Araştırma Makalesi
BibTex RIS Kaynak Göster

3 Aralık 2020 Siirt-Kurtalan Depremi (Mw5.1) Kaynak Parametreleri ve Fay Çözümlerinin Araştırılması, Güneydoğu Anadolu

Yıl 2021, Cilt: 21 Sayı: 5, 1210 - 1222, 31.10.2021
https://doi.org/10.35414/akufemubid.931365

Öz

3 Aralık 2020 tarihinde Bitlis-Zagros Bindirme Kuşağı yakınında uzun zamandır sismolojik olarak suskun olan bölgede, Siirt-Kurtalan Depremi meydana gelmiştir. Bu çalışmada, Siirt-Kurtalan depreminin (Mw5.1) odak mekanizma çözümleri P-dalgası polaritelerinden hesaplanıp, diğer deprem veri merkezleri tarafından yapılan çözümlerle karşılaştırmalı olarak irdelenmiş ve depremin spektral kaynak özellikleri ortaya konmuştur. Bunların yerel tektonik yorumlamaya katkısı sunulmuştur. Buna göre depremin dış merkezi 38.048oK enlemi, 41.746oD boylamı olarak bulunmuştur. S dalga yer değiştirme spektrumu üzerinde köşe frekansı 0.571 (±0.098) Hz olarak hesaplanmıştır. Buna bağlı olarak, kaynak yarıçapı=1.973 (±0.088) km, momenti (Mo)=5.015*1016 (±0.062) Nm, moment büyüklüğü(Mw)=5.098 (±0.093), gerilim boşalımı=27.487 (±0.304) bar olarak bulunmuştur. HASH yazılımı kullanılarak birinci ve ikinci düğüm düzlemleri için (doğrultu, eğim ve kayma) sırasıyla (326, 84, 178) ve (56, 88, 6) olarak bulunmuştur. Buna göre ikinci düğüm düzlemi yerel tektoniğe uygun sol yönlü doğrultu atımlı fay karakteristiğini göstermektedir. Sismotektonik etkinlik bakımından önemli olan Bitlis-Zagros Kenet Kuşağı sürekli gözlemlenmelidir. Bunun için ek deprem istasyonları kurulmalı ve bölgede detaylı sismotektonik çalışmaların yapılması sağlanmalıdır.

