Araştırma Makalesi
BibTex RIS Kaynak Göster

Güney Okyanusunun Atmosfer ve Okyanus Sirkülasyonlarının Sayısal Modeller Yardımıyla İncelenmesi

Yıl 2021, Cilt: 21 Sayı: 5, 1231 - 1246, 31.10.2021
https://doi.org/10.35414/akufemubid.888661

Öz

Bu çalışmada amacımız, Güney Okyanusu üzerindeki rüzgar dinamiklerini ve bunun okyanus devinim sirkülasyonu üzerindeki etkisini incelemektir. Bu amaçla, atmosfer ve bileşik okyanus-deniz buzu yüksek çözünürlüklü bölgesel modelleri ayrı ayrı koşturulmuştur. 2007 ve 2013 yılları arasında eşzamanlı olarak üç benzetim gerçekleştirilmiştir. İlk benzetim, gözlemlenen deniz yüzeyi sıcaklığı ve deniz buzu konsantrasyonu tarafından zorlanan sadece atmosfer bölgesel modelidir. Model, ortalama deniz seviyesi basıncı, 2 metre hava sıcaklığı, yukarı atmosfer jetleri ve Stratosferik Polar Vortex gibi önemli atmosferik özelliklerin mevsimselliğini başarıyla yakalamıştır. Model, Antarktika'daki gözlem istasyonlarıyla uyumluluk göstermektedir. İkinci benzetim, reanaliz atmosferik veri seti ile zorlanan kontrol okyanus-deniz buzu bileşik bölgesel modeldir. Okyanus modeli, deniz yüzeyi sıcaklık gradyanını doğru şekilde yakalamayı başarmıştır. Drake Geçidi'ndeki taşınım değerleri gözlemler dahilinde yaklaşık 152 Sv'dir. Son olarak, Güney Okyanusu üzerindeki bölgesel rüzgar gerilmesinin 1,5 kat arttığı bir duyarlılık benzetimi de yapılmış ve daha güçlü Drake Geçidi taşınımı ve Deacon Hücresi sirkülasyonu gözlemlenmiştir. Bu çalışma ileride gerçekleştirilebilecek Güney Okyanusu tamamen bütünleşik atmosfer-okyanus modeli geliştirilmesi için kapasite ve kabiliyetlerin ortaya konmasını sağlamıştır.

Destekleyen Kurum

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Proje Numarası

118Y329

Teşekkür

Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından desteklenmiştir (118Y329). Proje kapsamında yüksek başarımlı hesaplama çalışmaları İstanbul Teknik Üniversitesi Ulusal Yüksek Başarımlı Hesaplama Merkezi (UHEM) 1006542019 numaralı projesi ile gerçekleştirilmiştir.

