Araştırma Makalesi
BibTex RIS Kaynak Göster

Nano Boyutlu Kalsit ve Uçucu Külün, Harçların Hidratasyonu ve Mikroyapısal Özellikleri Üzerindeki Kombine Etkileri

Yıl 2020, Cilt: 20 Sayı: 6, 1051 - 1067, 31.12.2020
https://doi.org/10.35414/akufemubid.825862

Öz

Çimento esaslı malzemelerde uçucu külün kullanılmasıyla kirlilik ve CO2 emisyonunda bir azalma sağlansa da, yüksek hacimde uçucu kül kullanılması, erken yaş mukavemet gelişiminde bir azalma ile neticelenmekte ve ayrıca priz alma süresinde gecikmelere neden olur. Yüksek hacimli uçucu kül katkılı çimento harçlarının hidratasyon mekanizması ve mikroyapısal özelliklerini değerlendirmek amacıyla, uçucu kül (UK) ve nano kalsitin (NK) birleşik etkisini incelemek için harçlara nano boyutlu kalsit eklenmiştir. Bu amaçla, uçucu kül/Portland çimentosu oranı ve NK ikame oranı (% 5'e kadar minör ilave bileşen olarak kullanıldı) sırasıyla 0.0, 0.25, 0.54, 1.0 ve %0, %2.5, %5 olarak yer değiştirilmiş on iki karışım tasarlanmış. Kıvam, priz süreleri, basınç dayanımı, ultrasonik ses hızı (UPV) ve SEM analizi test yöntemine bağlı olarak farklı kür yaşlarında gerçekleştirilmiştir. Deneysel test sonuçları, standart harçların taze ve sertleşmiş özelliklerinin hem UK hem de NK kombinasyonu ile özellikle erken yaşlarda önemli ölçüde iyileştiğini göstermiştir. UK kullanım oranı artışıyla birlikte erken yaş basınç dayanımında azalma gözlemlenmiş olmasına rağmen, kontrol karışımına kıyasen (ki 90 günlük basınç dayanımı 43.2 MPa olarak elde edildi), %50 UK ve %2.5 NK ikame oranlı karışımın 90 günlük basınç dayanımı daha yüksek (45.9 MPa olarak) elde edilmiştir.