Kaynakça

  • Aki, K. and P. G. Richards, 1980. Quantitative Seismology, 1st ed., W. H. Freeman and Company, San Francisco, 932pp.
  • Ali, W. and Shieh, S., 2013. Earthquake Repeat Time, Stress Drop, Type of Slip and Earthquake Magnitude, Journal of Geology & Geosciences, Volume 2, Issue 2, 1-8.
  • Allen M., Jackson J. and Walker R., 2004. Late Cenozoic Reorganization of the Arabia-Eurasia Collision and the Comparison of Short-Term and Long-Term Deformation Rates. Tectonics, 23: doi:10.1029/2003TC001530.
  • Arpat, E., 1977. 1975 Lice Depremi, Yeryuvarı ve İnsan, 15-27.
  • Barka, A. and Reilinger, R., 1997. Active Tectonics of the Eastern Mediterranean Region: Deduced from GPS, Neotectonic and Seismicity Data, Annali di Geofisica, XL 3, 587-610.
  • Baştuğ, C., 1976. Bitlis Napının Stratigrafisi ve Güneydoğu Anadolu Sütur Zonunun Evrimi, Yeryuvarı ve İnsan, 1/3, 55—61.
  • Bilek, S. L., Schwartz, S.Y. and DeShon, H.R., 2003. Control of Seafloor Roughness on Earthquake Rupture Behavior, Geology, 31, 455–458.
  • Brune, J.N. 1970. Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes, Journal of Geophysical Research, 75, 4997–5009.
  • Campbell, K.W., 2003a. Prediction of Strong Ground Motion Using the Hybrid Empirical Method: Example Application to Eastern North America, Bulletin of Seismological Society of America, 93, 1012–1033.
  • Campbell, K.W. and Bozorgnia, Y., 2003b. Updated Near-Source Ground Motion, Attenuation Relations for the Horizontal and Vertical Components of Peak Ground Acceleration and Acceleration Response Spectra, Bulletin of Seismological Society of America, 93, 314–331.
  • Carena, S. and Suppe, J., 2002. Three-dimensional imaging of active structures using earthquake aftershocks: the Northridge thrust, California, Journal of Structural Geology, 24, 887–904.
  • Emre, Ö., Duman, T., Özalp, S., Elmacı, H., Olgun, Ş., Şaroğlu, F., 2013. Active fault map of Turkey with and explanatory text. Special Publication Series, 30, General Directorate of Mineral Research and Exploration.
  • Eyidoğan, H., 2020. bilimvegelecek.com.tr, 3 Aralık-2020 Kurtalan-Siirt Depremi Mw 5.0 Türkiye’nin Doğusunda Tektonik Sıkışmanın Canlı Olduğunu Gösteriyor.
  • Eyidoğan, H., 1983. Bitlis-Zağros bindirme ve kıvrımlı kuşağının sismotektonik özellikleri. Doktora Tezi, İstanbul Teknik Üniversitesi, Maden Fakültesi, 112s.
  • Gomberg, J.S. and Ellis, M.A., 1994. Topography and tectonics of the central New Madrid Seismic zone: results of numerical experiments using a three-dimensional boundary-element program, Journal of Geophysical Research, 99, 20, 299–20, 310.
  • Hall, R., 1976. Ophiolite emplacement and the evolution of the Taurus suture zone, southeastern Turkey: Geological Society of America Bulletin, v. 87, p. 1078–1088.
  • Haney, M.M., Power, J., West, M., Michaels, P., 2012. Causal Instrument Corrections for Short-Period and Broadband Seismometers, Seismological Research Letters, Volume 83, Number 5, 834-845.
  • Hardebeck JL. and Shearer P.M., 2002. A new method for determining first-motion focal mechanisms. Bulletin of Seismological Society of America, 92:2264–2276. https ://doi. org/10.1785/01200 10200.
  • Hardebeck J.L. and Shearer P.M., 2003. Using S/P Amplitude Ratios to on strain the Focal Mechanisms of Small Earthquakes, Bulletin of Seismological Society of America, 93:2434–2444.
  • Hsu, S. K. and Sibuet, J.C., 1995. Is Taiwan the result of arc-continent or arc-arc collision? Earth Planetary Science Letters, 136, 315–324.
  • İmamoğlu, M.Ş. ve Çetin, E., 2007. Güneydoğu Anadolu Bölgesi ve Yakın Yöresinin Depremselliği, D.Ü.Ziya Gökalp Eğitim Fakültesi Dergisi, 9, 93-103.
  • Jackson, J. and McKenzie, D., 1984. Active tectonics of the Alpine- Himalayan Belt between western Turkey and Pakistan. Geophysical Journal of Royal Astronomical Society, 77, 185–264.
  • Janutyte, I. and Lindholm, C., 2017. Earthquake source mechanisms in onshore and offshore Nordland, northern Norway. Norwegian Journal of Geology 97, 227–239.
  • Klein, F., 2014. User's Guide to HYPOINVERSE-2000, a Fortran Program to Solve for Earthquake Locations and Magnitudes, United States Department of the Interior Geological Survey, Open File Report 02-171 revised June 2014, Version 1.40.
  • Lay, T. and Wallace, T.C., 1995. Modern Global Seismology, Volume 58 , Academic Press, San Diego. 1st Edition, pp536.
  • Lee, W.H.K. and Lahr, J.C., 1972. HYPO71: a computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes, USGS Numbered Series, Open-File Report, 72-224, 10.3133/ofr72224.
  • Lees, J.M., 2012. Open and Free: Software and Scientific Reproducibility , opinion, Seismological Research Letters, Vol. 83: pp. 751-752.
  • McClusky, S., Balassanian, S., Barka, A., Demir, C., Georgiev, I., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradisis, D., Peter, Y., Prilepi, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksoz, M.N., Veis, G., 2000. GPS Constraints on Crustal Movements and Deformations in the Eastern Mediterranean, 1988-1997: Implications for Plate Dynamics, Journal of Geophysical Research, Vol. 105, No.B3, pp. 5695-5719.
  • McKenzie, D.P., 1972. Active Tectonics of the Mediterranean Region, Geophysical Journal of the Royal Astronomical Society, 30, 109-185.
