Araştırma Makalesi
BibTex RIS Kaynak Göster

Metalik Madenlerde Topuk Boyutlarındaki Değişimin Gerilme Dağılımına Etkisi

Yıl 2022, Cilt: 22 Sayı: 6, 1459 - 1468, 28.12.2022
https://doi.org/10.35414/akufemubid.1148884

Öz

Yeraltı metal madenciliğinde cevher kazanımı sırasında tavanın etkili bir şeklide desteklenmesi ve güvenliğin sağlanması amacıyla üretim alanında cevherlerden oluşan topuklar bırakılmaktadır. Topuk boyutlarının optimum seviyelerde olması cevher kazanımı açısından önemli hale gelmektedir. Gereğinden fazla boyutlarda bırakılacak olan topuk cevher kaybına sebebiyet verecek ve işletmeyi ekonomik yönden olumsuz etkileyecektir. Ayrıca, olması gerekenden az boyutlarda bırakılan topuk ise çalışılan bölgeyi iş güvenliği açısından daha tehlikeli hale getirecektir. Yapılan çalışmada, Phase2D sayısal modelleme programında farklı boyutlarda modellenmiş olan topuklar etrafında meydana gelen gerilmeler hesaplanmış ve topuklar etrafında oluşan gerilme dağılımı dikkate alınarak optimum topuk boyutları önerilmiştir.

Kaynakça

  • Brady, B. H. G., and Brown, E. T., 2006. Rock Mechanics for underground mining: Third edition. Rock Mechanics for underground mining: Third edition.
  • Esterhuizen, G. S., Dolinar, D. R., and Ellenberger, J. L., 2011. Pillar strength in underground stone mines in the United States. International Journal of Rock Mechanics and Mining Sciences, 48(1), 42–50.
  • Frith, R., and Reed, G., 2018. Coal pillar design when considered a reinforcement problem rather than a suspension problem. International Journal of Mining Science and Technology, 28(1), 11–19.
  • Iannacchione, A. T., and Mark, C., 2009. Major hazard risk assessment applied to pillar recovery operations. Proceedings - 28th International Conference on Ground Control in Mining, ICGCM.
  • Jaiswal, A., and Shrivastva, B. K., 2009. Numerical simulation of coal pillar strength. International Journal of Rock Mechanics and Mining Sciences, 46(4), 779–788.
  • Mallı, T., Yetkin, M. E., Özfırat, M. K., and Kahraman, B., 2017. Numerical analysis of underground space and pillar design in metalliferous mine. Journal of African Earth Sciences, 134, 365–372.
  • Nazarov, L. A., Nazarova, L. A., Freidin, A. M., and Alimseitova, Z. K., 2006. Estimating the long-term pillar safety for room-and-pillar ore mining. Journal of Mining Science, 42, 530–539.
  • Phase2 8, 2014. Version 8.020, Rocscience Inc, Toronto, Ontario, Canada. Poulsen, B. A., 2010. Coal pillar load calculation by pressure arch theory and near field extraction ratio. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1158–1165.
  • RocData, 2014. Rock, Soil and Discontinuity Strength Analysis, Version 5.0. Sheorey PR, 1994. A theory for In Situ stresses in isotropic and transverseley isotropic rock. International Journal of Rock Mechanics and Mining Sciences. 3(1), 23–34.
  • Simsir, F., 2015. Underground mining methods. DEU Publications, Izmir. Singh, R., Singh, S. K., Kushwaha, A., and Sinha, A., 2012. Stability of the parting between coal pillar workings in level contiguous seams during depillaring. International Journal of Rock Mechanics and Mining Sciences, 55, 1–14.
  • Tesarik, D. R., Seymour, J. B., and Yanske, T. R. 2009. Long-term stability of a backfilled room-and-pillar test section at the Buick Mine, Missouri, USA. International Journal of Rock Mechanics and Mining Sciences, 46(7), 1182–1196.
  • Tuncay, E., 2009. Rock rupture phenomenon and pillar failure in tuffs in the Cappadocia region (Turkey). International Journal of Rock Mechanics and Mining Sciences, 46(8), 1253–1266.
  • Wang, C. Q., Gao, L. Q., Chen, S. J., Wang, H. L., and Liu, J. B., 2013. Field research on long-term bearing capacity of strip pillar. Journal of Mining and Safety Engineering, 30(6), 799–804.
  • Wang, R., biao Bai, J., Yan, S., guo Chang, Z., and yu Wang, X., 2020. An innovative approach to theoretical analysis of partitioned width & stability of strip pillar in strip mining. International Journal of Rock Mechanics and Mining Sciences, 129.
  • Zhang, J., Jiang, F., Zhu, S., and Zhang, L., 2016. Width design for gobs and isolated coal pillars based on overall burst-instability prevention in coal mines. Journal of Rock Mechanics and Geotechnical Engineering, 8(4), 551–558.
  • Zhang, P., Tulu, B., Sears, M., and Trackemas, J., 2018. Geotechnical considerations for concurrent pillar recovery in close-distance multiple seams. International Journal of Mining Science and Technology, 28(1), 21–27.