Kaynakça

  • Arora, A., Sant, G., & Neithalath, N. (2016). Ternary blends containing slag and interground/blended limestone: Hydration, strength, and pore structure. Construction and Building Materials, 102, 113-124.
  • Bentz, D. P., Ardani, A., Barrett, T., Jones, S. Z., Lootens, D., Peltz, M. A., ... & Weiss, W. J., (2015). Multi-scale investigation of the performance of limestone in concrete. Construction and Building Materials, 75, 1-10.
  • Bonavetti, V. L., Rahhal, V. F., & Irassar, E. F., 2001. Studies on the carboaluminate formation in limestone filler-blended cements. Cement and Concrete Research, 31(6), 853-859.
  • Bosiljkov, V.B., 2003. SCC mixes with poorly graded aggregate and high volume of limestone filler. Cement and Concrete Research, 33, 1279–1286.
  • Camiletti, J., Soliman, A. M., & Nehdi, M. L., 2013. Effect of nano-calcium carbonate on early-age properties of ultra-high-performance concrete. Magazine of Concrete Research, 65(5), 297-307.
  • Cao, M., Ming, X., He, K., Li, L., & Shen, S., 2019. Effect of macro-, micro-and nano-calcium carbonate on properties of cementitious composites—A review. Materials, 12(5), 781.
  • Damidot, D., Lothenbach, B., Herfort, D., & Glasser, F. P., 2011. Thermodynamics and cement science. Cement and Concrete Research, 41(7), 679-695.
  • Das, S., Aguayo, M., Dey, V., Kachala, R., Mobasher, B., Sant, G., & Neithalath, N., 2014. The fracture response of blended formulations containing limestone powder: Evaluations using two-parameter fracture model and digital image correlation. Cement and Concrete Composites, 53, 316-326.
  • De Weerdt, K., Justnes, H., Kjellsen, K. O., & Sellevold, E., 2010. Fly ash-limestone ternary composite cements: synergetic effect at 28 days. Nordic Concrete Research, 42(2), 51-70.
  • De Weerdt, K., Haha, M. B., Le Saout, G., Kjellsen, K. O., Justnes, H., & Lothenbach, B., 2011. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, 41(3), 279-291.
  • De Weerdt, K., Kjellsen, K. O., Sellevold, E., & Justnes, H., 2011. Synergy between fly ash and limestone powder in ternary cements. Cement and concrete composites, 33(1), 30-38.
  • Demirhan, S., Turk, K., & Ulugerger, K., 2019. Fresh and hardened properties of self-consolidating Portland limestone cement mortars: Effect of high-volume limestone powder replaced by cement. Construction and Building Materials, 196, 115-125.
  • Duval, R., 2002. Effect of ultrafine particles on heat of hydration of cement mortars. Materials Journal, 99(2), 138-142.
  • Ge, Z., Wang, K., Sun, R., Huang, D., & Hu, Y., 2014. Properties of self-consolidating concrete containing nano-CaCO3. Journal of Sustainable Cement-Based Materials, 3(3-4), 191-200.
  • Hassiba, B., Mekki, M., & Fraid, R., 2018. The relationship between the compressive strength and ultrasonic pulse velocity concrete with fibers exposed to high temperatures. International Journal of Energetica, 3, 31-6.
  • He, Z., Zhu, X., Wang, J., Mu, M., & Wang, Y., 2019. Comparison of CO2 emissions from OPC and recycled cement production. Construction and Building Materials, 211, 965-973.
  • Hosan, A., & Shaikh, F. U. A., 2020. Influence of nano-CaCO3 addition on the compressive strength and microstructure of high-volume slag and high-volume slag-fly ash blended pastes. Journal of Building Engineering, 27, 100929.
  • Ipavec, A., Gabrovšek, R., Vuk, T., Kaučič, V., Maček, J., & Meden, A., 2011. Carboaluminate Phases Formation During the Hydration of Calcite‐Containing Portland Cement. Journal of the American Ceramic Society, 94(4), 1238-1242.
  • Jamora, J. B., Gudia, S. E. L., Go, A. W., Giduquio, M. B., & Loretero, M. E., 2020. Potential CO2 reduction and cost evaluation in use and transport of coal ash as cement replacement: A case in the Philippines. Waste Management, 103, 137-145.
  • Kakali, G., Tsivilis, S., Aggeli, E., & Bati, M., 2000. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cement and concrete Research, 30(7), 1073-1077.
  • Karagöl, F., Demirboğa, R., Kaygusuz, M. A., Yadollahi, M. M., & Polat, R., 2013. The influence of calcium nitrate as antifreeze admixture on the compressive strength of concrete exposed to low temperatures. Cold Regions Science and Technology, 89, 30-35.
  • Kenai, S.; Soboyejo,W.; Soboyejo, A., 2004. Some engineering properties of limestone concrete. Materials and manufacturing processes, 5, 949–961.
  • Lertwattanaruk, P.; Sua-iam, G.; Makul, N., 2018. Effects of calcium carbonate powder on the fresh and hardened properties of self-consolidating concrete incorporating untreated rice husk ash. Journal of Cleaner Production, 172, 3265–3278.
  • Liu, X.; Chen, L.; Liu, A.; Wang, X., 2012. Effect of Nano-CaCO3 on properties of cement paste. Energy Procedia, 16, 991–996.
  • Liu, M., Tan, H., & He, X., 2019. Effects of nano-SiO2 on early strength and microstructure of steam-cured high volume fly ash cement system. Construction and Building Materials, 194, 350-359.
  • Lu, G., & Wang, K., 2010. Investigation into yield behavior of fresh cement paste: model and experiment. ACI Materials Journal, 107(1), 12.
  • Malhotra, V. M., 1976. Testing hardened concrete: Non-destructive methods, ISBN: 13: 978-1-4200-4005-0, ACI Monograph No. 9, ACI. Iowa State University Press, Ames, Iowa, USA, 8-14.
  • Meng, T., Yu, Y., & Wang, Z., 2017. Effect of nano-CaCO3 slurry on the mechanical properties and micro-structure of concrete with and without fly ash. Composites Part B: Engineering, 117, 124-129.
  • Mohammed, B. S., Adamu, M., & Liew, M. S., 2018. Evaluating the effect of crumb rubber and nano silica on the properties of high volume fly ash roller compacted concrete pavement using non-destructive techniques. Case studies in construction materials, 8, 380-391.
  • Mohseni, E., Ranjbar, M. M., & Tsavdaridis, K. D., 2015. Durability properties of high-performance concrete incorporating nano-TiO2 and fly ash. American Journal of Engineering and Applied Sciences, 8(4), 519-526.
