Araştırma Makalesi
BibTex RIS Kaynak Göster

Işık Yayan Diyot Dizisi ile Işık Mikroskobunda Faz-Kontrast Görüntüleme

Yıl 2023, Cilt: 23 Sayı: 2, 523 - 531, 03.05.2023

Öz

Bu çalışmada, aydınlık-alan, karanlık-alan ve diferansiyel faz-kontrast görüntülerini aynı anda elde
edebilen tek-kameralı bir görüntüleme sistemi, programlanabilir bir ışık yayan diyot (LED) dizisi
aracılığıyla farklı aydınlatma modelleri ile birlikte kullanılmıştır. Kullanılan LED dizisi, aydınlatma
açılarının esnek bir şekilde modellenmesine olanak sağlamıştır. Sol-sağ, üst-alt ve eğik aydınlatmaların
etkisi, hem yanak epitel hücresinde hem de soğan zarı hücresinde detaylı olarak gözlemlenmiştir.
Aydınlık-alan, karanlık-alan ve diferansiyel faz-kontrast görüntüleri, 32x32 LED dizisinin desenleri
değiştirilerek herhangi bir hareketli parça olmadan elde edilmiştir. Bu nedenle, kullanılan sistem basittir,
düşük maliyetlidir ve geleneksel ışık mikroskobu ile uyumludur.

Destekleyen Kurum

Ankara Yıldırım Beyazıt Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinatörlüğü

Proje Numarası

AYBU-2018-BAP-4981

Teşekkür

Ankara Yıldırım Beyazıt Üniversitesi, Tıp Fakültesi, Tıbbi Patoloji Anabilim Dalı öğretim üyesi Prof. Dr. Fazlı ERDOĞAN hocamıza mikroskop temininde yapmış oldukları katkılardan ve Ankara Yıldırım Beyazıt Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinatörlüğü’ne, AYBU-2018-BAP-4981 numaralı projeye vermiş olduğu maddi destekten dolayı teşekkür ederiz.

