Araştırma Makalesi
BibTex RIS Kaynak Göster

Silika Nanopartiküller ile Kompozit Hidrojellerin Fotobaşlatılmış Polimerizasyon Reaksiyonu ile Hazırlanması

Yıl 2023, Cilt: 23 Sayı: 1, 198 - 207, 01.03.2023
https://doi.org/10.35414/akufemubid.1148574

Öz

Bu çalışmada, (3-merkaptopropil) trimetoksisilan (MPTMS) ile modifiye edilmiş silika nanopartiküller, (SiO2-MPTMS) başarı ile hazırlandı. Dinamik Işık Saçılımı (DLS) ile SiO2-MPTMS nanopartiküllerin ortalama boyutu 341 nm olarak (etanolde) ölçülürken, Taramalı Geçirimli Elektron Mikroskobu (STEM) analizleri nanopartiküllerin nano boyutlu olduğunu doğruluyarak partikül şekillerinin küresel yapıda olduğunu gösterdi. Daha sonra, ağırlıkça çeşitli oranlarda (% 0,25, % 0,50, % 0,75 ve % 1,0) SiO2-MPTMS nanopartikülleri içeren N-izopropil akrilamid (NIPAM) ve polietilen glikol diakrilat (PEGDA; çapraz bağlayıcı) reçinelerinden oluşan formülasyonlar, Dimetoksi-2-fenilasetofenon (DMPA; fotobaşlatıcı) varlığında fotobaşlatılmış polimerizasyon reaksiyonuna uğratılarak 3D yapılı nanokompozit hidrojeller hazırlandı. Termal Gravimetrik Analizör (TGA) ile, nanokompozit hidrojellerin termal kararlılıklarının 330 0C' ye kadar devam ettiği ve termal bozulma adımlarının, birbirleri ile yakın sıcaklık değerlerinde olduğu tespit edildi. Taramalı Elektron Mikroskobu (SEM) analizi ile saf ve nanokompozit hidrojellerin morfolojik yapıları incelendi ve bu malzemelerin, gözenekli ve pürüzsüz yapı iskeletine sahip oldukları ortaya koyuldu. Ayrıca, SiO2-MPTMS nanopartiküllerinin (%0,50) ağ yapı içerisinde, bağlarda lokalize olarak, homojen bir şekilde dağıldığı görüldü.

Destekleyen Kurum

Yalova Üniversitesi Bilimsel Araştırmalar Projeleri Koordinasyon Birimi

Proje Numarası

2019/AP/0005

Teşekkür

Mali destek için Yalova Üniversitesi ve Yalova Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi'ne teşekkür ederim (Proje No: 2019/AP/0005).