  • McQuarrie, N., Stock, J.M., Verdel, C. & Wernicke, B.P., 2003. Cenozoic evolution of Neotethys and implications for the causes of plate motions, Geophysical Research Letters, 30, doi:10.1029/2003GL017992.
  • Morley, C., 2009. Geometry of an oblique thrust fault zone in a deepwater fold belt from 3D seismic data, Journal of Structural Geology, 31, 1540-1555.
  • Okay, A.I., Zattin, M. and Cavazza, W., 2010. Apatite fission-track data for the Miocene Arabia-Eurasia collision, Geology, v. 38, p. 35–38, https:// doi .org /10 .1130 /G30234 .1 .
  • Ottemoller V. and Havskov J., 2017. SEISAN earthquake analysis software for Windows, Solaris, Linux and MacSx.
  • Perinçek, D. ve Kozlu, H., 1983. Stratigraphy and structural relations of the units in the Afşin-Elbistan-Doğanşar region (Eastern Taurus) In Tekeli, O. and Göncüoğlu, M.C. (eds), Geology of the Taurus Belt. Ankara-Turkey, 181-197.
  • Reasenberg, P. and Oppenheimer, D., 1985. FPFIT, FPPLOT, and FPPAGE: FORTRAN computer programs for calculating and displaying earthquake fault-plane solutions, U.S. Geol. Surv. Open-File Rept. 85-739, 109 Pp.
  • Reilinger, R., Mcclusky, S., Vernant, P., et al., 2006. GPS Constraints on Continental Deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, Journal of Geophysical Research, 111, BO5411, doi: 10.1929/2005JBOO4051, 1-26.
  • Rowley, D.B., 1996. Age of initiation of collision between India and Asia: A review of stratigraphic data: Earth and Planetary Science Letters, v. 145, p. 1–13.
  • Rundquist, D. V., and Sobolev, P.O., 2002. Seismicity of mid oceanic ridges and its geodynamic implications: a review. Earth-Science Reviewer. 58, 143–161.
  • Scholz, J.-R., Barruol, G., Fontaine, F. R., Sigloch, K., Crawford, W. C., Deen, M., 2016. Orienting Ocean-Bottom Seismometers from P-wave and Rayleigh wave Polarizations, Geophysical Journal International, 208, 1277– 1289.
  • Seyitoğlu G., Esat K. and Kaypak B., 2017. The neotectonics of southeast Turkey, northern Syria and Iraq: the internal structure of the South East Anatolian Wedge and its relationship with the recent earthquakes. Turkish Journal of Earth Sciences, 26, 105-126.
  • Seyitoğlu G, Esat K, Kaypak B, Tooric M, Aktuğ B., 2018. The Neotectonics of Eastern Turkey, Northwest Iran, Armenia, Nahçivan and Southern Azerbaycan: the rhomboidal cell model in the internal deformation of Turkish – Iranian Plateau. In: 71st Geological Congress of Turkey Proceedings, pp. 661-664.
  • Seyitoğlu, G., 2020. 2020.12.03 (Mw=5.0) Kurtalan (Siirt) depreminin kaynağı üzerine bir tartışma, Technical Report, Ankara Üniversitesi.
  • Seyitoğlu G., Esat K., Kaypak B., Toori M., Aktuğ B. 2019. Internal deformation of the Turkish-Iranian Plateau in the hinterland of Bitlis-Zagros Suture Zone. In: Tectonic and Structural Framework of the Zagros Fold-Thrust Belt (Ed. Farzipour Saein, A.) Elsevier, 161-244. ISBN: 978-0-12-815048-1.
  • Soysal, H., Sipahioğlu, S., Koçak, D., Altınok, Y., 1981. Türkiye ve çevresinin tarihsel deprem kataloğu , MÖ 2100-MS 1900. TÜBİTAK, Proje No. TBAG 314, 87s., Ankara.
  • Steacy, S., Gomberg, J. and Cocco, M., 2005. Introduction to special section: stress transfer, earthquake triggering, and time-dependent seismic hazard, Journal of Geophysical Research, 110, B05S01.
  • Scherbaum, F., Johnson, J., 1992. Programmable Interactive Toolbox For Seismology Analysis. IASPEI Software Library, Bulletin of Seismological Society of America, 5, 269.
  • Şaroğlu, F., Emre, Ö. ve Boray, A., 1987. Türkiye’nin diri fayları ve depremsellikleri, MTA Derleme No:8174, 394, 136, 269-282.
  • Şengör, A.M.C., Görür, N. and Şaroğlu, F., 1985. Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, in Strike-slip Deformation, Basin Formation and Sedimentation, edited by K. T. Biddle and N. Christie-Blick, Society of Economic Paleontologists and Mineralogists (Tulsa), Sp. Publ. 37, 227–264.
  • Şengör, A.M.C., 1980. Türkiye'nin Neotektoniğinin Esasları, Türkiye Jeoloji Konferanslar Serisi Yayınları No: 2.
  • Şengör, A.M.C. and Yılmaz, Y., 1981. Tethyan Evolution of Turkey:A Plate Tectonic Approach, Tectonophysics, c. 75, s. 81-241.
  • Toda, S., Stein, R.S., Sevilgen, V. and Lin, J., 2011. Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—user guide: U.S. Geological Survey Open-File Report 2011-1060, 63 p., available at http://pubs.usgs.gov/of/2011/1060/.
  • Yılmaz, Y., 1993. New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of American Bulletin, 105: 251-271.
  • Yılmaz, Y., Genç, S.,Gürer, Ö.F., Bozcu, M., Yılmaz, K., Karacık, Z., Altunkaynak, S. and Elmas, A., 2000. When did Western Anatolian Grabens Begin to Develop? In: Bozkurt, E., Winchester, J.A., Piper, J.D.A. (Eds., Tectonics and Magmatism in Turkey and the Surrounding Area, Geological Society of London, Spec. Publ., 353–384.
  • Wells, D. L. and Coppersmith, K. J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bulletin of Seismological Society of America, 84(4), 974-1002.
  • Wessel, P. and Smith, W.H.F., 1998. New,improved version of Generic Mapping Tools released, EOS Trans. American Geophysical United, vol. 79 47, pp. 579.
  • İnternet kaynakları 1-https://tdvms.afad.gov.tr (15.12.2020) 2-https://deprem.afad.gov.tr/sondepremler (15.12.2020) 3. http://seisan.info/ (15.12.2020)