Kaynakça

  • Reference1 Abbe, E. (1873). Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie, 9(1), 413-468.
  • Reference2 Albeanu, D. F., Soucy, E., Sato, T. F., Meister, M., & Murthy, V. N. (2008). LED arrays as cost effective and efficient light sources for widefield microscopy. PLoS One, 3(5), e2146.
  • Reference3 Bormuth, V., Howard, J., & Schäffer, E. (2007). LED illumination for video‐enhanced DIC imaging of single microtubules. Journal of microscopy, 226(1), 1-5.
  • Reference4 Chen, M., Phillips, Z. F., & Waller, L. (2018). Quantitative differential phase contrast (DPC) microscopy with computational aberration correction. Opt Express, 26(25), 32888-32899.
  • Reference5 Chen, M., Tian, L., & Waller, L. (2016). 3D differential phase contrast microscopy. Biomed Opt Express, 7(10), 3940-3950. Davidson, M. W., & Abramowitz, M. (2002). Optical microscopy. Encyclopedia of imaging science and technology, 2(1106-1141), 120.
  • Reference6 Dekkers, N. H., & de Lang, H. (1974). Differential Phase Contrast in a STEM. Optik, 41(4), 452-456.
  • Reference7 Fan, Y., Sun, J., Chen, Q., Pan, X., Trusiak, M., & Zuo, C. (2019). Single-shot isotropic quantitative phase microscopy based on color-multiplexed differential phase contrast. APL Photonics, 4(12).
  • Reference8 Hamilton, D. K., & Sheppard, C. J. R. (1984). Differential phase contrast in scanning optical microscopy. Journal of Microscopy, 133(1), 27-39.
  • Reference9 Hamilton, D. K., Sheppard, C. J. R., & Wilson, T. (1984). Improved imaging of phase gradients in scanning optical microscopy. Journal of Microscopy, 135(3), 275-286.
  • Reference10 Herman, P., Maliwal, B., Lin, H. J., & Lakowicz, J. (2001). Frequency‐domain fluorescence microscopy with the LED as a light source. Journal of Microscopy, 203(2), 176-181.
  • Reference11 Hoffman, R. (1977). The modulation contrast microscope: principles and performance. Journal of Microscopy, 110(3), 205-222.
  • Reference12 Jung, D., Choi, J.-H., Kim, S., Ryu, S., Lee, W., Lee, J.-S., et al. (2017). Smartphone-based multi-contrast microscope using color-multiplexed illumination. Scientific Reports.
  • Reference13 Karakoç, Z., KETANİ, M. A., & Ketani, Ş. (2016). Mikroskopların çalışma mekanizması ve çeşitleri. Dicle Üniversitesi Veteriner Fakültesi Dergisi(1), 1-6.
  • Reference14 Kheireddine, S., Smith, Z. J., Nicolau, D. V., & Wachsmann-Hogiu, S. (2019). Simple adaptive mobile phone screen illumination for dual phone differential phase contrast (DPDPC) microscopy. Biomed Opt Express, 10(9), 4369-4380.
  • Reference15 Lee, D., Ryu, S., Kim, U., Jung, D., & Joo, C. (2015). Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging. Biomed Opt Express, 6(12), 4912-4922.
  • Reference16 Liu, Z., Tian, L., Liu, S., & Waller, L. (2014). Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope. J Biomed Opt, 19(10), 106002.
  • Reference17 Majeed, H., Sridharan, S., Mir, M., Ma, L., Min, E., Jung, W., et al. (2017). Quantitative phase imaging for medical diagnosis. J Biophotonics, 10(2), 177-205.
  • Reference18 Masters, B. R. (2008). History of the Optical Microscope in Cell Biology and Medicine eLS.
  • Reference19 Nomarski, G. (1955). Microinterféromètre différentiel à ondes polarisées. J. Phys. Rad., 16, 9S-13S.
  • Reference20 Phillips, Z. F., D'Ambrosio, M. V., Tian, L., Rulison, J. J., Patel, H. S., Sadras, N., et al. (2015). Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array. PLoS One, 10(5), e0124938.
  • Reference21 Popescu, G. (2011). Quantitative Phase Imaging of Cells and Tissues: McGraw-Hill Education.
  • Reference22 Popescu, G., Park, Y., Lue, N., Best-Popescu, C., Deflores, L., Dasari, R. R., et al. (2008). Optical imaging of cell mass and growth dynamics. Am J Physiol Cell Physiol, 295(2), C538-544.
  • Reference23 Tian, L., Wang, J., & Waller, L. (2014). 3D differential phase-contrast microscopy with computational illumination using an LED array. Opt Lett, 39(5), 1326-1329.
  • Reference24 Vyas, S., Li, A.-C., Lin, Y.-H., Yeh, J. A., & Luo, Y. (2022). Isotropic quantitative differential phase contrast imaging techniques: a review. Journal of Physics D: Applied Physics, 55(18).
  • Reference25 Zernike, F. (1935). Phase Contrast (Vol. 16, pp. 454): Z Tech Physik,.
  • Reference26 Zernike, F. (1942). Phase contrast, a new method for the microscopic observation of transparent objects. Physica, 9(7), 686-698.
  • Reference27 Zernike, F. (1955). How I Discovered Phase Contrast. Science, 121(3141), 345-349.
  • Reference28 Zheng, G., Kolner, C., & Yang, C. (2011). Microscopy refocusing and dark-field imaging by using a simple LED array. Optics Letters, 36(10).
  • Reference29 Zuo, C., Sun, J., Feng, S., Hu, Y., & Chen, Q. (2016). Programmable Colored Illumination Microscopy (PCIM): A practical and flexible optical staining approach for microscopic contrast enhancement. Optics and Lasers in Engineering, 78, 35-47.

Phase-Contrast Imaging at Optical Microscope with a Light Emitting Diode Array

Yıl 2023, Cilt: 23 Sayı: 2, 523 - 531, 03.05.2023

Öz

In this study, a single-camera imaging system that can simultaneously acquire bright-field, dark-field
and differential phase-contrast images is used with different illumination patterns through a
programmable light-emitting diode (LED) array. The LED array allows flexible modeling of illumination
angles. The effect of left-right, top-bottom and oblique illumination was observed in detail both in the
cheek epithelial cell and in the onion membrane cell. Bright-field, dark-field and differential phasecontrast images are obtained without any moving parts by changing the patterns of 32x32 LED array.
Therefore, the system used is simple, low-cost and compatible with the conventional light microscopy.