  • Moon, J., Oh, J. E., Balonis, M., Glasser, F. P., Clark, S. M., & Monteiro, P. J., 2012. High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO· Al2O3· CaCO3· 11H2O. Cement and Concrete Research, 42(1), 105-110.
  • Nath, P., Sarker, P. K., & Biswas, W. K., 2018. Effect of fly ash on the service life, carbon footprint and embodied energy of high strength concrete in the marine environment. Energy and Buildings, 158, 1694-1702.
  • Pera, J., Husson, S., & Guilhot, B., 1999. Influence of finely ground limestone on cement hydration. Cement and Concrete Composites, 21(2), 99-105.
  • Rao, S. K., Sravana, P., & Rao, T. C., 2016. Experimental studies in Ultrasonic Pulse Velocity of roller compacted concrete pavement containing fly ash and M-sand. International Journal of Pavement Research and Technology, 9(4), 289-301.
  • Sanchez, F., & Sobolev, K., 2010. Nanotechnology in concrete–a review. Construction and building materials, 24(11), 2060-2071.
  • Sandanayake, M., Gunasekara, C., Law, D., Zhang, G., & Setunge, S., 2018. Greenhouse gas emissions of different fly ash based geopolymer concretes in building construction. Journal of cleaner production, 204, 399-408.
  • Sato, T., & Beaudoin, J. J., 2011. Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials. Advances in Cement Research, 23(1), 33-43.
  • Shaikh, F. U., & Supit, S. W., 2014. Mechanical and durability properties of high-volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Construction and building materials, 70, 309-321.
  • Shwekat, K., & Wu, H. C., 2018. Benefit-cost analysis model of using class F fly ash-based green cement in masonry units. Journal of Cleaner Production, 198, 443-451.
  • Sobolev, K., & Gutiérrez, M. F., 2005. How nanotechnology can change the concrete world. American Ceramic Society Bulletin, 84(10), 14.
  • Sumesh, M., Alengaram, U. J., Jumaat, M. Z., Mo, K. H., & Alnahhal, M. F., 2017. Incorporation of nano-materials in cement composite and geopolymer based paste and mortar–A review. Construction and Building Materials, 148, 62-84.
  • Supit, S. W., & Shaikh, F. U., 2014. Effect of nano-CaCO3 on compressive strength development of high-volume fly ash mortars and concretes. Journal of Advanced Concrete Technology, 12(6), 178-186.
  • Thongsanitgarn, P., Wongkeo, W., & Chaipanich, A., 2014. Hydration and compressive strength of blended cement containing fly ash and limestone as cement replacement. Journal of Materials in Civil Engineering, 26(12), 04014088.
  • Tosti, L., van Zomeren, A., Pels, J. R., & Comans, R. N., 2018. Technical and environmental performance of lower carbon footprint cement mortars containing biomass fly ash as a secondary cementitious material. Resources, Conservation and Recycling, 134, 25-33.
  • Tosti, L., van Zomeren, A., Pels, J. R., Damgaard, A., & Comans, R. N., 2020. Life cycle assessment of the reuse of fly ash from biomass combustion as secondary cementitious material in cement products. Journal of cleaner production, 245, 118937.
  • Turgut, P., 2018. Production of block by using fly ash, lime and glass powder. Pamukkale Unıversıty Journal Of Engineering Sciences-Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(3), 413-418.
  • Turgut, P., & Ogretmen, A., 2019. Optimum limestone powder amount in mortars with over silica fume. Epitoanyag-Journal of Silicate Based & Composite Materials, 71(2).
  • Uysal, M., 2012. Self-compacting concrete incorporating filler additives: Performance at high temperatures. Construction and Building Materials, 26, 701–706
  • Vance, K., Aguayo, M., Oey, T., Sant, G., & Neithalath, N., 2013. Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin. Cement and Concrete Composites, 39, 93-103.
  • Voglis, N., Kakali, G., Chaniotakis, E., & Tsivilis, S., 2005. Portland-limestone cements. Their properties and hydration compared to those of other composite cements. Cement and Concrete Composites, 27(2), 191-196.
  • Wang, D., Shi, C., Farzadnia, N., Shi, Z., Jia, H., & Ou, Z., 2018. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Construction and Building Materials, 181, 659-672.
  • Wu, Z., Shi, C., & Khayat, K. H., 2018. Multi-scale investigation of microstructure, fiber pullout behavior, and mechanical properties of ultra-high-performance concrete with nano-CaCO3 particles. Cement and Concrete Composites, 86, 255-265.
  • Wu, Z., Shi, C., Khayat, K. H., & Wan, S., 2016. Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC). Cement and Concrete Composites, 70, 24-34.
  • Xiao, H., Wang, W., & Goh, S. H., 2017. Effectiveness study for fly ash cement improved marine clay. Construction and Building Materials, 157, 1053-1064.
  • Yang, H., Che, Y., & Leng, F., 2018. High volume fly ash mortar containing nano-calcium carbonate as a sustainable cementitious material: microstructure and strength development. Scientific reports, 8(1), 16439.
  • Yeşilmen, S., Al-Najjar, Y., Balav, M. H., Şahmaran, M., Yıldırım, G., & Lachemi, M., 2015. Nano-modification to improve the ductility of cementitious composites. Cement and Concrete Research, 76, 170-179.
  • Zaitri, R., Bederina, M., Bouziani, T., Makhloufi, Z., & Hadjoudja, M., 2014. Development of high performances concrete based on the addition of grinded dune sand and limestone rock using the mixture design modelling approach. Construction and Building Materials, 60, 8-16.
  • Zareei, S. A., Ameri, F., Bahrami, N., Shoaei, P., Moosaei, H. R., & Salemi, N., 2019. Performance of sustainable high strength concrete with basic oxygen steel-making (BOS) slag and nano-silica. Journal of Building Engineering, 25, 100791.
  • Zou, F., Hu, C., Wang, F., Ruan, Y., & Hu, S., 2020. Enhancement of early-age strength of the high content fly ash blended cement paste by sodium sulfate and C–S–H seeds towards a greener binder. Journal of Cleaner Production, 244, 118566.