Investigation of the Source Parameters and Fault Mechanism Solutions of the December 3rd, 2020 Mw5.1 Siirt-Kurtalan Earthquake, Southeast Anatolia

Yıl 2021, Cilt: 21 Sayı: 5, 1210 - 1222, 31.10.2021
https://doi.org/10.35414/akufemubid.931365

Öz

On December 3rd, 2020, the Siirt-Kurtalan Earthquake occurred near the Bitlis-Zagros Suture Zone that has been seismologically quiet for a long time. In this study, the focal mechanism solutions of the Siirt-Kurtalan earthquake (Mw5.1) were determined from P-wave polarities, analyzed in comparison with the solutions provided by other earthquake data centers, and the spectral source characteristics of the earthquake were revealed. Accordingly, the epicenter of the earthquake was found 38.048oN, 41.746oE. On the S-wave displacement spectrum, corner frequency was calculated 0.571 (±0.098) Hz. Consequently, source radius=1.973 (±0.088) km, the moment (Mo)=5.015*1016 (±0.062) Nm, the moment magnitude (Mw)=5.098 (±0.093), and the stress drop=27.487 (±0.304) bar were found. Using the HASH code, for the first and second nodal planes (strike, dip, rake) were found as (326, 84, 178) and (56, 88, 6), respectively. Therefore, the second nodal plane shows a left-lateral strike-slip fault characteristic in accordance with local tectonics. The Bitlis-Zagros Suture Zone, which is important in terms of seismotectonic activity, should be constantly observed. For this purpose, additional earthquake stations should be established and detailed seismotectonic studies should be carried out in the region.

