Araştırma Makalesi
BibTex RIS Kaynak Göster

Ni2VAl Bileşiğinin Mekanik, Elastik ve Termodinamik Özelliklerinin İncelenmesi

Yıl 2023, Cilt: 23 Sayı: 2, 466 - 473, 03.05.2023
https://doi.org/10.35414/akufemubid.1143362

Öz

Bu çalışmada teknolojik öneme haiz Heusler ailesinden Ni2VAl bileşiğinin yapısal, mekanik ve termo
dinamik özellikleri ilk prensipler yöntemi ile teorik olarak incelenmiştir. Öncelikle bileşiğin temel
durumunu ve en düşük enerji seviyesini belirlemek için yapısal optimizasyon yapılmış, yapısal
optimizasyon neticesinde elde edilen optimize parametreler kullanılarak elastik sabitler hesaplanmıştır.
Hesaplanan örgü parametresi önceki çalışmalar ile uyum içeresindedir. Ayrıca belirlenen elastik sabitler
mekanik kararlılık kriterlerini karşıladığından elastik modül, Vicker sertliği, erime sıcaklığı, Debye
sıcaklığı, ses hızları, minimum termal iletkenlik ve anizotropi incelenmiştir. Çalışılan malzemenin Vicker
sertliği ve sünek/kırılgan doğası analiz edilmiştir. Ayrıca iç enerji, titreşim enerjisi, entropi ve özgül ısı
kapasitesi 0-800 K sıcaklık aralığında değerlendirilmiştir. Hesaplamalarda açık kaynak Quantum
Espresso yazılımı ve bu yazılım ile dağıtımı yapılan thermo_pw paketi tercih edilmiştir. Yapılan çalışma
ile Ni2VAl bileşiğinin mekanik kararlı, sünek, anizotrop ve yumuşak olduğu görüldü.

Destekleyen Kurum

Ulusal Yüksek Başarımlı Hesaplama Merkezi (UHeM) ve Osmaniye Korkut Ata Üniversitesi BAP Koordinasyon Birimi tarafından desteklenmiştir.

Proje Numarası

1012332022 ve OKÜBAP-2022-PT1-007

Teşekkür

Bu çalışmada kullanılan hesaplama kaynakları Ulusal Yüksek Başarımlı Hesaplama Merkezi’nin (UHeM), #1012332022 # numaralı desteğiyle, sağlanmıştır. Ayrıca yapılan bu çalışma, “Ni2XAl (X=Ni, Zn, Ti, Cu, V, Sc) Bileşiklerinin Yapısal ve Mekanik Özelliklerinin İlk Prensipler Yöntemi ile İncelenmesi” isimli “OKÜBAP-2022-PT1-007” numaralı proje ile Osmaniye Korkut Ata Üniversitesi BAP Koordinasyon Birimi tarafından desteklenmiştir.