Combined Effects of Nano-Sized Calcite and Fly Ash on Hydration and Microstructural Properties of Mortars

Yıl 2020, Cilt: 20 Sayı: 6, 1051 - 1067, 31.12.2020
https://doi.org/10.35414/akufemubid.825862

Öz

Even though a reduction in pollution and CO2 emission can be achieved by the utilization of fly ash in cement-based materials, using a high volume of fly ash results in a reduction at the early age strength development and also setting time delays. In order to assess hydration mechanism and microstructural characteristics of high-volume fly ash blended cement mortars, nano-sized calcite was introduced into the mortars to evaluate the combined effect of fly ash (FA) and nano-sized calcite (NC). For this purpose, twelve mixtures in which fly ash to Portland cement ratios and NC (used as minor addition up to 5%) percentages were varied as 0.0, 0.25, 0.54, 1.0 and 0.0%, 2.5%, 5%, respectively, were designed. Consistency, setting times, compressive strength, ultrasonic pulsive velocity and SEM analysis were conducted at varied curing ages (which depends on the testing method) in terms of fresh and hardened properties and micro-structural characteristics. Experimental test results confirmed that fresh and hardened properties of standard mortars were significantly improved with the combination of both FA and NC especially at early ages. Even though decrease in early age compressive strength values was obtained as FA amount was increased, (comparing to control mixture which was 43.2 MPa at 90 days) higher compressive strength result (45.9 MPa) was obtained at 90-day curing age of mixture including 50% of FA content being utilized by NC of 2.5%.