Kaynakça

  • Aki, K. and P. G. Richards, 1980. Quantitative Seismology, 1st ed., W. H. Freeman and Company, San Francisco, 932pp.
  • Ali, W. and Shieh, S., 2013. Earthquake Repeat Time, Stress Drop, Type of Slip and Earthquake Magnitude, Journal of Geology & Geosciences, Volume 2, Issue 2, 1-8.
  • Allen M., Jackson J. and Walker R., 2004. Late Cenozoic Reorganization of the Arabia-Eurasia Collision and the Comparison of Short-Term and Long-Term Deformation Rates. Tectonics, 23: doi:10.1029/2003TC001530.
  • Arpat, E., 1977. 1975 Lice Depremi, Yeryuvarı ve İnsan, 15-27.
  • Barka, A. and Reilinger, R., 1997. Active Tectonics of the Eastern Mediterranean Region: Deduced from GPS, Neotectonic and Seismicity Data, Annali di Geofisica, XL 3, 587-610.
  • Baştuğ, C., 1976. Bitlis Napının Stratigrafisi ve Güneydoğu Anadolu Sütur Zonunun Evrimi, Yeryuvarı ve İnsan, 1/3, 55—61.
  • Bilek, S. L., Schwartz, S.Y. and DeShon, H.R., 2003. Control of Seafloor Roughness on Earthquake Rupture Behavior, Geology, 31, 455–458.
  • Brune, J.N. 1970. Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes, Journal of Geophysical Research, 75, 4997–5009.
  • Campbell, K.W., 2003a. Prediction of Strong Ground Motion Using the Hybrid Empirical Method: Example Application to Eastern North America, Bulletin of Seismological Society of America, 93, 1012–1033.
  • Campbell, K.W. and Bozorgnia, Y., 2003b. Updated Near-Source Ground Motion, Attenuation Relations for the Horizontal and Vertical Components of Peak Ground Acceleration and Acceleration Response Spectra, Bulletin of Seismological Society of America, 93, 314–331.
  • Carena, S. and Suppe, J., 2002. Three-dimensional imaging of active structures using earthquake aftershocks: the Northridge thrust, California, Journal of Structural Geology, 24, 887–904.
  • Emre, Ö., Duman, T., Özalp, S., Elmacı, H., Olgun, Ş., Şaroğlu, F., 2013. Active fault map of Turkey with and explanatory text. Special Publication Series, 30, General Directorate of Mineral Research and Exploration.
  • Eyidoğan, H., 2020. bilimvegelecek.com.tr, 3 Aralık-2020 Kurtalan-Siirt Depremi Mw 5.0 Türkiye’nin Doğusunda Tektonik Sıkışmanın Canlı Olduğunu Gösteriyor.
  • Eyidoğan, H., 1983. Bitlis-Zağros bindirme ve kıvrımlı kuşağının sismotektonik özellikleri. Doktora Tezi, İstanbul Teknik Üniversitesi, Maden Fakültesi, 112s.
  • Gomberg, J.S. and Ellis, M.A., 1994. Topography and tectonics of the central New Madrid Seismic zone: results of numerical experiments using a three-dimensional boundary-element program, Journal of Geophysical Research, 99, 20, 299–20, 310.
  • Hall, R., 1976. Ophiolite emplacement and the evolution of the Taurus suture zone, southeastern Turkey: Geological Society of America Bulletin, v. 87, p. 1078–1088.
  • Haney, M.M., Power, J., West, M., Michaels, P., 2012. Causal Instrument Corrections for Short-Period and Broadband Seismometers, Seismological Research Letters, Volume 83, Number 5, 834-845.
  • Hardebeck JL. and Shearer P.M., 2002. A new method for determining first-motion focal mechanisms. Bulletin of Seismological Society of America, 92:2264–2276. https ://doi. org/10.1785/01200 10200.
  • Hardebeck J.L. and Shearer P.M., 2003. Using S/P Amplitude Ratios to on strain the Focal Mechanisms of Small Earthquakes, Bulletin of Seismological Society of America, 93:2434–2444.
  • Hsu, S. K. and Sibuet, J.C., 1995. Is Taiwan the result of arc-continent or arc-arc collision? Earth Planetary Science Letters, 136, 315–324.