Kaynakça

  • Abernathey, R., and Cessi, P., 2014. Topographic enhancement of eddy efficiency in baroclinic equilibration. Journal of Physical Oceanography, 44, 2107–2126. Adcroft, A., Hill, C. N., and Marshall, J.C., 1999. A new treatment of the coriolis terms in c-grid models at both high and low resolutions. Monthly Weather Review, 127, 1928-1936.
  • Becker, J.J., Sandwell, D.T., Smith, W.H.F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.H. and Ladner, R., 2009. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32(4), 355-371.
  • Böning C.W., Dispert, A., Visbeck, M., Rintoul, S.R., Schwarzkopf, F.U., 2008. The response of the Antarctic Circumpolar Current to recent climate change. Nature Geosciences, 1, 864–869.
  • Carton, J. A., Chepurin, G. A., & Chen, L., 2018. SODA3: A new ocean climate reanalysis. Journal of Climate, 31(17), 6967-6983.
  • Cunningham, S. A., Alderson, S. G., King, B. A., & Brandon, M. A., 2003. Transport and variability of the Antarctic circumpolar current in drake passage. Journal of Geophysical Research: Oceans, 108 (C5).
  • Doney, S. C., Large, W. G., and Bryan, F. O., 1998. Surface ocean fluxes and water mass transformations in the coupled NCAR Climate System Model. Journal of Climate, 11, 1420–1441.
  • Donohue, K. A., Tracey, K. L., Watts, D. R., Chidichimo, M. P., & Chereskin, T. K., 2016. Mean antarctic circumpolar current transport measured in drake passage. Geophysical Research Letters, 43(22), 11-760.
  • Durack, P.J., Wijffels, S.E., 2010. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. Journal of Climate, 23, 4342–4362.
  • Farneti R. and Gent P.R., 2011. The effects of the eddy-induced advection coefficient in a coarse-resolution coupled climate model. Ocean Modelling, 39, 135-145.
  • Farneti, R., Downes, S. M., Griffies, S. M., Marsland, S. J., Behrens, E., Bentsen, M., ... & Yeager, S. G., 2015. An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 93, 84-120.
  • Gent, P.R., McWilliams, J.C.., 1990. Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20, 150–155.
  • Gent, P.R., Willebrand, J., McDougall, T. J. and McWilliams, J. C., 1995. Parameterizing eddy-induced tracer transports in ocean circulation models. Journal of Physical Oceanography, 25, 463–474.
  • Gille, S.T., 2008. Decadal-scale temperature trends in the Southern Hemisphere ocean. Journal of Climate, 21, 4749–4765.
  • Glisan J.M., Gutowski JR. W. J., Cassano J.J. and Higgins M.E., 2013. Effects of Spectral Nudging in WRF on Arctic Temperature and Precipitation Simulations. Journal of Climate, 26, 3985-3999.
  • Hallberg, R., Gnanadesikan, A., 2006. The role of eddies in determining the structure and response of wind-driven Southern Hemisphere overturning: results from the modeling eddies in the Southern Ocean (MESO) project. Journal of Physical Oceanography, 36, 2232–52.
  • Henning, C.C., Vallis, G.K., 2005. The effects of mesoscale eddies on the stratification and transport of an ocean with a circumpolar channel. Journal of Physical Oceanography, 35, 880–896.
  • Hughes, C.W. and De Cuevas, B.A., 2001. Why western boundary currents in realistic oceans are inviscid: A link between form stress and bottom pressure torques. Journal of Physical Oceanography, 31(10), 2871-2885.
  • Hogg, A.M., Meredith, M.P., Blundell, J.R., Wilson, C., 2008. Eddy heat flux in the Southern Ocean: response to variable wind forcing. Journal of Climate, 21, 608–620.
  • IPCC, 2007. The Physical Science Basis. Contribution of WGI to the Fourth Assessment Report of the Intergovermental Panel on Climate Change, in Climate Change 2007, edited by S. Solomon, et al., Cambridge University Press, Cambridge, 996.
  • Markina M., Gavrikov A., Gulev S., Barnier B., 2018. Developing configuration of WRF model for long-term high-resolution wind wave hindcast over the North Atlantic with WAVEWATCH III. Ocean Dynam-ics, 68, 1593-1604.
  • Marshall, J., and Radko, T., 2003. Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. Journal of Physical Oceanography, 33, 2341–2354.
  • Mazloff, M. R., Heimbach, P., & Wunsch, C., 2010. An eddy-permitting Southern Ocean state estimate. Journal of Physical Oceanography, 40(5), 880-899.
  • Meijers, A. J. S., Shuckburgh, E., Bruneau, N., Sallee, J.-B., Bracegirdle, T. J., Wang, Z., 2012. Representation ofthe Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios, Journal of Geophysical Resesearch, 117, C12008.
  • Meredith, M. P. and Hogg, A. M., 2006. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophysical Research Letters, 33, L16608.
  • Meredith, M. P., Naveira-Garabato A. C., Hogg, A.M., Farneti, R., 2012. Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. Journal of Climate, 25, 99–110.
  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G, Huang, X.-Y., Wang, W., and Powers, J. G., 2008. A Description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR, 113. doi:10.5065/D68S4MVH.
  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., … Huang, X. -yu., 2021. A Description of the Advanced Research WRF Model Version 4.3. doi:10.5065/1dfh-6p97.
  • Sverdrup, H. U., Johnson, M. W., and Flemming, R. H., 1942: The Oceans: Their Physics, Chemistry and General Biology. Prentice Hall, 1087.
  • Veronis, G., 1996: Effect of a constant, zonal wind on wind-driven ocean circulation. Journal of Physical Oceanography, 26, 2525–2528.
  • Viebahn J., Eden C., 2010. Towards the impact of eddies on the response of the Southern Ocean to climate change. Ocean Modelling, 34, 150–165.
  • Wolfe, C.L., Cessi, P., 2010. What sets the strength of the middepth stratification and overturning circulation in eddying ocean models? Journal of Physical Oceanography, 40, 1520–1538.
  • İnternet kaynakları 1-https://legacy.bas.ac.uk/met/READER/surface/, (03.02.2020)
  • 2-https://cds.climate.copernicus.eu/cdsapp#!/home, (07.04.2019)
  • 3-https://doi.org/10.5067/GHAAO-4BC02, (08.05.2019)

