Araştırma Makalesi
BibTex RIS Kaynak Göster

Pirazol Temelli Yeni Bir Kopolimerin [poli(1,3-difenil-1H-pirazol-5-il metakrilat-ko-stiren)] Termal Bozunma Kinetiği

Yıl 2022, Cilt: 22 Sayı: 3, 517 - 527, 30.06.2022
https://doi.org/10.35414/akufemubid.1114247

Öz

Mevcut çalışmada, pirazol sübstitüe gruplu 1,3-difenil-1H-pirazol-5-il metakrilat (DPMA) ve stiren (St) birimlerini içeren yeni bir kopolimer [poli(DPMA-ko-St)] sentezlenmiş ve kopolimer sisteminin termal bozunma kinetiği termogravimetrik analiz (TGA) tekniği ile detaylıca araştırılmıştır. Isıtma hızındaki değişime bağlı olarak (5 °C/dak – 20 °C/dak) kopolimerin termal stabilitesinde 252,02 °C'den 274,89 °C'ye bir artış gözlemlenmiştir. Kopolimerin termal bozunma aktivasyon enerjileri, %9 - %21 dönüşüm aralığında, Kissinger ve Flynn-Wall-Ozawa yöntemleri ile sırasıyla 149,37 kJ/mol ve 140,99 kJ/mol olarak sonuçlanmıştır. Coats-Redfern, Tang, Madhusudanan ve Van Krevelen gibi farklı kinetik metotlar ışığında kopolimerin termal bozunma mekanizması incelenmiştir. Elde edilen sonuçlar kopolimerin termal bozunma mekanizmasının özellikle Coats-Redfern metoduna göre 20 °C/dak optimum ısıtma hızında tek boyutlu difüzyon tipi bir yavaşlama mekanizması yani D1 mekanizması üzerinden ilerlediğini göstermiştir.

