Işık Yayan Diyot Dizisi ile Işık Mikroskobunda Faz-Kontrast Görüntüleme
Yıl 2023,
Cilt: 23 Sayı: 2, 523 - 531, 03.05.2023
Nur Efşan Köksal
,
İlyas Çankaya
,
Esra Şengün Ermeydan
Öz
Bu çalışmada, aydınlık-alan, karanlık-alan ve diferansiyel faz-kontrast görüntülerini aynı anda elde
edebilen tek-kameralı bir görüntüleme sistemi, programlanabilir bir ışık yayan diyot (LED) dizisi
aracılığıyla farklı aydınlatma modelleri ile birlikte kullanılmıştır. Kullanılan LED dizisi, aydınlatma
açılarının esnek bir şekilde modellenmesine olanak sağlamıştır. Sol-sağ, üst-alt ve eğik aydınlatmaların
etkisi, hem yanak epitel hücresinde hem de soğan zarı hücresinde detaylı olarak gözlemlenmiştir.
Aydınlık-alan, karanlık-alan ve diferansiyel faz-kontrast görüntüleri, 32x32 LED dizisinin desenleri
değiştirilerek herhangi bir hareketli parça olmadan elde edilmiştir. Bu nedenle, kullanılan sistem basittir,
düşük maliyetlidir ve geleneksel ışık mikroskobu ile uyumludur.
Destekleyen Kurum
Ankara Yıldırım Beyazıt Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinatörlüğü
Proje Numarası
AYBU-2018-BAP-4981
Teşekkür
Ankara Yıldırım Beyazıt Üniversitesi, Tıp Fakültesi, Tıbbi Patoloji Anabilim Dalı öğretim üyesi Prof. Dr. Fazlı ERDOĞAN hocamıza mikroskop temininde yapmış oldukları katkılardan ve Ankara Yıldırım Beyazıt Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinatörlüğü’ne, AYBU-2018-BAP-4981 numaralı projeye vermiş olduğu maddi destekten dolayı teşekkür ederiz.
Kaynakça
- Reference1
Abbe, E. (1873). Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie, 9(1), 413-468.
- Reference2
Albeanu, D. F., Soucy, E., Sato, T. F., Meister, M., & Murthy, V. N. (2008). LED arrays as cost effective and efficient light sources for widefield microscopy. PLoS One, 3(5), e2146.
- Reference3
Bormuth, V., Howard, J., & Schäffer, E. (2007). LED illumination for video‐enhanced DIC imaging of single microtubules. Journal of microscopy, 226(1), 1-5.
- Reference4
Chen, M., Phillips, Z. F., & Waller, L. (2018). Quantitative differential phase contrast (DPC) microscopy with computational aberration correction. Opt Express, 26(25), 32888-32899.
- Reference5
Chen, M., Tian, L., & Waller, L. (2016). 3D differential phase contrast microscopy. Biomed Opt Express, 7(10), 3940-3950.
Davidson, M. W., & Abramowitz, M. (2002). Optical microscopy. Encyclopedia of imaging science and technology, 2(1106-1141), 120.
- Reference6
Dekkers, N. H., & de Lang, H. (1974). Differential Phase Contrast in a STEM. Optik, 41(4), 452-456.
- Reference7
Fan, Y., Sun, J., Chen, Q., Pan, X., Trusiak, M., & Zuo, C. (2019). Single-shot isotropic quantitative phase microscopy based on color-multiplexed differential phase contrast. APL Photonics, 4(12).
- Reference8
Hamilton, D. K., & Sheppard, C. J. R. (1984). Differential phase contrast in scanning optical microscopy. Journal of Microscopy, 133(1), 27-39.
- Reference9
Hamilton, D. K., Sheppard, C. J. R., & Wilson, T. (1984). Improved imaging of phase gradients in scanning optical microscopy. Journal of Microscopy, 135(3), 275-286.
- Reference10
Herman, P., Maliwal, B., Lin, H. J., & Lakowicz, J. (2001). Frequency‐domain fluorescence microscopy with the LED as a light source. Journal of Microscopy, 203(2), 176-181.
- Reference11
Hoffman, R. (1977). The modulation contrast microscope: principles and performance. Journal of Microscopy, 110(3), 205-222.
- Reference12
Jung, D., Choi, J.-H., Kim, S., Ryu, S., Lee, W., Lee, J.-S., et al. (2017). Smartphone-based multi-contrast microscope using color-multiplexed illumination. Scientific Reports.
- Reference13
Karakoç, Z., KETANİ, M. A., & Ketani, Ş. (2016). Mikroskopların çalışma mekanizması ve çeşitleri. Dicle Üniversitesi Veteriner Fakültesi Dergisi(1), 1-6.