Kaynakça

  • Arora, A., Sant, G., & Neithalath, N. (2016). Ternary blends containing slag and interground/blended limestone: Hydration, strength, and pore structure. Construction and Building Materials, 102, 113-124.
  • Bentz, D. P., Ardani, A., Barrett, T., Jones, S. Z., Lootens, D., Peltz, M. A., ... & Weiss, W. J., (2015). Multi-scale investigation of the performance of limestone in concrete. Construction and Building Materials, 75, 1-10.
  • Bonavetti, V. L., Rahhal, V. F., & Irassar, E. F., 2001. Studies on the carboaluminate formation in limestone filler-blended cements. Cement and Concrete Research, 31(6), 853-859.
  • Bosiljkov, V.B., 2003. SCC mixes with poorly graded aggregate and high volume of limestone filler. Cement and Concrete Research, 33, 1279–1286.
  • Camiletti, J., Soliman, A. M., & Nehdi, M. L., 2013. Effect of nano-calcium carbonate on early-age properties of ultra-high-performance concrete. Magazine of Concrete Research, 65(5), 297-307.
  • Cao, M., Ming, X., He, K., Li, L., & Shen, S., 2019. Effect of macro-, micro-and nano-calcium carbonate on properties of cementitious composites—A review. Materials, 12(5), 781.
  • Damidot, D., Lothenbach, B., Herfort, D., & Glasser, F. P., 2011. Thermodynamics and cement science. Cement and Concrete Research, 41(7), 679-695.
  • Das, S., Aguayo, M., Dey, V., Kachala, R., Mobasher, B., Sant, G., & Neithalath, N., 2014. The fracture response of blended formulations containing limestone powder: Evaluations using two-parameter fracture model and digital image correlation. Cement and Concrete Composites, 53, 316-326.
  • De Weerdt, K., Justnes, H., Kjellsen, K. O., & Sellevold, E., 2010. Fly ash-limestone ternary composite cements: synergetic effect at 28 days. Nordic Concrete Research, 42(2), 51-70.
  • De Weerdt, K., Haha, M. B., Le Saout, G., Kjellsen, K. O., Justnes, H., & Lothenbach, B., 2011. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, 41(3), 279-291.
  • De Weerdt, K., Kjellsen, K. O., Sellevold, E., & Justnes, H., 2011. Synergy between fly ash and limestone powder in ternary cements. Cement and concrete composites, 33(1), 30-38.
  • Demirhan, S., Turk, K., & Ulugerger, K., 2019. Fresh and hardened properties of self-consolidating Portland limestone cement mortars: Effect of high-volume limestone powder replaced by cement. Construction and Building Materials, 196, 115-125.
  • Duval, R., 2002. Effect of ultrafine particles on heat of hydration of cement mortars. Materials Journal, 99(2), 138-142.
  • Ge, Z., Wang, K., Sun, R., Huang, D., & Hu, Y., 2014. Properties of self-consolidating concrete containing nano-CaCO3. Journal of Sustainable Cement-Based Materials, 3(3-4), 191-200.
  • Hassiba, B., Mekki, M., & Fraid, R., 2018. The relationship between the compressive strength and ultrasonic pulse velocity concrete with fibers exposed to high temperatures. International Journal of Energetica, 3, 31-6.
  • He, Z., Zhu, X., Wang, J., Mu, M., & Wang, Y., 2019. Comparison of CO2 emissions from OPC and recycled cement production. Construction and Building Materials, 211, 965-973.
  • Hosan, A., & Shaikh, F. U. A., 2020. Influence of nano-CaCO3 addition on the compressive strength and microstructure of high-volume slag and high-volume slag-fly ash blended pastes. Journal of Building Engineering, 27, 100929.
  • Ipavec, A., Gabrovšek, R., Vuk, T., Kaučič, V., Maček, J., & Meden, A., 2011. Carboaluminate Phases Formation During the Hydration of Calcite‐Containing Portland Cement. Journal of the American Ceramic Society, 94(4), 1238-1242.
  • Jamora, J. B., Gudia, S. E. L., Go, A. W., Giduquio, M. B., & Loretero, M. E., 2020. Potential CO2 reduction and cost evaluation in use and transport of coal ash as cement replacement: A case in the Philippines. Waste Management, 103, 137-145.
  • Kakali, G., Tsivilis, S., Aggeli, E., & Bati, M., 2000. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cement and concrete Research, 30(7), 1073-1077.