Analysis of the Atmospheric and Oceanic Circulations of the Southern Ocean with the Help of Numerical Models

Yıl 2021, Cilt: 21 Sayı: 5, 1231 - 1246, 31.10.2021
https://doi.org/10.35414/akufemubid.888661

Öz

In this study, our aim is to investigate Southern Ocean wind dynamics and its impact on the ocean overturning circulation. To this end, we performed atmosphere and ocean-sea ice coupled regional high-resolution models separately. We conduct three concurrent simulations spanning between 2007 and 2013. The first simulation is atmosphere only regional model forced by observed sea surface temperature and sea ice concentration. The model successfully captures important atmospheric properties such as mean and seasonality of the sea level pressure, 2 meter air temperature, upper level jet, Stratospheric Polar vortex. The model compares well against the observation stations throughout the Antarctica. The second simulation is the control ocean-sea ice coupled regional model forced with reanalysis atmospheric dataset. In the ocean model, we capture the sea surface temperature gradient. The transport at the Drake Passage is around 152 Sv which is within the observation values. Finally, we conduct a sensitivity simulation where the zonal wind stress over the Southern Ocean is increased 1.5 times. This leads to stronger Drake Passage transport and Deacon Cell overturning circulation in the model. This study has provided to demonstrate the capacity and capabilities to develop a Southern Ocean integrated fully coupled atmosphere-ocean model that can be carried out in the future.