- Reference14
Kheireddine, S., Smith, Z. J., Nicolau, D. V., & Wachsmann-Hogiu, S. (2019). Simple adaptive mobile phone screen illumination for dual phone differential phase contrast (DPDPC) microscopy. Biomed Opt Express, 10(9), 4369-4380.
- Reference15
Lee, D., Ryu, S., Kim, U., Jung, D., & Joo, C. (2015). Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging. Biomed Opt Express, 6(12), 4912-4922.
- Reference16
Liu, Z., Tian, L., Liu, S., & Waller, L. (2014). Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope. J Biomed Opt, 19(10), 106002.
- Reference17
Majeed, H., Sridharan, S., Mir, M., Ma, L., Min, E., Jung, W., et al. (2017). Quantitative phase imaging for medical diagnosis. J Biophotonics, 10(2), 177-205.
- Reference18
Masters, B. R. (2008). History of the Optical Microscope in Cell Biology and Medicine eLS.
- Reference19
Nomarski, G. (1955). Microinterféromètre différentiel à ondes polarisées. J. Phys. Rad., 16, 9S-13S.
- Reference20
Phillips, Z. F., D'Ambrosio, M. V., Tian, L., Rulison, J. J., Patel, H. S., Sadras, N., et al. (2015). Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array. PLoS One, 10(5), e0124938.
- Reference21
Popescu, G. (2011). Quantitative Phase Imaging of Cells and Tissues: McGraw-Hill Education.
- Reference22
Popescu, G., Park, Y., Lue, N., Best-Popescu, C., Deflores, L., Dasari, R. R., et al. (2008). Optical imaging of cell mass and growth dynamics. Am J Physiol Cell Physiol, 295(2), C538-544.
- Reference23
Tian, L., Wang, J., & Waller, L. (2014). 3D differential phase-contrast microscopy with computational illumination using an LED array. Opt Lett, 39(5), 1326-1329.
- Reference24
Vyas, S., Li, A.-C., Lin, Y.-H., Yeh, J. A., & Luo, Y. (2022). Isotropic quantitative differential phase contrast imaging techniques: a review. Journal of Physics D: Applied Physics, 55(18).
- Reference25
Zernike, F. (1935). Phase Contrast (Vol. 16, pp. 454): Z Tech Physik,.
- Reference26
Zernike, F. (1942). Phase contrast, a new method for the microscopic observation of transparent objects. Physica, 9(7), 686-698.
- Reference27
Zernike, F. (1955). How I Discovered Phase Contrast. Science, 121(3141), 345-349.
- Reference28
Zheng, G., Kolner, C., & Yang, C. (2011). Microscopy refocusing and dark-field imaging by using a simple LED array. Optics Letters, 36(10).
- Reference29
Zuo, C., Sun, J., Feng, S., Hu, Y., & Chen, Q. (2016). Programmable Colored Illumination Microscopy (PCIM): A practical and flexible optical staining approach for microscopic contrast enhancement. Optics and Lasers in Engineering, 78, 35-47.
Phase-Contrast Imaging at Optical Microscope with a Light Emitting Diode Array
Yıl 2023,
Cilt: 23 Sayı: 2, 523 - 531, 03.05.2023
Nur Efşan Köksal
,
İlyas Çankaya
,
Esra Şengün Ermeydan
Öz
In this study, a single-camera imaging system that can simultaneously acquire bright-field, dark-field
and differential phase-contrast images is used with different illumination patterns through a
programmable light-emitting diode (LED) array. The LED array allows flexible modeling of illumination
angles. The effect of left-right, top-bottom and oblique illumination was observed in detail both in the
cheek epithelial cell and in the onion membrane cell. Bright-field, dark-field and differential phasecontrast images are obtained without any moving parts by changing the patterns of 32x32 LED array.
Therefore, the system used is simple, low-cost and compatible with the conventional light microscopy.
Proje Numarası
AYBU-2018-BAP-4981
Kaynakça
- Reference1
Abbe, E. (1873). Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie, 9(1), 413-468.
- Reference2
Albeanu, D. F., Soucy, E., Sato, T. F., Meister, M., & Murthy, V. N. (2008). LED arrays as cost effective and efficient light sources for widefield microscopy. PLoS One, 3(5), e2146.
- Reference3
Bormuth, V., Howard, J., & Schäffer, E. (2007). LED illumination for video‐enhanced DIC imaging of single microtubules. Journal of microscopy, 226(1), 1-5.
- Reference4
Chen, M., Phillips, Z. F., & Waller, L. (2018). Quantitative differential phase contrast (DPC) microscopy with computational aberration correction. Opt Express, 26(25), 32888-32899.
- Reference5
Chen, M., Tian, L., & Waller, L. (2016). 3D differential phase contrast microscopy. Biomed Opt Express, 7(10), 3940-3950.