  • Karagöl, F., Demirboğa, R., Kaygusuz, M. A., Yadollahi, M. M., & Polat, R., 2013. The influence of calcium nitrate as antifreeze admixture on the compressive strength of concrete exposed to low temperatures. Cold Regions Science and Technology, 89, 30-35.
  • Kenai, S.; Soboyejo,W.; Soboyejo, A., 2004. Some engineering properties of limestone concrete. Materials and manufacturing processes, 5, 949–961.
  • Lertwattanaruk, P.; Sua-iam, G.; Makul, N., 2018. Effects of calcium carbonate powder on the fresh and hardened properties of self-consolidating concrete incorporating untreated rice husk ash. Journal of Cleaner Production, 172, 3265–3278.
  • Liu, X.; Chen, L.; Liu, A.; Wang, X., 2012. Effect of Nano-CaCO3 on properties of cement paste. Energy Procedia, 16, 991–996.
  • Liu, M., Tan, H., & He, X., 2019. Effects of nano-SiO2 on early strength and microstructure of steam-cured high volume fly ash cement system. Construction and Building Materials, 194, 350-359.
  • Lu, G., & Wang, K., 2010. Investigation into yield behavior of fresh cement paste: model and experiment. ACI Materials Journal, 107(1), 12.
  • Malhotra, V. M., 1976. Testing hardened concrete: Non-destructive methods, ISBN: 13: 978-1-4200-4005-0, ACI Monograph No. 9, ACI. Iowa State University Press, Ames, Iowa, USA, 8-14.
  • Meng, T., Yu, Y., & Wang, Z., 2017. Effect of nano-CaCO3 slurry on the mechanical properties and micro-structure of concrete with and without fly ash. Composites Part B: Engineering, 117, 124-129.
  • Mohammed, B. S., Adamu, M., & Liew, M. S., 2018. Evaluating the effect of crumb rubber and nano silica on the properties of high volume fly ash roller compacted concrete pavement using non-destructive techniques. Case studies in construction materials, 8, 380-391.
  • Mohseni, E., Ranjbar, M. M., & Tsavdaridis, K. D., 2015. Durability properties of high-performance concrete incorporating nano-TiO2 and fly ash. American Journal of Engineering and Applied Sciences, 8(4), 519-526.
  • Moon, J., Oh, J. E., Balonis, M., Glasser, F. P., Clark, S. M., & Monteiro, P. J., 2012. High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO· Al2O3· CaCO3· 11H2O. Cement and Concrete Research, 42(1), 105-110.
  • Nath, P., Sarker, P. K., & Biswas, W. K., 2018. Effect of fly ash on the service life, carbon footprint and embodied energy of high strength concrete in the marine environment. Energy and Buildings, 158, 1694-1702.
  • Pera, J., Husson, S., & Guilhot, B., 1999. Influence of finely ground limestone on cement hydration. Cement and Concrete Composites, 21(2), 99-105.
  • Rao, S. K., Sravana, P., & Rao, T. C., 2016. Experimental studies in Ultrasonic Pulse Velocity of roller compacted concrete pavement containing fly ash and M-sand. International Journal of Pavement Research and Technology, 9(4), 289-301.
  • Sanchez, F., & Sobolev, K., 2010. Nanotechnology in concrete–a review. Construction and building materials, 24(11), 2060-2071.
  • Sandanayake, M., Gunasekara, C., Law, D., Zhang, G., & Setunge, S., 2018. Greenhouse gas emissions of different fly ash based geopolymer concretes in building construction. Journal of cleaner production, 204, 399-408.
  • Sato, T., & Beaudoin, J. J., 2011. Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials. Advances in Cement Research, 23(1), 33-43.
  • Shaikh, F. U., & Supit, S. W., 2014. Mechanical and durability properties of high-volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Construction and building materials, 70, 309-321.
  • Shwekat, K., & Wu, H. C., 2018. Benefit-cost analysis model of using class F fly ash-based green cement in masonry units. Journal of Cleaner Production, 198, 443-451.
  • Sobolev, K., & Gutiérrez, M. F., 2005. How nanotechnology can change the concrete world. American Ceramic Society Bulletin, 84(10), 14.
  • Sumesh, M., Alengaram, U. J., Jumaat, M. Z., Mo, K. H., & Alnahhal, M. F., 2017. Incorporation of nano-materials in cement composite and geopolymer based paste and mortar–A review. Construction and Building Materials, 148, 62-84.