  • İmamoğlu, M.Ş. ve Çetin, E., 2007. Güneydoğu Anadolu Bölgesi ve Yakın Yöresinin Depremselliği, D.Ü.Ziya Gökalp Eğitim Fakültesi Dergisi, 9, 93-103.
  • Jackson, J. and McKenzie, D., 1984. Active tectonics of the Alpine- Himalayan Belt between western Turkey and Pakistan. Geophysical Journal of Royal Astronomical Society, 77, 185–264.
  • Janutyte, I. and Lindholm, C., 2017. Earthquake source mechanisms in onshore and offshore Nordland, northern Norway. Norwegian Journal of Geology 97, 227–239.
  • Klein, F., 2014. User's Guide to HYPOINVERSE-2000, a Fortran Program to Solve for Earthquake Locations and Magnitudes, United States Department of the Interior Geological Survey, Open File Report 02-171 revised June 2014, Version 1.40.
  • Lay, T. and Wallace, T.C., 1995. Modern Global Seismology, Volume 58 , Academic Press, San Diego. 1st Edition, pp536.
  • Lee, W.H.K. and Lahr, J.C., 1972. HYPO71: a computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes, USGS Numbered Series, Open-File Report, 72-224, 10.3133/ofr72224.
  • Lees, J.M., 2012. Open and Free: Software and Scientific Reproducibility , opinion, Seismological Research Letters, Vol. 83: pp. 751-752.
  • McClusky, S., Balassanian, S., Barka, A., Demir, C., Georgiev, I., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradisis, D., Peter, Y., Prilepi, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksoz, M.N., Veis, G., 2000. GPS Constraints on Crustal Movements and Deformations in the Eastern Mediterranean, 1988-1997: Implications for Plate Dynamics, Journal of Geophysical Research, Vol. 105, No.B3, pp. 5695-5719.
  • McKenzie, D.P., 1972. Active Tectonics of the Mediterranean Region, Geophysical Journal of the Royal Astronomical Society, 30, 109-185.
  • McQuarrie, N., Stock, J.M., Verdel, C. & Wernicke, B.P., 2003. Cenozoic evolution of Neotethys and implications for the causes of plate motions, Geophysical Research Letters, 30, doi:10.1029/2003GL017992.
  • Morley, C., 2009. Geometry of an oblique thrust fault zone in a deepwater fold belt from 3D seismic data, Journal of Structural Geology, 31, 1540-1555.
  • Okay, A.I., Zattin, M. and Cavazza, W., 2010. Apatite fission-track data for the Miocene Arabia-Eurasia collision, Geology, v. 38, p. 35–38, https:// doi .org /10 .1130 /G30234 .1 .
  • Ottemoller V. and Havskov J., 2017. SEISAN earthquake analysis software for Windows, Solaris, Linux and MacSx.
  • Perinçek, D. ve Kozlu, H., 1983. Stratigraphy and structural relations of the units in the Afşin-Elbistan-Doğanşar region (Eastern Taurus) In Tekeli, O. and Göncüoğlu, M.C. (eds), Geology of the Taurus Belt. Ankara-Turkey, 181-197.
  • Reasenberg, P. and Oppenheimer, D., 1985. FPFIT, FPPLOT, and FPPAGE: FORTRAN computer programs for calculating and displaying earthquake fault-plane solutions, U.S. Geol. Surv. Open-File Rept. 85-739, 109 Pp.
  • Reilinger, R., Mcclusky, S., Vernant, P., et al., 2006. GPS Constraints on Continental Deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, Journal of Geophysical Research, 111, BO5411, doi: 10.1929/2005JBOO4051, 1-26.
  • Rowley, D.B., 1996. Age of initiation of collision between India and Asia: A review of stratigraphic data: Earth and Planetary Science Letters, v. 145, p. 1–13.
  • Rundquist, D. V., and Sobolev, P.O., 2002. Seismicity of mid oceanic ridges and its geodynamic implications: a review. Earth-Science Reviewer. 58, 143–161.
  • Scholz, J.-R., Barruol, G., Fontaine, F. R., Sigloch, K., Crawford, W. C., Deen, M., 2016. Orienting Ocean-Bottom Seismometers from P-wave and Rayleigh wave Polarizations, Geophysical Journal International, 208, 1277– 1289.