Effect Of Pillar Size Change on Stress Distribution in Metalliferous Mines

Yıl 2022, Cilt: 22 Sayı: 6, 1459 - 1468, 28.12.2022
https://doi.org/10.35414/akufemubid.1148884

Öz

For the purpose of effectively supporting the roof and ensuring safety during ore recovery in underground metal mining, pillars composed of ores are left in production area. Optimum pillar sizes are becoming important for ore recovery. The pillar that will be left in more than necessary dimensions will cause loss of ore and will negatively affect the company economically. In addition, the pillar that is left in smaller sizes than it should be will make the working area more dangerous in terms of work safety. In the study, stresses occurring around pillars modeled in different sizes are calculated in Phase2D numerical modeling program and optimum pillar sizes are proposed considering the stress distribution that are occured surround of pillars.

Kaynakça

  • Brady, B. H. G., and Brown, E. T., 2006. Rock Mechanics for underground mining: Third edition. Rock Mechanics for underground mining: Third edition.
  • Esterhuizen, G. S., Dolinar, D. R., and Ellenberger, J. L., 2011. Pillar strength in underground stone mines in the United States. International Journal of Rock Mechanics and Mining Sciences, 48(1), 42–50.
  • Frith, R., and Reed, G., 2018. Coal pillar design when considered a reinforcement problem rather than a suspension problem. International Journal of Mining Science and Technology, 28(1), 11–19.
  • Iannacchione, A. T., and Mark, C., 2009. Major hazard risk assessment applied to pillar recovery operations. Proceedings - 28th International Conference on Ground Control in Mining, ICGCM.
  • Jaiswal, A., and Shrivastva, B. K., 2009. Numerical simulation of coal pillar strength. International Journal of Rock Mechanics and Mining Sciences, 46(4), 779–788.
  • Mallı, T., Yetkin, M. E., Özfırat, M. K., and Kahraman, B., 2017. Numerical analysis of underground space and pillar design in metalliferous mine. Journal of African Earth Sciences, 134, 365–372.
  • Nazarov, L. A., Nazarova, L. A., Freidin, A. M., and Alimseitova, Z. K., 2006. Estimating the long-term pillar safety for room-and-pillar ore mining. Journal of Mining Science, 42, 530–539.
  • Phase2 8, 2014. Version 8.020, Rocscience Inc, Toronto, Ontario, Canada. Poulsen, B. A., 2010. Coal pillar load calculation by pressure arch theory and near field extraction ratio. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1158–1165.
  • RocData, 2014. Rock, Soil and Discontinuity Strength Analysis, Version 5.0. Sheorey PR, 1994. A theory for In Situ stresses in isotropic and transverseley isotropic rock. International Journal of Rock Mechanics and Mining Sciences. 3(1), 23–34.
  • Simsir, F., 2015. Underground mining methods. DEU Publications, Izmir. Singh, R., Singh, S. K., Kushwaha, A., and Sinha, A., 2012. Stability of the parting between coal pillar workings in level contiguous seams during depillaring. International Journal of Rock Mechanics and Mining Sciences, 55, 1–14.
  • Tesarik, D. R., Seymour, J. B., and Yanske, T. R. 2009. Long-term stability of a backfilled room-and-pillar test section at the Buick Mine, Missouri, USA. International Journal of Rock Mechanics and Mining Sciences, 46(7), 1182–1196.
  • Tuncay, E., 2009. Rock rupture phenomenon and pillar failure in tuffs in the Cappadocia region (Turkey). International Journal of Rock Mechanics and Mining Sciences, 46(8), 1253–1266.
  • Wang, C. Q., Gao, L. Q., Chen, S. J., Wang, H. L., and Liu, J. B., 2013. Field research on long-term bearing capacity of strip pillar. Journal of Mining and Safety Engineering, 30(6), 799–804.
  • Wang, R., biao Bai, J., Yan, S., guo Chang, Z., and yu Wang, X., 2020. An innovative approach to theoretical analysis of partitioned width & stability of strip pillar in strip mining. International Journal of Rock Mechanics and Mining Sciences, 129.
  • Zhang, J., Jiang, F., Zhu, S., and Zhang, L., 2016. Width design for gobs and isolated coal pillars based on overall burst-instability prevention in coal mines. Journal of Rock Mechanics and Geotechnical Engineering, 8(4), 551–558.
  • Zhang, P., Tulu, B., Sears, M., and Trackemas, J., 2018. Geotechnical considerations for concurrent pillar recovery in close-distance multiple seams. International Journal of Mining Science and Technology, 28(1), 21–27.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Maden Mühendisliği
Bölüm Makaleler
Yazarlar