Proje Numarası

AYBU-2018-BAP-4981

Kaynakça

  • Reference1 Abbe, E. (1873). Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie, 9(1), 413-468.
  • Reference2 Albeanu, D. F., Soucy, E., Sato, T. F., Meister, M., & Murthy, V. N. (2008). LED arrays as cost effective and efficient light sources for widefield microscopy. PLoS One, 3(5), e2146.
  • Reference3 Bormuth, V., Howard, J., & Schäffer, E. (2007). LED illumination for video‐enhanced DIC imaging of single microtubules. Journal of microscopy, 226(1), 1-5.
  • Reference4 Chen, M., Phillips, Z. F., & Waller, L. (2018). Quantitative differential phase contrast (DPC) microscopy with computational aberration correction. Opt Express, 26(25), 32888-32899.
  • Reference5 Chen, M., Tian, L., & Waller, L. (2016). 3D differential phase contrast microscopy. Biomed Opt Express, 7(10), 3940-3950. Davidson, M. W., & Abramowitz, M. (2002). Optical microscopy. Encyclopedia of imaging science and technology, 2(1106-1141), 120.
  • Reference6 Dekkers, N. H., & de Lang, H. (1974). Differential Phase Contrast in a STEM. Optik, 41(4), 452-456.
  • Reference7 Fan, Y., Sun, J., Chen, Q., Pan, X., Trusiak, M., & Zuo, C. (2019). Single-shot isotropic quantitative phase microscopy based on color-multiplexed differential phase contrast. APL Photonics, 4(12).
  • Reference8 Hamilton, D. K., & Sheppard, C. J. R. (1984). Differential phase contrast in scanning optical microscopy. Journal of Microscopy, 133(1), 27-39.
  • Reference9 Hamilton, D. K., Sheppard, C. J. R., & Wilson, T. (1984). Improved imaging of phase gradients in scanning optical microscopy. Journal of Microscopy, 135(3), 275-286.
  • Reference10 Herman, P., Maliwal, B., Lin, H. J., & Lakowicz, J. (2001). Frequency‐domain fluorescence microscopy with the LED as a light source. Journal of Microscopy, 203(2), 176-181.
  • Reference11 Hoffman, R. (1977). The modulation contrast microscope: principles and performance. Journal of Microscopy, 110(3), 205-222.
  • Reference12 Jung, D., Choi, J.-H., Kim, S., Ryu, S., Lee, W., Lee, J.-S., et al. (2017). Smartphone-based multi-contrast microscope using color-multiplexed illumination. Scientific Reports.
  • Reference13 Karakoç, Z., KETANİ, M. A., & Ketani, Ş. (2016). Mikroskopların çalışma mekanizması ve çeşitleri. Dicle Üniversitesi Veteriner Fakültesi Dergisi(1), 1-6.
  • Reference14 Kheireddine, S., Smith, Z. J., Nicolau, D. V., & Wachsmann-Hogiu, S. (2019). Simple adaptive mobile phone screen illumination for dual phone differential phase contrast (DPDPC) microscopy. Biomed Opt Express, 10(9), 4369-4380.
  • Reference15 Lee, D., Ryu, S., Kim, U., Jung, D., & Joo, C. (2015). Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging. Biomed Opt Express, 6(12), 4912-4922.
  • Reference16 Liu, Z., Tian, L., Liu, S., & Waller, L. (2014). Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope. J Biomed Opt, 19(10), 106002.
  • Reference17 Majeed, H., Sridharan, S., Mir, M., Ma, L., Min, E., Jung, W., et al. (2017). Quantitative phase imaging for medical diagnosis. J Biophotonics, 10(2), 177-205.
  • Reference18 Masters, B. R. (2008). History of the Optical Microscope in Cell Biology and Medicine eLS.
  • Reference19 Nomarski, G. (1955). Microinterféromètre différentiel à ondes polarisées. J. Phys. Rad., 16, 9S-13S.
  • Reference20 Phillips, Z. F., D'Ambrosio, M. V., Tian, L., Rulison, J. J., Patel, H. S., Sadras, N., et al. (2015). Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array. PLoS One, 10(5), e0124938.
  • Reference21 Popescu, G. (2011). Quantitative Phase Imaging of Cells and Tissues: McGraw-Hill Education.
  • Reference22 Popescu, G., Park, Y., Lue, N., Best-Popescu, C., Deflores, L., Dasari, R. R., et al. (2008). Optical imaging of cell mass and growth dynamics. Am J Physiol Cell Physiol, 295(2), C538-544.
  • Reference23 Tian, L., Wang, J., & Waller, L. (2014). 3D differential phase-contrast microscopy with computational illumination using an LED array. Opt Lett, 39(5), 1326-1329.
  • Reference24 Vyas, S., Li, A.-C., Lin, Y.-H., Yeh, J. A., & Luo, Y. (2022). Isotropic quantitative differential phase contrast imaging techniques: a review. Journal of Physics D: Applied Physics, 55(18).
  • Reference25 Zernike, F. (1935). Phase Contrast (Vol. 16, pp. 454): Z Tech Physik,.
  • Reference26 Zernike, F. (1942). Phase contrast, a new method for the microscopic observation of transparent objects. Physica, 9(7), 686-698.
  • Reference27 Zernike, F. (1955). How I Discovered Phase Contrast. Science, 121(3141), 345-349.
  • Reference28 Zheng, G., Kolner, C., & Yang, C. (2011). Microscopy refocusing and dark-field imaging by using a simple LED array. Optics Letters, 36(10).
  • Reference29 Zuo, C., Sun, J., Feng, S., Hu, Y., & Chen, Q. (2016). Programmable Colored Illumination Microscopy (PCIM): A practical and flexible optical staining approach for microscopic contrast enhancement. Optics and Lasers in Engineering, 78, 35-47.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Nur Efşan Köksal 0000-0002-6046-8014