  • Supit, S. W., & Shaikh, F. U., 2014. Effect of nano-CaCO3 on compressive strength development of high-volume fly ash mortars and concretes. Journal of Advanced Concrete Technology, 12(6), 178-186.
  • Thongsanitgarn, P., Wongkeo, W., & Chaipanich, A., 2014. Hydration and compressive strength of blended cement containing fly ash and limestone as cement replacement. Journal of Materials in Civil Engineering, 26(12), 04014088.
  • Tosti, L., van Zomeren, A., Pels, J. R., & Comans, R. N., 2018. Technical and environmental performance of lower carbon footprint cement mortars containing biomass fly ash as a secondary cementitious material. Resources, Conservation and Recycling, 134, 25-33.
  • Tosti, L., van Zomeren, A., Pels, J. R., Damgaard, A., & Comans, R. N., 2020. Life cycle assessment of the reuse of fly ash from biomass combustion as secondary cementitious material in cement products. Journal of cleaner production, 245, 118937.
  • Turgut, P., 2018. Production of block by using fly ash, lime and glass powder. Pamukkale Unıversıty Journal Of Engineering Sciences-Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(3), 413-418.
  • Turgut, P., & Ogretmen, A., 2019. Optimum limestone powder amount in mortars with over silica fume. Epitoanyag-Journal of Silicate Based & Composite Materials, 71(2).
  • Uysal, M., 2012. Self-compacting concrete incorporating filler additives: Performance at high temperatures. Construction and Building Materials, 26, 701–706
  • Vance, K., Aguayo, M., Oey, T., Sant, G., & Neithalath, N., 2013. Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin. Cement and Concrete Composites, 39, 93-103.
  • Voglis, N., Kakali, G., Chaniotakis, E., & Tsivilis, S., 2005. Portland-limestone cements. Their properties and hydration compared to those of other composite cements. Cement and Concrete Composites, 27(2), 191-196.
  • Wang, D., Shi, C., Farzadnia, N., Shi, Z., Jia, H., & Ou, Z., 2018. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Construction and Building Materials, 181, 659-672.
  • Wu, Z., Shi, C., & Khayat, K. H., 2018. Multi-scale investigation of microstructure, fiber pullout behavior, and mechanical properties of ultra-high-performance concrete with nano-CaCO3 particles. Cement and Concrete Composites, 86, 255-265.
  • Wu, Z., Shi, C., Khayat, K. H., & Wan, S., 2016. Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC). Cement and Concrete Composites, 70, 24-34.
  • Xiao, H., Wang, W., & Goh, S. H., 2017. Effectiveness study for fly ash cement improved marine clay. Construction and Building Materials, 157, 1053-1064.
  • Yang, H., Che, Y., & Leng, F., 2018. High volume fly ash mortar containing nano-calcium carbonate as a sustainable cementitious material: microstructure and strength development. Scientific reports, 8(1), 16439.
  • Yeşilmen, S., Al-Najjar, Y., Balav, M. H., Şahmaran, M., Yıldırım, G., & Lachemi, M., 2015. Nano-modification to improve the ductility of cementitious composites. Cement and Concrete Research, 76, 170-179.
  • Zaitri, R., Bederina, M., Bouziani, T., Makhloufi, Z., & Hadjoudja, M., 2014. Development of high performances concrete based on the addition of grinded dune sand and limestone rock using the mixture design modelling approach. Construction and Building Materials, 60, 8-16.
  • Zareei, S. A., Ameri, F., Bahrami, N., Shoaei, P., Moosaei, H. R., & Salemi, N., 2019. Performance of sustainable high strength concrete with basic oxygen steel-making (BOS) slag and nano-silica. Journal of Building Engineering, 25, 100791.
  • Zou, F., Hu, C., Wang, F., Ruan, Y., & Hu, S., 2020. Enhancement of early-age strength of the high content fly ash blended cement paste by sodium sulfate and C–S–H seeds towards a greener binder. Journal of Cleaner Production, 244, 118566.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Serhat Demirhan 0000-0001-5448-9495