Kaynakça

  • Anderson, O. L. 1963. A simplified method for calculating the debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7):, 909–917. https://doi.org/10.1016/0022-3697(63)90067-2
  • Arıkan, N., Özturk, A. İ. 2021. Ag2ScAl Bileşiğinin Mekanik ve Termodinamik özelliklerinin Ab İnitio Hesabı. Kadirli Uygulamalı Bilimler Fakültesi Dergisi.
  • Beckstein, O., Klepeis, J. E., Hart, G. L. W., Pankratov, O. 2001. First-principles elastic constants and electronic structure of α−Pt2 Si and PtSi. Physical Review B, 63(13):, 134112. https://doi.org/10.1103/PhysRevB.63.134112
  • Buessem, D. H., Chung, W. R. 1968. Anisotropy in Single-Crystal Refractory Compounds (F. W. Vahldiek, & S. A. Mersol, Ed.), Boston, MA, : Springer US. https://doi.org/10.1007/978-1-4899-5307-0
  • Cahill, D. G., Watson, S. K., Pohl, R. O. 1992. Lower limit to the thermal conductivity of disordered crystals. Physical Review B, 46(10):, 6131. https://doi.org/10.1103/PhysRevB.46.6131
  • Chen, X.-Q., Niu, H., Li, D., Li, Y. 2011. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 19(9):, 1275–1281. https://doi.org/10.1016/j.intermet.2011.03.026
  • Clarke, D. R. 2003. Materials selections guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 163–164:, 67–74. https://doi.org/10.1016/S0257-8972(02)00593-5
  • da Rocha, F. S., Fraga, G. L. F., Brandão, D. E., da Silva, C. M., Gomes, A. A. 1999. Specific heat and electronic structure of Heusler compounds Ni2TAl (T=Ti, Zr, Hf, V, Nb, Ta). Physica B: Condensed Matter, 269(2):, 154–162. https://doi.org/10.1016/S0921-4526(99)00102-7
  • Everhart, W., Newkirk, J. 2019. Mechanical properties of Heusler alloys. Heliyon, 5(5):, e01578. https://doi.org/10.1016/j.heliyon.2019.e01578
  • Every, A. G. 1980. General closed-form expressions for acoustic waves in elastically anisotropic solids. Physical Review B, 22(4):, 1746. https://doi.org/10.1103/PhysRevB.22.1746
  • Fine, M. E., Brown, L. D., Marcus, H. L. 1984. Elastic constants versus melting temperature in metals. Scripta Metallurgica, 18(9):, 951–956. https://doi.org/10.1016/0036-9748(84)90267-9
  • Fischer, T. H., Almlof, J. 1992. General methods for geometry and wave function optimization. The Journal of Physical Chemistry, 96(24):, 9768–9774. https://doi.org/10.1021/j100203a036
  • Gaillac, R., Pullumbi, P., Coudert, F.-X. 2016. ELATE: an open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter, 28(27):, 275201. https://doi.org/10.1088/0953-8984/28/27/275201
  • Gencer, A., Surucu, G. 2019. Investigation of structural, electronic and lattice dynamical properties of XNiH (X = Li, Na and K) perovskite type hydrides and their hydrogen storage applications. International Journal of Hydrogen Energy, 44(29):, 15173–15182. https://doi.org/10.1016/j.ijhydene.2019.04.097
  • Giannozzi, P., Baroni, S., Bonini, N., ve arkadaşları. 2009. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics Condensed Matter, 21(39):. https://doi.org/10.1088/0953-8984/21/39/395502
  • Kokalj, A. 2003. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Computational Materials Science : Computational Materials Science (C. 28), Elsevier: , 155–168. https://doi.org/10.1016/S0927-0256(03)00104-6
  • Long, J., Shu, C., Yang, L., Yang, M. 2015. Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation. Journal of Alloys and Compounds, 644:, 638–644. https://doi.org/10.1016/J.JALLCOM.2015.04.229
  • Luo, H., Xin, Y., Liu, B., Meng, F., Liu, H., Liu, E., Wu, G. 2016. Competition of L21 and XA structural ordering in Heusler alloys X2CuAl (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni). Journal of Alloys and Compounds, 665:, 180–185. https://doi.org/10.1016/j.jallcom.2015.11.207
  • Niinomi, M. 2002. Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A, 33(3):, 477–486. https://doi.org/10.1007/S11661-002-0109-2
  • Nye, J. 1985. Physical properties of crystals: their representation by tensors and matrices, New York, : Oxford University Press.
  • Özer, T. 2018. Determination of melting temperature. Ed.: H. Demirkaya, M. Canbulat, A. Pulur, M. Eraslan, B. Direkci (Ed.), Kyrenia-TRNC, : 4 th International Congress on Multidisciplinary Studies: , 87–99.
  • Petit, A. T., Dulong, P. L. 1819. Recherches sur quelques points importans de la théorie de la chaleur. Annales de chimie et de physique : Annales de chimie et de physique, Paris, : , 395–413.
  • Ranganathan, S. I., Ostoja-Starzewski, M. 2008. Universal Elastic Anisotropy Index. APS, 101(5):. https://doi.org/10.1103/PhysRevLett.101.055504
  • Schreiber, E. 1973. Elastic constants and their measurement, New York, : McGraw-Hill Book Company.
  • Shi, J., Zheng, A., Lin, Z., Chen, R., Zheng, J., Cao, Z. 2019. Effect of process control agent on alloying and mechanical behavior of L21 phase Ni–Ti–Al alloys. Materials Science and Engineering: A, 740–741:, 130–136. https://doi.org/10.1016/j.msea.2018.10.097
  • Sreenivasa Reddy, P. V., Kanchana, V. 2014. Ab initio study of Fermi surface and dynamical properties of Ni2XAl (X = Ti, V, Zr, Nb, Hf and Ta). Journal of Alloys and Compounds, 616:, 527–534. https://doi.org/10.1016/j.jallcom.2014.07.020
  • Staiger, M. P., Pietak, A. M., Huadmai, J., Dias, G. 2006. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27(9):, 1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003
  • Tian, Y., Xu, B., Zhao, Z. 2012. Microscopic theory of hardness and design of novel superhard crystals. International Journal of Refractory Metals and Hard Materials, 33:, 93–106. https://doi.org/10.1016/J.IJRMHM.2012.02.021
  • Wang, Y.-K., Tung, J.-C. 2020. Structural, electronic and magnetic properties of Ni2XAl (X= V, Cr, Mn, Fe, and Co) Heusler alloys: An ab initio study. Physics Open, 2:, 100008. https://doi.org/10.1016/j.physo.2019.100008
  • Wen, Z., Zhao, Y., Hou, H., Wang, B., Han, P. 2017. The mechanical and thermodynamic properties of Heusler compounds Ni2XAl (X = Sc, Ti, V) under pressure and temperature: A first-principles study. Materials & Design, 114:, 398–403. https://doi.org/10.1016/j.matdes.2016.11.005
  • Yousef, E. S., El-Adawy, A., El-KheshKhany, N. 2006. Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3 ) on the acoustic properties of glass belonging to bismuth–borate system. Solid State Communications, 139(3):, 108–113. https://doi.org/10.1016/J.SSC.2006.05.022