Kaynakça

  • Ameduri, B., Boutevin, B. and Malek, F., 1994. Synthesis and Characterization of Styrenic Polymers with Pendant Pyrazole Groups. II. Journal of Polymer Science: Part A Polymer Chemistry, 32, 729-740.
  • Asif, M., Imran, M. and Husain A., 2021. Approaches for chemical synthesis and diverse pharmacological significance of pyrazolone derivatives: A review. Journal of the Chilean Chemical Society, 66 (2), 5149-5163.
  • Coats, A.W. and Redfern, J. P. 1964. Kinetic parameters from thermogravimetric data, Nature, 201, 68-69.
  • Flynn, J.H. and Wall, L.A., 1966. A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science, Part B, 4, 323-328.
  • Gardiner, J., Martinez-Botella, I., Tsanaktsidis, J. and Moad, G., 2016. Dithiocarbamate RAFT agents with broad applicability - the 3,5-dimethyl-1H-pyrazole-1-carbodithioates, Polymer Chemistry, 7(2), 481-492. Hamielec, A.E., Macgregor, J.F. and Penlidis, A., 1989. Copolymerization, Editor(s): Allen, G. And Bevington, J.C., Comprehensive Polymer Science and Supplements, Pergamon, 17-31.
  • Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y.N., Al-aizari, F.A. and Ansar, M., 2018. Synthesis and pharmacological activities of pyrazole derivatives: A Review. Molecules, 23 (1), 134.
  • Kissinger, H.E. 1957. Reaction kinetics in differential thermal analysis, Analytical Chemistry, 29, 1702-1706.
  • Kurt, A. and Koca, M., 2016. Synthesis, characterization and thermal degradation kinetics of poly(3-acetylcoumarin-7-yl-methacrylate) and its organoclay nanocomposites, Journal of Engineering Research, 4 (4), 46-65.
  • Kurt, A. and Koca, M., 2022. Synthesis, characterization and thermal degradation kinetics of a new pyrazole derived methacrylate polymer, poly(1,3-diphenyl-1H-pyrazol-5-yl methacrylate), Acta Chimica Slovenica, 69(2), 466-477.
  • Kurt, A., 2009a. Dielectric properties of block copolymers of ethyl methacrylate with styrene. e-Journal of New World Sciences Academy Engineering Sciences, 4(2), 203-210.
  • Kurt, A., 2009b. Thermal decomposition kinetics of poly(nButMA-b-St) diblock copolymer synthesized by ATRP. Journal of Applied Polymer Science, 114(1), 624-629.
  • Kurt, A., 2017. Kumarin yan grup içeren poli(3-benzoil kumarin-7-il-metakrilat) homopolimerinin termal bozunma kinetiği. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(4), 113-121.
  • Kurt, A., Avcı, H.I. and Koca, M., 2018. Synthesis and characterization of a novel isocoumarin derived polymer and its thermal decomposition kinetics. Macedonian Journal of Chemistry and Chemical Engineering, 37 (2), 173-184.
  • Madhusudanan, P. M., Krishnan, K. and Ninan, K.N., 1993. New equations for kinetic-analysis of nonisothermal reactions. Thermochimica Acta, 221, 13-21.
  • Marzouk, M.I., Sayed, G.H., Abd ElHalim, M.S. and Mansour, S.Y., 2014. Synthesis and characterization of novel pyrazolone derivatives. European Journal of Chemistry, 5 (1), 24‐32.
  • Matyjaszewski, K. and Xia, J., 2001. Atom Transfer Radical Polymerization. Chemical Reviews, 101 (9), 2921-2990.
  • Meng, X.L., Huang, Y.D., Yu, H. and Lv, Z., 2007. Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazole units. Polymer Degradation and Stability, 92 (6), 962-967.
  • Moore, J.A. and Mehta, P.G., 1995. Synthesis and characterization of novel thermally stable polypyrazoles. Macromolecules, 28, 444-453.
  • Mukundam, V., Kumar, A., Dhanunjayarao, K., Ravi, A., Peruncheralathan, S. and Venkatasubbaiah, K., 2015. Tetraaryl pyrazole polymers: versatile synthesis, aggregation induced emission enhancement and detection of explosives. Polymer Chemistry, 6, 7764–7770.
  • Ng, H.M., Saidi, N.M., Omar, F.S., Ramesh, K., Ramesh, S. and Bashir, S., 2018. Thermogravimetric analysis of polymers. In Encyclopedia of Polymer Science and Technology, 1-29.
  • Nunez, L., Fraga, F., Nunez, M.R. and Villanueva, M., 2000. Thermogravimetric study of the decomposition process of the system BADGE (n=0)/1,2 DCH. Polymer, 41 (12), 4635–41.
  • Ozawa, T., 1986. Applicability of Friedman plot. Journal of Thermal Analysis, 31(3), 547-551.
  • Saçak, M., 2012. Polimer Kimyası, 6. Baskı, Gazi Kitabevi, Ankara, 407-435.
  • Scott, A.J. and Penlidis, A., 2017. Copolymerization, reference module in chemistry, Molecular Sciences and Chemical Engineering, Elsevier, 1-11.
  • Tang, W., Liu, Y., Zhang, H. and Wang, C., 2003. New approximate formula for Arrhenius temperature integral. Thermochimica Acta, 408, 39-43.
  • Turmanova, S.C., Genieva, S.D., Dimitrova, A.S. and Vlaev, L.T., 2008. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. eXPRESS Polymer Letters, 2 (2), 133–146.
  • Van Krevelen, D.W., Van Herrden, C. and Hutjens, F.J., 1951. Kinetic study by thermogravimetry, Fuel, 30, 253-258.
  • Wang, S. and Cheng, B., 2017. One-pot synthesis of polypyrazoles by click reactions. Scientific Reports, 7, 12712.

Thermal Degradation Kinetics of a Novel Pyrazole Based Copolymer [poly(1,3-diphenyl-1H-pyrazol-5-yl methacrylate-co-styrene)]

Yıl 2022, Cilt: 22 Sayı: 3, 517 - 527, 30.06.2022
https://doi.org/10.35414/akufemubid.1114247

Öz

In the present study, a new copolymer containing pyrazole substituted 1,3-diphenyl-1H-pyrazol-5-yl methacrylate (DPMA) and styrene (St) units, [poly(DPMA-co-St)], was synthesized. Thermal degradation kinetics of the copolymer system was investigated in detail with the thermogravimetric analysis (TGA) technique. An increase in the thermal stability of the copolymer from 252.02 °C to 274.89 °C was observed depending on the change in heating rate (5 °C/min – 20 °C/min). The thermal degradation activation energies of the copolymer were 149.37 kJ/mol and 140.99 kJ/mol, respectively, with the Kissinger and Flynn-Wall-Ozawa methods in the conversion range of 9% - 21%. The thermal degradation mechanism of the copolymer was investigated in the light of different kinetic methods such as Coats-Redfern, Tang, Madhusudanan, Van-Krevelen and Horowitz-Metzger. The results showed that the thermal decomposition mechanism of the copolymer proceeds through a one-dimensional diffusion-type deceleration mechanism, namely the D1 mechanism, at the optimum heating rate of 20 °C/min, especially according to the Coats-Redfern method.

