Journal of Polymer Research, 27, 161.
  • Wilson, J., Poddar, P., Frey, N., Srikanth, H., Mohomed, K., Harmon, J., . . . Wachsmuth, J. (2004). Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. Journal of Applied Physics, 95(3), 1439-1443.
  • Woo, K., Hong, J., Choi, S., Lee, H.-W., Ahn, J.-P., Kim, C. S., & Lee, S. W. (2004). Easy synthesis and magnetic properties of iron oxide nanoparticles. Chemistry of materials, 16(14), 2814-2818.
  • Xie, X.-L., Liu, Q.-X., Li, R. K.-Y., Zhou, X.-P., Zhang, Q.-X., Yu, Z.-Z., & Mai, Y.-W. (2004). Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer, 45(19), 6665-6673.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Ersin Pekdemir 0000-0002-4979-1777

Yayımlanma Tarihi 30 Kasım 2020
Gönderilme Tarihi 1 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 20 Sayı: 5

Kaynak Göster

APA Pekdemir, M. E. (2020). Poli (Vinil klorür)/Fe3O4 Manyetik Nanopartikül Kompozitlerinin Sentezi, Termal ve Elektriksel Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(5), 802-809. https://doi.org/10.35414/akufemubid.761853
AMA Pekdemir ME. Poli (Vinil klorür)/Fe3O4 Manyetik Nanopartikül Kompozitlerinin Sentezi, Termal ve Elektriksel Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Kasım 2020;20(5):802-809. doi:10.35414/akufemubid.761853
Chicago Pekdemir, Mustafa Ersin. “Poli (Vinil klorür)/Fe3O4 Manyetik Nanopartikül Kompozitlerinin Sentezi, Termal Ve Elektriksel Özelliklerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, sy. 5 (Kasım 2020): 802-9. https://doi.org/10.35414/akufemubid.761853.
EndNote Pekdemir ME (01 Kasım 2020) Poli (Vinil klorür)/Fe3O4 Manyetik Nanopartikül Kompozitlerinin Sentezi, Termal ve Elektriksel Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 5 802–809.
IEEE M. E. Pekdemir, “Poli (Vinil klorür)/Fe3O4 Manyetik Nanopartikül Kompozitlerinin Sentezi, Termal ve Elektriksel Özelliklerinin İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 20, sy. 5, ss. 802–809, 2020, doi: 10.35414/akufemubid.761853.
ISNAD Pekdemir, Mustafa Ersin. “Poli (Vinil klorür)/Fe3O4 Manyetik Nanopartikül Kompozitlerinin Sentezi, Termal Ve Elektriksel Özelliklerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/5 (Kasım 2020), 802-809. https://doi.org/10.35414/akufemubid.761853.
JAMA Pekdemir ME. Poli (Vinil klorür)/Fe3O4 Manyetik Nanopartikül Kompozitlerinin Sentezi, Termal ve Elektriksel Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:802–809.
MLA Pekdemir, Mustafa Ersin. “Poli (Vinil klorür)/Fe3O4 Manyetik Nanopartikül Kompozitlerinin Sentezi, Termal Ve Elektriksel Özelliklerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 20, sy. 5, 2020, ss. 802-9, doi:10.35414/akufemubid.761853.
Vancouver Pekdemir ME. Poli (Vinil klorür)/Fe3O4 Manyetik Nanopartikül Kompozitlerinin Sentezi, Termal ve Elektriksel Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(5):802-9.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.