  • Seyitoğlu G., Esat K. and Kaypak B., 2017. The neotectonics of southeast Turkey, northern Syria and Iraq: the internal structure of the South East Anatolian Wedge and its relationship with the recent earthquakes. Turkish Journal of Earth Sciences, 26, 105-126.
  • Seyitoğlu G, Esat K, Kaypak B, Tooric M, Aktuğ B., 2018. The Neotectonics of Eastern Turkey, Northwest Iran, Armenia, Nahçivan and Southern Azerbaycan: the rhomboidal cell model in the internal deformation of Turkish – Iranian Plateau. In: 71st Geological Congress of Turkey Proceedings, pp. 661-664.
  • Seyitoğlu, G., 2020. 2020.12.03 (Mw=5.0) Kurtalan (Siirt) depreminin kaynağı üzerine bir tartışma, Technical Report, Ankara Üniversitesi.
  • Seyitoğlu G., Esat K., Kaypak B., Toori M., Aktuğ B. 2019. Internal deformation of the Turkish-Iranian Plateau in the hinterland of Bitlis-Zagros Suture Zone. In: Tectonic and Structural Framework of the Zagros Fold-Thrust Belt (Ed. Farzipour Saein, A.) Elsevier, 161-244. ISBN: 978-0-12-815048-1.
  • Soysal, H., Sipahioğlu, S., Koçak, D., Altınok, Y., 1981. Türkiye ve çevresinin tarihsel deprem kataloğu , MÖ 2100-MS 1900. TÜBİTAK, Proje No. TBAG 314, 87s., Ankara.
  • Steacy, S., Gomberg, J. and Cocco, M., 2005. Introduction to special section: stress transfer, earthquake triggering, and time-dependent seismic hazard, Journal of Geophysical Research, 110, B05S01.
  • Scherbaum, F., Johnson, J., 1992. Programmable Interactive Toolbox For Seismology Analysis. IASPEI Software Library, Bulletin of Seismological Society of America, 5, 269.
  • Şaroğlu, F., Emre, Ö. ve Boray, A., 1987. Türkiye’nin diri fayları ve depremsellikleri, MTA Derleme No:8174, 394, 136, 269-282.
  • Şengör, A.M.C., Görür, N. and Şaroğlu, F., 1985. Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, in Strike-slip Deformation, Basin Formation and Sedimentation, edited by K. T. Biddle and N. Christie-Blick, Society of Economic Paleontologists and Mineralogists (Tulsa), Sp. Publ. 37, 227–264.
  • Şengör, A.M.C., 1980. Türkiye'nin Neotektoniğinin Esasları, Türkiye Jeoloji Konferanslar Serisi Yayınları No: 2.
  • Şengör, A.M.C. and Yılmaz, Y., 1981. Tethyan Evolution of Turkey:A Plate Tectonic Approach, Tectonophysics, c. 75, s. 81-241.
  • Toda, S., Stein, R.S., Sevilgen, V. and Lin, J., 2011. Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—user guide: U.S. Geological Survey Open-File Report 2011-1060, 63 p., available at http://pubs.usgs.gov/of/2011/1060/.
  • Yılmaz, Y., 1993. New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of American Bulletin, 105: 251-271.
  • Yılmaz, Y., Genç, S.,Gürer, Ö.F., Bozcu, M., Yılmaz, K., Karacık, Z., Altunkaynak, S. and Elmas, A., 2000. When did Western Anatolian Grabens Begin to Develop? In: Bozkurt, E., Winchester, J.A., Piper, J.D.A. (Eds., Tectonics and Magmatism in Turkey and the Surrounding Area, Geological Society of London, Spec. Publ., 353–384.
  • Wells, D. L. and Coppersmith, K. J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bulletin of Seismological Society of America, 84(4), 974-1002.
  • Wessel, P. and Smith, W.H.F., 1998. New,improved version of Generic Mapping Tools released, EOS Trans. American Geophysical United, vol. 79 47, pp. 579.
  • İnternet kaynakları 1-https://tdvms.afad.gov.tr (15.12.2020) 2-https://deprem.afad.gov.tr/sondepremler (15.12.2020) 3. http://seisan.info/ (15.12.2020)
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer), Jeoloji (Diğer)
Bölüm Makaleler
Yazarlar