Kaynakça

  • Ameduri, B., Boutevin, B. and Malek, F., 1994. Synthesis and Characterization of Styrenic Polymers with Pendant Pyrazole Groups. II. Journal of Polymer Science: Part A Polymer Chemistry, 32, 729-740.
  • Asif, M., Imran, M. and Husain A., 2021. Approaches for chemical synthesis and diverse pharmacological significance of pyrazolone derivatives: A review. Journal of the Chilean Chemical Society, 66 (2), 5149-5163.
  • Coats, A.W. and Redfern, J. P. 1964. Kinetic parameters from thermogravimetric data, Nature, 201, 68-69.
  • Flynn, J.H. and Wall, L.A., 1966. A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science, Part B, 4, 323-328.
  • Gardiner, J., Martinez-Botella, I., Tsanaktsidis, J. and Moad, G., 2016. Dithiocarbamate RAFT agents with broad applicability - the 3,5-dimethyl-1H-pyrazole-1-carbodithioates, Polymer Chemistry, 7(2), 481-492. Hamielec, A.E., Macgregor, J.F. and Penlidis, A., 1989. Copolymerization, Editor(s): Allen, G. And Bevington, J.C., Comprehensive Polymer Science and Supplements, Pergamon, 17-31.
  • Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y.N., Al-aizari, F.A. and Ansar, M., 2018. Synthesis and pharmacological activities of pyrazole derivatives: A Review. Molecules, 23 (1), 134.
  • Kissinger, H.E. 1957. Reaction kinetics in differential thermal analysis, Analytical Chemistry, 29, 1702-1706.
  • Kurt, A. and Koca, M., 2016. Synthesis, characterization and thermal degradation kinetics of poly(3-acetylcoumarin-7-yl-methacrylate) and its organoclay nanocomposites, Journal of Engineering Research, 4 (4), 46-65.
  • Kurt, A. and Koca, M., 2022. Synthesis, characterization and thermal degradation kinetics of a new pyrazole derived methacrylate polymer, poly(1,3-diphenyl-1H-pyrazol-5-yl methacrylate), Acta Chimica Slovenica, 69(2), 466-477.
  • Kurt, A., 2009a. Dielectric properties of block copolymers of ethyl methacrylate with styrene. e-Journal of New World Sciences Academy Engineering Sciences, 4(2), 203-210.
  • Kurt, A., 2009b. Thermal decomposition kinetics of poly(nButMA-b-St) diblock copolymer synthesized by ATRP. Journal of Applied Polymer Science, 114(1), 624-629.
  • Kurt, A., 2017. Kumarin yan grup içeren poli(3-benzoil kumarin-7-il-metakrilat) homopolimerinin termal bozunma kinetiği. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(4), 113-121.
  • Kurt, A., Avcı, H.I. and Koca, M., 2018. Synthesis and characterization of a novel isocoumarin derived polymer and its thermal decomposition kinetics. Macedonian Journal of Chemistry and Chemical Engineering, 37 (2), 173-184.
  • Madhusudanan, P. M., Krishnan, K. and Ninan, K.N., 1993. New equations for kinetic-analysis of nonisothermal reactions. Thermochimica Acta, 221, 13-21.
  • Marzouk, M.I., Sayed, G.H., Abd ElHalim, M.S. and Mansour, S.Y., 2014. Synthesis and characterization of novel pyrazolone derivatives. European Journal of Chemistry, 5 (1), 24‐32.
  • Matyjaszewski, K. and Xia, J., 2001. Atom Transfer Radical Polymerization. Chemical Reviews, 101 (9), 2921-2990.
  • Meng, X.L., Huang, Y.D., Yu, H. and Lv, Z., 2007. Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazole units. Polymer Degradation and Stability, 92 (6), 962-967.
  • Moore, J.A. and Mehta, P.G., 1995. Synthesis and characterization of novel thermally stable polypyrazoles. Macromolecules, 28, 444-453.
  • Mukundam, V., Kumar, A., Dhanunjayarao, K., Ravi, A., Peruncheralathan, S. and Venkatasubbaiah, K., 2015. Tetraaryl pyrazole polymers: versatile synthesis, aggregation induced emission enhancement and detection of explosives. Polymer Chemistry, 6, 7764–7770.
  • Ng, H.M., Saidi, N.M., Omar, F.S., Ramesh, K., Ramesh, S. and Bashir, S., 2018. Thermogravimetric analysis of polymers. In Encyclopedia of Polymer Science and Technology, 1-29.
  • Nunez, L., Fraga, F., Nunez, M.R. and Villanueva, M., 2000. Thermogravimetric study of the decomposition process of the system BADGE (n=0)/1,2 DCH. Polymer, 41 (12), 4635–41.
  • Ozawa, T., 1986. Applicability of Friedman plot. Journal of Thermal Analysis, 31(3), 547-551.
  • Saçak, M., 2012. Polimer Kimyası, 6. Baskı, Gazi Kitabevi, Ankara, 407-435.
  • Scott, A.J. and Penlidis, A., 2017. Copolymerization, reference module in chemistry, Molecular Sciences and Chemical Engineering, Elsevier, 1-11.
  • Tang, W., Liu, Y., Zhang, H. and Wang, C., 2003. New approximate formula for Arrhenius temperature integral. Thermochimica Acta, 408, 39-43.
  • Turmanova, S.C., Genieva, S.D., Dimitrova, A.S. and Vlaev, L.T., 2008. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. eXPRESS Polymer Letters, 2 (2), 133–146.
  • Van Krevelen, D.W., Van Herrden, C. and Hutjens, F.J., 1951. Kinetic study by thermogravimetry, Fuel, 30, 253-258.
  • Wang, S. and Cheng, B., 2017. One-pot synthesis of polypyrazoles by click reactions. Scientific Reports, 7, 12712.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Polimer Bilimi ve Teknolojileri
Bölüm Makaleler
Yazarlar