Kaynakça

  • Ashraf, M.A., Peng, W., Zare, Y., Rhee, K.Y., 2018. Effects of size and sggregation/ agglomeration of nanoparticles on the interfacial/ interphase properties and tensile strength of polymer nanocomposites. Nanoscale Research Letters, 13, 214.
  • Aydinoglu, D., Karaca, N., Ceylan, Ö., 2021. Natural carrageenan/ psyllium composite hydrogels embedded montmorillonite and investigation of their use in agricultural water management. Journal of Polymers and the Environment, 29, 785-798.
  • Balamurugan, S.S., Soto-Cantu, E., Cueto, R., Russo, P.S., 2010. Preparation of organosoluble silica-polypeptide particles by ‘click chemistry’. Macromolecules, 43(1), 62-70.
  • Bissadi, G., Weberskirch, R., 2016. Efficient synthesis of polyoxazoline-silica hybrid nanoparticles by using the “grafting-onto” approach. Polymer Chemistry, 7, 1271-1280.
  • Hoyle, C.E., Bowman, C.N., 2010. Thiol-ene click chemistry. Angewandte Chemie International Edition, 49(9), 1540-1573.
  • Irmukhametova, G.S., Mun, G.A., Khuntoryanskiy, V.V., 2011. Thiolated mucoadhesive and pegylated nonmucoadhesive organoslica nanoparticles from 3-mercaptopropyltrimethoxysilane. Langmuir, 27(15), 9551-9556.
  • Işın, D., Kayaman-Apohan, N., Güngör, A., 2009. Preparation and characterization of UV-curable epoxy/ silica nanocomposite coatings. Progress in Organic Coatings, 65(4), 477–483.
  • Kickelbick, G., Holzinger, D., Ivanovici, S., 2008. Organically functionalized silica nanoparticles. In: Schubert, U., Hüsing, N., Laine, R., (editors). Germany: Springerlink, 127-133.
  • Karaca, N., 2021. The Synthesis and characterization of polyorganosiloxane nanoparticles from 3-mercaptopropyltrimethoxysilane for preparation of nanocomposite films via photoinitiated thiol-ene polymerization. Turkish Journal of Chemistry, 45(3), 761-774.
  • Karaca, N., Temel, G., Balta, D.K., Aydin, M., Arsu, N., 2010. Preparation of hydrogels by photopolymerization of acrylates in the presence of type I and one-component type II photoinitiators. Journal of Photochemistry and Photobiology A: Chemistry, 209, 1-6.
  • Kurttner, C., Maier, P.C., Kunert, C., Schlaad, H., Fery, A., 2013. Direct thiol-ene photocoating of polyorganosiloxane microparticles. Langmuir, 29(52), 16119-16126.
  • Liberman, A., Mendez, N., Trogler, W.C., Kummel, A.C., 2014. Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surface Science Reports, 69(2-3), 132-158.
  • Liu, Y-L., Hsu, C-Y., Hsu, K-Y., 2005. Poly(methylmethacrylate)-silica nanocompo-sites films from surface-functionalized silica nanoparticles. Polymer, 46(6), 1851-1856.
  • Lowe A.B., 2010. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polymer Chemistry, 1, 17-36.
  • Nakamura, M., Ishimura, K., 2008. One-pot snthesis and characterization of three kinds of thiol-organosilica nanoparticles. Langmuir, 24(9), 5099-5108.
  • Neumann, M.G., Schmitt, C.C., Catalina, F., Goi, B.E., 2007. The relation between the polymerization rates and swelling coefficients for copolymers obtained by photoinitiation. Polymer Testing, 26, 189–194.
  • Newhama, G., Evans, S.D., Ong, Z.Y., 2022. Mechanically tuneable physical nanocomposite hydrogels from polyelectrolyte complex templated silica nanoparticles for anionic therapeutic delivery. Journal of Colloid and Interface Science, 617, 224–235.
  • Nguyen, K.T., West, J.L., 2002. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 23, 4307–4314.
  • Oktay, B., Çakmakçi, E., 2017. DOPO tethered diels alder clickable reactive silica nanoparticles for bismaleimide containing flame retardant thiol-ene nanocomposite coatings. Polymer, 131, 132-142.
  • Sowan, N., Cox, L.M., Shah, P.K., Song, H.B., Stansbury, J.W., Bowman, C.N., 2018. Dynamic covalent chemistry at ınterfaces: development of tougher, healable composites through stress relaxation at the resin–silica nanoparticles ınterface. Advanced Materials Interfaces, 5(18), 1800511.
  • Stöber, W., Fink, A., Bohn, E.J., 1968. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62-69.
  • Vejayakumaran, P., Rahman, I.A., Sipaut, C.S., Ismail, J., Chee, C.K., 2008. Structural and thermal characterizations of silica nanoparticles grafted with pendant maleimide and epoxide groups. Journal of Colloidal and Interface Science Science, 328, 81-91.
  • Wu, J., Xie, J., Ling, L., Ma, G., Wang, B., 2013. Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane and investigation of its effect on the properties of UV curable coatings. Journal of Coatings Technology and Research, 10(6), 849–857.
  • Xi, W., Scott, T.F., Kloxin, C.J., Bowman, C.N., 2014. Click chemistry in materials science. Advanced Functional Materials, 24(18), 2572–2590.
  • Zhang, C., Liang, K., Zhou, D., Yang, H., Liu, X., Yin, X., Xu, W., Zhou, Y., Xiao, P., 2018. High-performance photopolymerized poly(vinyl alcohol)/ silica nanocomposite hydrogels with enhanced cell adhesion. ACS Applied Materials & Interfaces, 10(33), 27692–27700.
  • Zhao, H., Liu, M., Zhang, Y., Yin, J., Pei, R., 2020. Nanocomposite hydrogels for tissue engineering applications. Nanoscale, 12, 14976-14995.
  • Zou, H., Schlaad, H., 2015. Thermoresponsive pnıpam/ silica nanoparticles by direct photopolymerization in aqueous media. Journal of Polymer Science Part A: Polymer Chemistry, 53(10), 1260–1267.
  • Zou, H., Wu, S., Shen, J., 2008. Polymer/ silica nanocomposites: preparation, characterization, properties, and applications. Chemical Reviews, 108(9), 3893–3957.