Investigation of Mechanical, Elastic and Thermodynamic Properties of Ni2VAl Compound

Yıl 2023, Cilt: 23 Sayı: 2, 466 - 473, 03.05.2023
https://doi.org/10.35414/akufemubid.1143362

Öz

In this study, the structural, mechanical, and thermodynamic properties of Ni2VAl compound from
Heusler family, which has technological importance, were investigated theoretically by first principles
method. Firstly, structural optimization was performed to determine the ground state and lowest
energy level of the compound, and elastic constants were calculated using the optimized parameters
obtained as a result of structural optimization. The calculated lattice parameter agrees with previous
studies. In addition, elastic modulus, Vicker hardness, melting temperature, Debye temperature, sound
velocities, minimum thermal conductivity and anisotropy were investigated since the determined
elastic constants meet the mechanical stability criteria. The Vicker hardness and ductile/brittle nature
of the studied material were analyzed. In addition, internal energy, vibrational energy, entropy, and
specific heat capacity were evaluated in the temperature range of 0-800 K. In calculations, open-source
Quantum Espresso software and thermo_pw package distributed with this software were preferred.
With the study, it was seen that the Ni2VAl compound was mechanically stable, ductile, anisotropic,
and soft.

Proje Numarası

1012332022 ve OKÜBAP-2022-PT1-007

Kaynakça

  • Anderson, O. L. 1963. A simplified method for calculating the debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7):, 909–917. https://doi.org/10.1016/0022-3697(63)90067-2
  • Arıkan, N., Özturk, A. İ. 2021. Ag2ScAl Bileşiğinin Mekanik ve Termodinamik özelliklerinin Ab İnitio Hesabı. Kadirli Uygulamalı Bilimler Fakültesi Dergisi.
  • Beckstein, O., Klepeis, J. E., Hart, G. L. W., Pankratov, O. 2001. First-principles elastic constants and electronic structure of α−Pt2 Si and PtSi. Physical Review B, 63(13):, 134112. https://doi.org/10.1103/PhysRevB.63.134112
  • Buessem, D. H., Chung, W. R. 1968. Anisotropy in Single-Crystal Refractory Compounds (F. W. Vahldiek, & S. A. Mersol, Ed.), Boston, MA, : Springer US. https://doi.org/10.1007/978-1-4899-5307-0
  • Cahill, D. G., Watson, S. K., Pohl, R. O. 1992. Lower limit to the thermal conductivity of disordered crystals. Physical Review B, 46(10):, 6131. https://doi.org/10.1103/PhysRevB.46.6131
  • Chen, X.-Q., Niu, H., Li, D., Li, Y. 2011. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 19(9):, 1275–1281. https://doi.org/10.1016/j.intermet.2011.03.026
  • Clarke, D. R. 2003. Materials selections guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 163–164:, 67–74. https://doi.org/10.1016/S0257-8972(02)00593-5
  • da Rocha, F. S., Fraga, G. L. F., Brandão, D. E., da Silva, C. M., Gomes, A. A. 1999. Specific heat and electronic structure of Heusler compounds Ni2TAl (T=Ti, Zr, Hf, V, Nb, Ta). Physica B: Condensed Matter, 269(2):, 154–162. https://doi.org/10.1016/S0921-4526(99)00102-7
  • Everhart, W., Newkirk, J. 2019. Mechanical properties of Heusler alloys. Heliyon, 5(5):, e01578. https://doi.org/10.1016/j.heliyon.2019.e01578
  • Every, A. G. 1980. General closed-form expressions for acoustic waves in elastically anisotropic solids. Physical Review B, 22(4):, 1746. https://doi.org/10.1103/PhysRevB.22.1746
  • Fine, M. E., Brown, L. D., Marcus, H. L. 1984. Elastic constants versus melting temperature in metals. Scripta Metallurgica, 18(9):, 951–956. https://doi.org/10.1016/0036-9748(84)90267-9
  • Fischer, T. H., Almlof, J. 1992. General methods for geometry and wave function optimization. The Journal of Physical Chemistry, 96(24):, 9768–9774. https://doi.org/10.1021/j100203a036
  • Gaillac, R., Pullumbi, P., Coudert, F.-X. 2016. ELATE: an open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter, 28(27):, 275201. https://doi.org/10.1088/0953-8984/28/27/275201