Davidson, M. W., & Abramowitz, M. (2002). Optical microscopy. Encyclopedia of imaging science and technology, 2(1106-1141), 120.
- Reference6
Dekkers, N. H., & de Lang, H. (1974). Differential Phase Contrast in a STEM. Optik, 41(4), 452-456.
- Reference7
Fan, Y., Sun, J., Chen, Q., Pan, X., Trusiak, M., & Zuo, C. (2019). Single-shot isotropic quantitative phase microscopy based on color-multiplexed differential phase contrast. APL Photonics, 4(12).
- Reference8
Hamilton, D. K., & Sheppard, C. J. R. (1984). Differential phase contrast in scanning optical microscopy. Journal of Microscopy, 133(1), 27-39.
- Reference9
Hamilton, D. K., Sheppard, C. J. R., & Wilson, T. (1984). Improved imaging of phase gradients in scanning optical microscopy. Journal of Microscopy, 135(3), 275-286.
- Reference10
Herman, P., Maliwal, B., Lin, H. J., & Lakowicz, J. (2001). Frequency‐domain fluorescence microscopy with the LED as a light source. Journal of Microscopy, 203(2), 176-181.
- Reference11
Hoffman, R. (1977). The modulation contrast microscope: principles and performance. Journal of Microscopy, 110(3), 205-222.
- Reference12
Jung, D., Choi, J.-H., Kim, S., Ryu, S., Lee, W., Lee, J.-S., et al. (2017). Smartphone-based multi-contrast microscope using color-multiplexed illumination. Scientific Reports.
- Reference13
Karakoç, Z., KETANİ, M. A., & Ketani, Ş. (2016). Mikroskopların çalışma mekanizması ve çeşitleri. Dicle Üniversitesi Veteriner Fakültesi Dergisi(1), 1-6.
- Reference14
Kheireddine, S., Smith, Z. J., Nicolau, D. V., & Wachsmann-Hogiu, S. (2019). Simple adaptive mobile phone screen illumination for dual phone differential phase contrast (DPDPC) microscopy. Biomed Opt Express, 10(9), 4369-4380.
- Reference15
Lee, D., Ryu, S., Kim, U., Jung, D., & Joo, C. (2015). Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging. Biomed Opt Express, 6(12), 4912-4922.
- Reference16
Liu, Z., Tian, L., Liu, S., & Waller, L. (2014). Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope. J Biomed Opt, 19(10), 106002.
- Reference17
Majeed, H., Sridharan, S., Mir, M., Ma, L., Min, E., Jung, W., et al. (2017). Quantitative phase imaging for medical diagnosis. J Biophotonics, 10(2), 177-205.
- Reference18
Masters, B. R. (2008). History of the Optical Microscope in Cell Biology and Medicine eLS.
- Reference19
Nomarski, G. (1955). Microinterféromètre différentiel à ondes polarisées. J. Phys. Rad., 16, 9S-13S.
- Reference20
Phillips, Z. F., D'Ambrosio, M. V., Tian, L., Rulison, J. J., Patel, H. S., Sadras, N., et al. (2015). Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array. PLoS One, 10(5), e0124938.
- Reference21
Popescu, G. (2011). Quantitative Phase Imaging of Cells and Tissues: McGraw-Hill Education.
- Reference22
Popescu, G., Park, Y., Lue, N., Best-Popescu, C., Deflores, L., Dasari, R. R., et al. (2008). Optical imaging of cell mass and growth dynamics. Am J Physiol Cell Physiol, 295(2), C538-544.
- Reference23
Tian, L., Wang, J., & Waller, L. (2014). 3D differential phase-contrast microscopy with computational illumination using an LED array. Opt Lett, 39(5), 1326-1329.
- Reference24
Vyas, S., Li, A.-C., Lin, Y.-H., Yeh, J. A., & Luo, Y. (2022). Isotropic quantitative differential phase contrast imaging techniques: a review. Journal of Physics D: Applied Physics, 55(18).
- Reference25
Zernike, F. (1935). Phase Contrast (Vol. 16, pp. 454): Z Tech Physik,.
- Reference26
Zernike, F. (1942). Phase contrast, a new method for the microscopic observation of transparent objects. Physica, 9(7), 686-698.
- Reference27
Zernike, F. (1955). How I Discovered Phase Contrast. Science, 121(3141), 345-349.
- Reference28
Zheng, G., Kolner, C., & Yang, C. (2011). Microscopy refocusing and dark-field imaging by using a simple LED array. Optics Letters, 36(10).
- Reference29
Zuo, C., Sun, J., Feng, S., Hu, Y., & Chen, Q. (2016). Programmable Colored Illumination Microscopy (PCIM): A practical and flexible optical staining approach for microscopic contrast enhancement. Optics and Lasers in Engineering, 78, 35-47.