Preparation of Composite Hydrogels with Silica Nanoparticles by Photoinitiated Polymerization Reaction

Yıl 2023, Cilt: 23 Sayı: 1, 198 - 207, 01.03.2023
https://doi.org/10.35414/akufemubid.1148574

Öz

In this study, (3-mercaptopropyl) trimethoxysilane (MPTMS) modified silica nanoparticles (SiO2-MPTMS) were successfully prepared. The average size of SiO2-MPTMS nanoparticles was measured by Dynamic Light Scattering (DLS) as 341 nm in ethanol, while Scanning Transmission Electron Microscopy (STEM) analyzes confirmed that the nanoparticles were nano-sized and revealed that their shapes were spherical. Then, 3D nanocomposite hydrogels were prepared by incorporating SiO2-MPTMS nanoparticles in various ratios (0.25, 0.50, 0.75 and 1.0 wt %) into an acrylate resin consisting of N-isopropyl acrylamide (NIPAM) and polyethylene glychol diacrylate (PEGDA; as a crosslinker) by the photoinitiated polymerization reaction with Dimethoxy-2-phenylacetophenone (DMPA; as a photoinitiator). By Thermal Gravimetric Analyzer (TGA) measurements, it was determined that the nanocomposite hydrogels maintained their thermal stability up to 330 0C and the thermal degradation steps were close to each other. Scanning Electron Microscopy (SEM) study showed that the neat and nanocomposite hydrogels’ morphological structures were in the porous and smooth scaffold, and also that the SiO2-MPTMS nanoparticles (0.50 wt %) were homogeneously distributed in the network structures of hydrogels, localized in the bonds.

Proje Numarası

2019/AP/0005

Kaynakça

  • Ashraf, M.A., Peng, W., Zare, Y., Rhee, K.Y., 2018. Effects of size and sggregation/ agglomeration of nanoparticles on the interfacial/ interphase properties and tensile strength of polymer nanocomposites. Nanoscale Research Letters, 13, 214.
  • Aydinoglu, D., Karaca, N., Ceylan, Ö., 2021. Natural carrageenan/ psyllium composite hydrogels embedded montmorillonite and investigation of their use in agricultural water management. Journal of Polymers and the Environment, 29, 785-798.
  • Balamurugan, S.S., Soto-Cantu, E., Cueto, R., Russo, P.S., 2010. Preparation of organosoluble silica-polypeptide particles by ‘click chemistry’. Macromolecules, 43(1), 62-70.
  • Bissadi, G., Weberskirch, R., 2016. Efficient synthesis of polyoxazoline-silica hybrid nanoparticles by using the “grafting-onto” approach. Polymer Chemistry, 7, 1271-1280.
  • Hoyle, C.E., Bowman, C.N., 2010. Thiol-ene click chemistry. Angewandte Chemie International Edition, 49(9), 1540-1573.
  • Irmukhametova, G.S., Mun, G.A., Khuntoryanskiy, V.V., 2011. Thiolated mucoadhesive and pegylated nonmucoadhesive organoslica nanoparticles from 3-mercaptopropyltrimethoxysilane. Langmuir, 27(15), 9551-9556.
  • Işın, D., Kayaman-Apohan, N., Güngör, A., 2009. Preparation and characterization of UV-curable epoxy/ silica nanocomposite coatings. Progress in Organic Coatings, 65(4), 477–483.
  • Kickelbick, G., Holzinger, D., Ivanovici, S., 2008. Organically functionalized silica nanoparticles. In: Schubert, U., Hüsing, N., Laine, R., (editors). Germany: Springerlink, 127-133.
  • Karaca, N., 2021. The Synthesis and characterization of polyorganosiloxane nanoparticles from 3-mercaptopropyltrimethoxysilane for preparation of nanocomposite films via photoinitiated thiol-ene polymerization. Turkish Journal of Chemistry, 45(3), 761-774.
  • Karaca, N., Temel, G., Balta, D.K., Aydin, M., Arsu, N., 2010. Preparation of hydrogels by photopolymerization of acrylates in the presence of type I and one-component type II photoinitiators. Journal of Photochemistry and Photobiology A: Chemistry, 209, 1-6.
  • Kurttner, C., Maier, P.C., Kunert, C., Schlaad, H., Fery, A., 2013. Direct thiol-ene photocoating of polyorganosiloxane microparticles. Langmuir, 29(52), 16119-16126.
  • Liberman, A., Mendez, N., Trogler, W.C., Kummel, A.C., 2014. Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surface Science Reports, 69(2-3), 132-158.
  • Liu, Y-L., Hsu, C-Y., Hsu, K-Y., 2005. Poly(methylmethacrylate)-silica nanocompo-sites films from surface-functionalized silica nanoparticles. Polymer, 46(6), 1851-1856.
  • Lowe A.B., 2010. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polymer Chemistry, 1, 17-36.
  • Nakamura, M., Ishimura, K., 2008. One-pot snthesis and characterization of three kinds of thiol-organosilica nanoparticles. Langmuir, 24(9), 5099-5108.
  • Neumann, M.G., Schmitt, C.C., Catalina, F., Goi, B.E., 2007. The relation between the polymerization rates and swelling coefficients for copolymers obtained by photoinitiation. Polymer Testing, 26, 189–194.
  • Newhama, G., Evans, S.D., Ong, Z.Y., 2022. Mechanically tuneable physical nanocomposite hydrogels from polyelectrolyte complex templated silica nanoparticles for anionic therapeutic delivery. Journal of Colloid and Interface Science, 617, 224–235.
  • Nguyen, K.T., West, J.L., 2002. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 23, 4307–4314.
  • Oktay, B., Çakmakçi, E., 2017. DOPO tethered diels alder clickable reactive silica nanoparticles for bismaleimide containing flame retardant thiol-ene nanocomposite coatings. Polymer, 131, 132-142.
  • Sowan, N., Cox, L.M., Shah, P.K., Song, H.B., Stansbury, J.W., Bowman, C.N., 2018. Dynamic covalent chemistry at ınterfaces: development of tougher, healable composites through stress relaxation at the resin–silica nanoparticles ınterface. Advanced Materials Interfaces, 5(18), 1800511.
  • Stöber, W., Fink, A., Bohn, E.J., 1968. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62-69.
  • Vejayakumaran, P., Rahman, I.A., Sipaut, C.S., Ismail, J., Chee, C.K., 2008. Structural and thermal characterizations of silica nanoparticles grafted with pendant maleimide and epoxide groups. Journal of Colloidal and Interface Science Science, 328, 81-91.
  • Wu, J., Xie, J., Ling, L., Ma, G., Wang, B., 2013. Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane and investigation of its effect on the properties of UV curable coatings. Journal of Coatings Technology and Research, 10(6), 849–857.
  • Xi, W., Scott, T.F., Kloxin, C.J., Bowman, C.N., 2014. Click chemistry in materials science. Advanced Functional Materials, 24(18), 2572–2590.
  • Zhang, C., Liang, K., Zhou, D., Yang, H., Liu, X., Yin, X., Xu, W., Zhou, Y., Xiao, P., 2018. High-performance photopolymerized poly(vinyl alcohol)/ silica nanocomposite hydrogels with enhanced cell adhesion. ACS Applied Materials & Interfaces, 10(33), 27692–27700.
  • Zhao, H., Liu, M., Zhang, Y., Yin, J., Pei, R., 2020. Nanocomposite hydrogels for tissue engineering applications. Nanoscale, 12, 14976-14995.
  • Zou, H., Schlaad, H., 2015. Thermoresponsive pnıpam/ silica nanoparticles by direct photopolymerization in aqueous media. Journal of Polymer Science Part A: Polymer Chemistry, 53(10), 1260–1267.
  • Zou, H., Wu, S., Shen, J., 2008. Polymer/ silica nanocomposites: preparation, characterization, properties, and applications. Chemical Reviews, 108(9), 3893–3957.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Nurcan Karaca 0000-0001-7025-5488