  • Gencer, A., Surucu, G. 2019. Investigation of structural, electronic and lattice dynamical properties of XNiH (X = Li, Na and K) perovskite type hydrides and their hydrogen storage applications. International Journal of Hydrogen Energy, 44(29):, 15173–15182. https://doi.org/10.1016/j.ijhydene.2019.04.097
  • Giannozzi, P., Baroni, S., Bonini, N., ve arkadaşları. 2009. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics Condensed Matter, 21(39):. https://doi.org/10.1088/0953-8984/21/39/395502
  • Kokalj, A. 2003. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Computational Materials Science : Computational Materials Science (C. 28), Elsevier: , 155–168. https://doi.org/10.1016/S0927-0256(03)00104-6
  • Long, J., Shu, C., Yang, L., Yang, M. 2015. Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation. Journal of Alloys and Compounds, 644:, 638–644. https://doi.org/10.1016/J.JALLCOM.2015.04.229
  • Luo, H., Xin, Y., Liu, B., Meng, F., Liu, H., Liu, E., Wu, G. 2016. Competition of L21 and XA structural ordering in Heusler alloys X2CuAl (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni). Journal of Alloys and Compounds, 665:, 180–185. https://doi.org/10.1016/j.jallcom.2015.11.207
  • Niinomi, M. 2002. Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A, 33(3):, 477–486. https://doi.org/10.1007/S11661-002-0109-2
  • Nye, J. 1985. Physical properties of crystals: their representation by tensors and matrices, New York, : Oxford University Press.
  • Özer, T. 2018. Determination of melting temperature. Ed.: H. Demirkaya, M. Canbulat, A. Pulur, M. Eraslan, B. Direkci (Ed.), Kyrenia-TRNC, : 4 th International Congress on Multidisciplinary Studies: , 87–99.
  • Petit, A. T., Dulong, P. L. 1819. Recherches sur quelques points importans de la théorie de la chaleur. Annales de chimie et de physique : Annales de chimie et de physique, Paris, : , 395–413.
  • Ranganathan, S. I., Ostoja-Starzewski, M. 2008. Universal Elastic Anisotropy Index. APS, 101(5):. https://doi.org/10.1103/PhysRevLett.101.055504
  • Schreiber, E. 1973. Elastic constants and their measurement, New York, : McGraw-Hill Book Company.
  • Shi, J., Zheng, A., Lin, Z., Chen, R., Zheng, J., Cao, Z. 2019. Effect of process control agent on alloying and mechanical behavior of L21 phase Ni–Ti–Al alloys. Materials Science and Engineering: A, 740–741:, 130–136. https://doi.org/10.1016/j.msea.2018.10.097
  • Sreenivasa Reddy, P. V., Kanchana, V. 2014. Ab initio study of Fermi surface and dynamical properties of Ni2XAl (X = Ti, V, Zr, Nb, Hf and Ta). Journal of Alloys and Compounds, 616:, 527–534. https://doi.org/10.1016/j.jallcom.2014.07.020
  • Staiger, M. P., Pietak, A. M., Huadmai, J., Dias, G. 2006. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27(9):, 1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003
  • Tian, Y., Xu, B., Zhao, Z. 2012. Microscopic theory of hardness and design of novel superhard crystals. International Journal of Refractory Metals and Hard Materials, 33:, 93–106. https://doi.org/10.1016/J.IJRMHM.2012.02.021
  • Wang, Y.-K., Tung, J.-C. 2020. Structural, electronic and magnetic properties of Ni2XAl (X= V, Cr, Mn, Fe, and Co) Heusler alloys: An ab initio study. Physics Open, 2:, 100008. https://doi.org/10.1016/j.physo.2019.100008
  • Wen, Z., Zhao, Y., Hou, H., Wang, B., Han, P. 2017. The mechanical and thermodynamic properties of Heusler compounds Ni2XAl (X = Sc, Ti, V) under pressure and temperature: A first-principles study. Materials & Design, 114:, 398–403. https://doi.org/10.1016/j.matdes.2016.11.005
  • Yousef, E. S., El-Adawy, A., El-KheshKhany, N. 2006. Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3 ) on the acoustic properties of glass belonging to bismuth–borate system. Solid State Communications, 139(3):, 108–113. https://doi.org/10.1016/J.SSC.2006.05.022
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Üretim Teknolojileri
Bölüm Makaleler
Yazarlar