Adnan Kurt 0000-0001-8516-6525

Murat Koca 0000-0001-9377-2461

Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 9 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 22 Sayı: 3

Kaynak Göster

APA Kurt, A., & Koca, M. (2022). Pirazol Temelli Yeni Bir Kopolimerin [poli(1,3-difenil-1H-pirazol-5-il metakrilat-ko-stiren)] Termal Bozunma Kinetiği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(3), 517-527. https://doi.org/10.35414/akufemubid.1114247
AMA Kurt A, Koca M. Pirazol Temelli Yeni Bir Kopolimerin [poli(1,3-difenil-1H-pirazol-5-il metakrilat-ko-stiren)] Termal Bozunma Kinetiği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Haziran 2022;22(3):517-527. doi:10.35414/akufemubid.1114247
Chicago Kurt, Adnan, ve Murat Koca. “Pirazol Temelli Yeni Bir Kopolimerin [poli(1,3-Difenil-1H-Pirazol-5-Il Metakrilat-Ko-stiren)] Termal Bozunma Kinetiği”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, sy. 3 (Haziran 2022): 517-27. https://doi.org/10.35414/akufemubid.1114247.
EndNote Kurt A, Koca M (01 Haziran 2022) Pirazol Temelli Yeni Bir Kopolimerin [poli(1,3-difenil-1H-pirazol-5-il metakrilat-ko-stiren)] Termal Bozunma Kinetiği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 3 517–527.
IEEE A. Kurt ve M. Koca, “Pirazol Temelli Yeni Bir Kopolimerin [poli(1,3-difenil-1H-pirazol-5-il metakrilat-ko-stiren)] Termal Bozunma Kinetiği”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 3, ss. 517–527, 2022, doi: 10.35414/akufemubid.1114247.
ISNAD Kurt, Adnan - Koca, Murat. “Pirazol Temelli Yeni Bir Kopolimerin [poli(1,3-Difenil-1H-Pirazol-5-Il Metakrilat-Ko-stiren)] Termal Bozunma Kinetiği”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/3 (Haziran 2022), 517-527. https://doi.org/10.35414/akufemubid.1114247.
JAMA Kurt A, Koca M. Pirazol Temelli Yeni Bir Kopolimerin [poli(1,3-difenil-1H-pirazol-5-il metakrilat-ko-stiren)] Termal Bozunma Kinetiği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:517–527.
MLA Kurt, Adnan ve Murat Koca. “Pirazol Temelli Yeni Bir Kopolimerin [poli(1,3-Difenil-1H-Pirazol-5-Il Metakrilat-Ko-stiren)] Termal Bozunma Kinetiği”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 3, 2022, ss. 517-2, doi:10.35414/akufemubid.1114247.
Vancouver Kurt A, Koca M. Pirazol Temelli Yeni Bir Kopolimerin [poli(1,3-difenil-1H-pirazol-5-il metakrilat-ko-stiren)] Termal Bozunma Kinetiği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(3):517-2.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.