İlyas Çankaya 0000-0002-6072-3097

Esra Şengün Ermeydan 0000-0002-5953-4301

Proje Numarası AYBU-2018-BAP-4981
Erken Görünüm Tarihi 28 Nisan 2023
Yayımlanma Tarihi 3 Mayıs 2023
Gönderilme Tarihi 2 Ağustos 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 23 Sayı: 2

Kaynak Göster

APA Köksal, N. E., Çankaya, İ., & Şengün Ermeydan, E. (2023). Işık Yayan Diyot Dizisi ile Işık Mikroskobunda Faz-Kontrast Görüntüleme. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(2), 523-531. https://doi.org/10.35414/akufemubid.1152905
AMA Köksal NE, Çankaya İ, Şengün Ermeydan E. Işık Yayan Diyot Dizisi ile Işık Mikroskobunda Faz-Kontrast Görüntüleme. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Mayıs 2023;23(2):523-531. doi:10.35414/akufemubid.1152905
Chicago Köksal, Nur Efşan, İlyas Çankaya, ve Esra Şengün Ermeydan. “Işık Yayan Diyot Dizisi Ile Işık Mikroskobunda Faz-Kontrast Görüntüleme”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, sy. 2 (Mayıs 2023): 523-31. https://doi.org/10.35414/akufemubid.1152905.
EndNote Köksal NE, Çankaya İ, Şengün Ermeydan E (01 Mayıs 2023) Işık Yayan Diyot Dizisi ile Işık Mikroskobunda Faz-Kontrast Görüntüleme. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 2 523–531.
IEEE N. E. Köksal, İ. Çankaya, ve E. Şengün Ermeydan, “Işık Yayan Diyot Dizisi ile Işık Mikroskobunda Faz-Kontrast Görüntüleme”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 2, ss. 523–531, 2023, doi: 10.35414/akufemubid.1152905.
ISNAD Köksal, Nur Efşan vd. “Işık Yayan Diyot Dizisi Ile Işık Mikroskobunda Faz-Kontrast Görüntüleme”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/2 (Mayıs 2023), 523-531. https://doi.org/10.35414/akufemubid.1152905.
JAMA Köksal NE, Çankaya İ, Şengün Ermeydan E. Işık Yayan Diyot Dizisi ile Işık Mikroskobunda Faz-Kontrast Görüntüleme. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:523–531.
MLA Köksal, Nur Efşan vd. “Işık Yayan Diyot Dizisi Ile Işık Mikroskobunda Faz-Kontrast Görüntüleme”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 2, 2023, ss. 523-31, doi:10.35414/akufemubid.1152905.
Vancouver Köksal NE, Çankaya İ, Şengün Ermeydan E. Işık Yayan Diyot Dizisi ile Işık Mikroskobunda Faz-Kontrast Görüntüleme. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(2):523-31.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.