Proje Numarası

118Y329

Kaynakça

  • Abernathey, R., and Cessi, P., 2014. Topographic enhancement of eddy efficiency in baroclinic equilibration. Journal of Physical Oceanography, 44, 2107–2126. Adcroft, A., Hill, C. N., and Marshall, J.C., 1999. A new treatment of the coriolis terms in c-grid models at both high and low resolutions. Monthly Weather Review, 127, 1928-1936.
  • Becker, J.J., Sandwell, D.T., Smith, W.H.F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.H. and Ladner, R., 2009. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32(4), 355-371.
  • Böning C.W., Dispert, A., Visbeck, M., Rintoul, S.R., Schwarzkopf, F.U., 2008. The response of the Antarctic Circumpolar Current to recent climate change. Nature Geosciences, 1, 864–869.
  • Carton, J. A., Chepurin, G. A., & Chen, L., 2018. SODA3: A new ocean climate reanalysis. Journal of Climate, 31(17), 6967-6983.
  • Cunningham, S. A., Alderson, S. G., King, B. A., & Brandon, M. A., 2003. Transport and variability of the Antarctic circumpolar current in drake passage. Journal of Geophysical Research: Oceans, 108 (C5).
  • Doney, S. C., Large, W. G., and Bryan, F. O., 1998. Surface ocean fluxes and water mass transformations in the coupled NCAR Climate System Model. Journal of Climate, 11, 1420–1441.
  • Donohue, K. A., Tracey, K. L., Watts, D. R., Chidichimo, M. P., & Chereskin, T. K., 2016. Mean antarctic circumpolar current transport measured in drake passage. Geophysical Research Letters, 43(22), 11-760.
  • Durack, P.J., Wijffels, S.E., 2010. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. Journal of Climate, 23, 4342–4362.
  • Farneti R. and Gent P.R., 2011. The effects of the eddy-induced advection coefficient in a coarse-resolution coupled climate model. Ocean Modelling, 39, 135-145.
  • Farneti, R., Downes, S. M., Griffies, S. M., Marsland, S. J., Behrens, E., Bentsen, M., ... & Yeager, S. G., 2015. An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 93, 84-120.
  • Gent, P.R., McWilliams, J.C.., 1990. Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20, 150–155.
  • Gent, P.R., Willebrand, J., McDougall, T. J. and McWilliams, J. C., 1995. Parameterizing eddy-induced tracer transports in ocean circulation models. Journal of Physical Oceanography, 25, 463–474.
  • Gille, S.T., 2008. Decadal-scale temperature trends in the Southern Hemisphere ocean. Journal of Climate, 21, 4749–4765.
  • Glisan J.M., Gutowski JR. W. J., Cassano J.J. and Higgins M.E., 2013. Effects of Spectral Nudging in WRF on Arctic Temperature and Precipitation Simulations. Journal of Climate, 26, 3985-3999.
  • Hallberg, R., Gnanadesikan, A., 2006. The role of eddies in determining the structure and response of wind-driven Southern Hemisphere overturning: results from the modeling eddies in the Southern Ocean (MESO) project. Journal of Physical Oceanography, 36, 2232–52.
  • Henning, C.C., Vallis, G.K., 2005. The effects of mesoscale eddies on the stratification and transport of an ocean with a circumpolar channel. Journal of Physical Oceanography, 35, 880–896.
  • Hughes, C.W. and De Cuevas, B.A., 2001. Why western boundary currents in realistic oceans are inviscid: A link between form stress and bottom pressure torques. Journal of Physical Oceanography, 31(10), 2871-2885.
  • Hogg, A.M., Meredith, M.P., Blundell, J.R., Wilson, C., 2008. Eddy heat flux in the Southern Ocean: response to variable wind forcing. Journal of Climate, 21, 608–620.
  • IPCC, 2007. The Physical Science Basis. Contribution of WGI to the Fourth Assessment Report of the Intergovermental Panel on Climate Change, in Climate Change 2007, edited by S. Solomon, et al., Cambridge University Press, Cambridge, 996.
  • Markina M., Gavrikov A., Gulev S., Barnier B., 2018. Developing configuration of WRF model for long-term high-resolution wind wave hindcast over the North Atlantic with WAVEWATCH III. Ocean Dynam-ics, 68, 1593-1604.
  • Marshall, J., and Radko, T., 2003. Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. Journal of Physical Oceanography, 33, 2341–2354.
  • Mazloff, M. R., Heimbach, P., & Wunsch, C., 2010. An eddy-permitting Southern Ocean state estimate. Journal of Physical Oceanography, 40(5), 880-899.
  • Meijers, A. J. S., Shuckburgh, E., Bruneau, N., Sallee, J.-B., Bracegirdle, T. J., Wang, Z., 2012. Representation ofthe Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios, Journal of Geophysical Resesearch, 117, C12008.
  • Meredith, M. P. and Hogg, A. M., 2006. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophysical Research Letters, 33, L16608.
  • Meredith, M. P., Naveira-Garabato A. C., Hogg, A.M., Farneti, R., 2012. Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. Journal of Climate, 25, 99–110.
  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G, Huang, X.-Y., Wang, W., and Powers, J. G., 2008. A Description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR, 113. doi:10.5065/D68S4MVH.
  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., … Huang, X. -yu., 2021. A Description of the Advanced Research WRF Model Version 4.3. doi:10.5065/1dfh-6p97.
  • Sverdrup, H. U., Johnson, M. W., and Flemming, R. H., 1942: The Oceans: Their Physics, Chemistry and General Biology. Prentice Hall, 1087.
  • Veronis, G., 1996: Effect of a constant, zonal wind on wind-driven ocean circulation. Journal of Physical Oceanography, 26, 2525–2528.
  • Viebahn J., Eden C., 2010. Towards the impact of eddies on the response of the Southern Ocean to climate change. Ocean Modelling, 34, 150–165.
  • Wolfe, C.L., Cessi, P., 2010. What sets the strength of the middepth stratification and overturning circulation in eddying ocean models? Journal of Physical Oceanography, 40, 1520–1538.
  • İnternet kaynakları 1-https://legacy.bas.ac.uk/met/READER/surface/, (03.02.2020)
  • 2-https://cds.climate.copernicus.eu/cdsapp#!/home, (07.04.2019)
  • 3-https://doi.org/10.5067/GHAAO-4BC02, (08.05.2019)
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Yasemin Ezber 0000-0002-4512-685X