Mustafa Emre Yetkin 0000-0002-4797-3841

Erken Görünüm Tarihi 15 Aralık 2022
Yayımlanma Tarihi 28 Aralık 2022
Gönderilme Tarihi 26 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 22 Sayı: 6

Kaynak Göster

APA Yetkin, M. E. (2022). Metalik Madenlerde Topuk Boyutlarındaki Değişimin Gerilme Dağılımına Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(6), 1459-1468. https://doi.org/10.35414/akufemubid.1148884
AMA Yetkin ME. Metalik Madenlerde Topuk Boyutlarındaki Değişimin Gerilme Dağılımına Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Aralık 2022;22(6):1459-1468. doi:10.35414/akufemubid.1148884
Chicago Yetkin, Mustafa Emre. “Metalik Madenlerde Topuk Boyutlarındaki Değişimin Gerilme Dağılımına Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, sy. 6 (Aralık 2022): 1459-68. https://doi.org/10.35414/akufemubid.1148884.
EndNote Yetkin ME (01 Aralık 2022) Metalik Madenlerde Topuk Boyutlarındaki Değişimin Gerilme Dağılımına Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 6 1459–1468.
IEEE M. E. Yetkin, “Metalik Madenlerde Topuk Boyutlarındaki Değişimin Gerilme Dağılımına Etkisi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 6, ss. 1459–1468, 2022, doi: 10.35414/akufemubid.1148884.
ISNAD Yetkin, Mustafa Emre. “Metalik Madenlerde Topuk Boyutlarındaki Değişimin Gerilme Dağılımına Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/6 (Aralık 2022), 1459-1468. https://doi.org/10.35414/akufemubid.1148884.
JAMA Yetkin ME. Metalik Madenlerde Topuk Boyutlarındaki Değişimin Gerilme Dağılımına Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:1459–1468.
MLA Yetkin, Mustafa Emre. “Metalik Madenlerde Topuk Boyutlarındaki Değişimin Gerilme Dağılımına Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 6, 2022, ss. 1459-68, doi:10.35414/akufemubid.1148884.
Vancouver Yetkin ME. Metalik Madenlerde Topuk Boyutlarındaki Değişimin Gerilme Dağılımına Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(6):1459-68.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.