Proje Numarası 2019/AP/0005
Erken Görünüm Tarihi 1 Mart 2023
Yayımlanma Tarihi 1 Mart 2023
Gönderilme Tarihi 25 Temmuz 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 23 Sayı: 1

Kaynak Göster

APA Karaca, N. (2023). Preparation of Composite Hydrogels with Silica Nanoparticles by Photoinitiated Polymerization Reaction. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(1), 198-207. https://doi.org/10.35414/akufemubid.1148574
AMA Karaca N. Preparation of Composite Hydrogels with Silica Nanoparticles by Photoinitiated Polymerization Reaction. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Mart 2023;23(1):198-207. doi:10.35414/akufemubid.1148574
Chicago Karaca, Nurcan. “Preparation of Composite Hydrogels With Silica Nanoparticles by Photoinitiated Polymerization Reaction”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, sy. 1 (Mart 2023): 198-207. https://doi.org/10.35414/akufemubid.1148574.
EndNote Karaca N (01 Mart 2023) Preparation of Composite Hydrogels with Silica Nanoparticles by Photoinitiated Polymerization Reaction. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 1 198–207.
IEEE N. Karaca, “Preparation of Composite Hydrogels with Silica Nanoparticles by Photoinitiated Polymerization Reaction”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 1, ss. 198–207, 2023, doi: 10.35414/akufemubid.1148574.
ISNAD Karaca, Nurcan. “Preparation of Composite Hydrogels With Silica Nanoparticles by Photoinitiated Polymerization Reaction”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/1 (Mart 2023), 198-207. https://doi.org/10.35414/akufemubid.1148574.
JAMA Karaca N. Preparation of Composite Hydrogels with Silica Nanoparticles by Photoinitiated Polymerization Reaction. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:198–207.
MLA Karaca, Nurcan. “Preparation of Composite Hydrogels With Silica Nanoparticles by Photoinitiated Polymerization Reaction”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 1, 2023, ss. 198-07, doi:10.35414/akufemubid.1148574.
Vancouver Karaca N. Preparation of Composite Hydrogels with Silica Nanoparticles by Photoinitiated Polymerization Reaction. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(1):198-207.