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 14 Kasım 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 20 Sayı: 6

Kaynak Göster

APA Demirhan, S. (2020). Combined Effects of Nano-Sized Calcite and Fly Ash on Hydration and Microstructural Properties of Mortars. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(6), 1051-1067. https://doi.org/10.35414/akufemubid.825862
AMA Demirhan S. Combined Effects of Nano-Sized Calcite and Fly Ash on Hydration and Microstructural Properties of Mortars. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Aralık 2020;20(6):1051-1067. doi:10.35414/akufemubid.825862
Chicago Demirhan, Serhat. “Combined Effects of Nano-Sized Calcite and Fly Ash on Hydration and Microstructural Properties of Mortars”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, sy. 6 (Aralık 2020): 1051-67. https://doi.org/10.35414/akufemubid.825862.
EndNote Demirhan S (01 Aralık 2020) Combined Effects of Nano-Sized Calcite and Fly Ash on Hydration and Microstructural Properties of Mortars. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 6 1051–1067.
IEEE S. Demirhan, “Combined Effects of Nano-Sized Calcite and Fly Ash on Hydration and Microstructural Properties of Mortars”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 20, sy. 6, ss. 1051–1067, 2020, doi: 10.35414/akufemubid.825862.
ISNAD Demirhan, Serhat. “Combined Effects of Nano-Sized Calcite and Fly Ash on Hydration and Microstructural Properties of Mortars”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/6 (Aralık 2020), 1051-1067. https://doi.org/10.35414/akufemubid.825862.
JAMA Demirhan S. Combined Effects of Nano-Sized Calcite and Fly Ash on Hydration and Microstructural Properties of Mortars. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:1051–1067.
MLA Demirhan, Serhat. “Combined Effects of Nano-Sized Calcite and Fly Ash on Hydration and Microstructural Properties of Mortars”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 20, sy. 6, 2020, ss. 1051-67, doi:10.35414/akufemubid.825862.
Vancouver Demirhan S. Combined Effects of Nano-Sized Calcite and Fly Ash on Hydration and Microstructural Properties of Mortars. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(6):1051-67.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.