Tahsin Özer 0000-0003-0344-7118

Nihat Arıkan 0000-0001-8028-3132

Proje Numarası 1012332022 ve OKÜBAP-2022-PT1-007
Erken Görünüm Tarihi 28 Nisan 2023
Yayımlanma Tarihi 3 Mayıs 2023
Gönderilme Tarihi 12 Temmuz 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 23 Sayı: 2

Kaynak Göster

APA Özer, T., & Arıkan, N. (2023). Ni2VAl Bileşiğinin Mekanik, Elastik ve Termodinamik Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(2), 466-473. https://doi.org/10.35414/akufemubid.1143362
AMA Özer T, Arıkan N. Ni2VAl Bileşiğinin Mekanik, Elastik ve Termodinamik Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Mayıs 2023;23(2):466-473. doi:10.35414/akufemubid.1143362
Chicago Özer, Tahsin, ve Nihat Arıkan. “Ni2VAl Bileşiğinin Mekanik, Elastik Ve Termodinamik Özelliklerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, sy. 2 (Mayıs 2023): 466-73. https://doi.org/10.35414/akufemubid.1143362.
EndNote Özer T, Arıkan N (01 Mayıs 2023) Ni2VAl Bileşiğinin Mekanik, Elastik ve Termodinamik Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 2 466–473.
IEEE T. Özer ve N. Arıkan, “Ni2VAl Bileşiğinin Mekanik, Elastik ve Termodinamik Özelliklerinin İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 2, ss. 466–473, 2023, doi: 10.35414/akufemubid.1143362.
ISNAD Özer, Tahsin - Arıkan, Nihat. “Ni2VAl Bileşiğinin Mekanik, Elastik Ve Termodinamik Özelliklerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/2 (Mayıs 2023), 466-473. https://doi.org/10.35414/akufemubid.1143362.
JAMA Özer T, Arıkan N. Ni2VAl Bileşiğinin Mekanik, Elastik ve Termodinamik Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:466–473.
MLA Özer, Tahsin ve Nihat Arıkan. “Ni2VAl Bileşiğinin Mekanik, Elastik Ve Termodinamik Özelliklerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 2, 2023, ss. 466-73, doi:10.35414/akufemubid.1143362.
Vancouver Özer T, Arıkan N. Ni2VAl Bileşiğinin Mekanik, Elastik ve Termodinamik Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(2):466-73.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.