Nihan Hoskan 0000-0001-5507-9818

Yayımlanma Tarihi 31 Ekim 2021
Gönderilme Tarihi 2 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 21 Sayı: 5

Kaynak Göster

APA Hoskan, N. (2021). 3 Aralık 2020 Siirt-Kurtalan Depremi (Mw5.1) Kaynak Parametreleri ve Fay Çözümlerinin Araştırılması, Güneydoğu Anadolu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(5), 1210-1222. https://doi.org/10.35414/akufemubid.931365
AMA Hoskan N. 3 Aralık 2020 Siirt-Kurtalan Depremi (Mw5.1) Kaynak Parametreleri ve Fay Çözümlerinin Araştırılması, Güneydoğu Anadolu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ekim 2021;21(5):1210-1222. doi:10.35414/akufemubid.931365
Chicago Hoskan, Nihan. “3 Aralık 2020 Siirt-Kurtalan Depremi (Mw5.1) Kaynak Parametreleri Ve Fay Çözümlerinin Araştırılması, Güneydoğu Anadolu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, sy. 5 (Ekim 2021): 1210-22. https://doi.org/10.35414/akufemubid.931365.
EndNote Hoskan N (01 Ekim 2021) 3 Aralık 2020 Siirt-Kurtalan Depremi (Mw5.1) Kaynak Parametreleri ve Fay Çözümlerinin Araştırılması, Güneydoğu Anadolu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 5 1210–1222.
IEEE N. Hoskan, “3 Aralık 2020 Siirt-Kurtalan Depremi (Mw5.1) Kaynak Parametreleri ve Fay Çözümlerinin Araştırılması, Güneydoğu Anadolu”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 5, ss. 1210–1222, 2021, doi: 10.35414/akufemubid.931365.
ISNAD Hoskan, Nihan. “3 Aralık 2020 Siirt-Kurtalan Depremi (Mw5.1) Kaynak Parametreleri Ve Fay Çözümlerinin Araştırılması, Güneydoğu Anadolu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/5 (Ekim 2021), 1210-1222. https://doi.org/10.35414/akufemubid.931365.
JAMA Hoskan N. 3 Aralık 2020 Siirt-Kurtalan Depremi (Mw5.1) Kaynak Parametreleri ve Fay Çözümlerinin Araştırılması, Güneydoğu Anadolu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:1210–1222.
MLA Hoskan, Nihan. “3 Aralık 2020 Siirt-Kurtalan Depremi (Mw5.1) Kaynak Parametreleri Ve Fay Çözümlerinin Araştırılması, Güneydoğu Anadolu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 5, 2021, ss. 1210-22, doi:10.35414/akufemubid.931365.
Vancouver Hoskan N. 3 Aralık 2020 Siirt-Kurtalan Depremi (Mw5.1) Kaynak Parametreleri ve Fay Çözümlerinin Araştırılması, Güneydoğu Anadolu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(5):1210-22.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.