Bilge Tutak 0000-0003-2885-9338

Mehmet Ilıcak 0000-0002-4777-8835

Proje Numarası 118Y329
Yayımlanma Tarihi 31 Ekim 2021
Gönderilme Tarihi 1 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 21 Sayı: 5

Kaynak Göster

APA Ezber, Y., Tutak, B., & Ilıcak, M. (2021). Güney Okyanusunun Atmosfer ve Okyanus Sirkülasyonlarının Sayısal Modeller Yardımıyla İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(5), 1231-1246. https://doi.org/10.35414/akufemubid.888661
AMA Ezber Y, Tutak B, Ilıcak M. Güney Okyanusunun Atmosfer ve Okyanus Sirkülasyonlarının Sayısal Modeller Yardımıyla İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ekim 2021;21(5):1231-1246. doi:10.35414/akufemubid.888661
Chicago Ezber, Yasemin, Bilge Tutak, ve Mehmet Ilıcak. “Güney Okyanusunun Atmosfer Ve Okyanus Sirkülasyonlarının Sayısal Modeller Yardımıyla İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, sy. 5 (Ekim 2021): 1231-46. https://doi.org/10.35414/akufemubid.888661.
EndNote Ezber Y, Tutak B, Ilıcak M (01 Ekim 2021) Güney Okyanusunun Atmosfer ve Okyanus Sirkülasyonlarının Sayısal Modeller Yardımıyla İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 5 1231–1246.
IEEE Y. Ezber, B. Tutak, ve M. Ilıcak, “Güney Okyanusunun Atmosfer ve Okyanus Sirkülasyonlarının Sayısal Modeller Yardımıyla İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 5, ss. 1231–1246, 2021, doi: 10.35414/akufemubid.888661.
ISNAD Ezber, Yasemin vd. “Güney Okyanusunun Atmosfer Ve Okyanus Sirkülasyonlarının Sayısal Modeller Yardımıyla İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/5 (Ekim 2021), 1231-1246. https://doi.org/10.35414/akufemubid.888661.
JAMA Ezber Y, Tutak B, Ilıcak M. Güney Okyanusunun Atmosfer ve Okyanus Sirkülasyonlarının Sayısal Modeller Yardımıyla İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:1231–1246.
MLA Ezber, Yasemin vd. “Güney Okyanusunun Atmosfer Ve Okyanus Sirkülasyonlarının Sayısal Modeller Yardımıyla İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 5, 2021, ss. 1231-46, doi:10.35414/akufemubid.888661.
Vancouver Ezber Y, Tutak B, Ilıcak M. Güney Okyanusunun Atmosfer ve Okyanus Sirkülasyonlarının Sayısal Modeller Yardımıyla İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(5):1231-46.