Araştırma Makalesi
BibTex RIS Kaynak Göster

RTM Yönteminde Jelkot ve Laminasyon Planının Nihai Ürünün Mekanik Özelliklerine Etkisi

Yıl 2023, Cilt: 23 Sayı: 3, 772 - 779, 28.06.2023
https://doi.org/10.35414/akufemubid.1201258

Öz

Bu çalışmada, Reçine Transfer Kalıplama (RTM) yöntemiyle üretilmiş cam fiber takviyeli kompozit plakalarda elyaf ağırlığının ve jelkotun mekanik özelliklere etkisi incelenmiştir. Üç farklı laminasyon planı ve bu planların jelkotlu halleri kullanılmıştır. Numunelerin incelenmesi için çekme testi, üç nokta eğme testi ve Barcol sertlik testleri yapılmıştır. Laminasyon planlarında 300 g/m2, 450 g/m2, 600 g/m2 olmak üzere 3 farklı ağırlıkta elyaf kullanılmıştır. Ayrıca laminasyon arasında 180 g/m2 ve 250 g/m2 polipropilen köpük malzeme kullanılmıştır. Her laminasyon için bir jelkotlu, bir jelkotsuz plaka üretilmiştir. Üretim sonunda kalınlıkları 2.5 – 3.2 mm arasında değişen 6 plaka üretilmiştir. Üç nokta eğme ve çekme testi için 10’ar numune kesilmiştir, Barcol sertlik testi plaka üzerinde 5 noktadan alınmıştır. Testler sonucunda elyaf ağırlığının artmasıyla mukavemet değerlerinin arttığı, uzama değerlerinin azaldığı gözlemlenmiştir. Her laminasyonun jelkotlu hallerinde %5 - 15 aralığında mekanik özellik düşüşü gözlemlenmiştir.

Teşekkür

Sazcılar Arge Merkezi'ne üretim ve test konusundaki destekleri için teşekkür ederiz.

Kaynakça

  • Asim, M., Jawaid, M., Saba, N., Ramengmawii, N.M. and Sultan, M.T.H., 2017. Processing of hybrid polymer composites—a review. Hybrid Polymer Composite Materials, 1–22.
  • Baumann, A., May, D. and Hausmann, J., 2022. Characterization of metallic bushings in RTM-made composites by in-situ leak detection under mechanical loading. Composites Part C, 7, 100226.
  • Cristian, I.N., Nauman, S., Boussu, F., Koncar, V., 2011. A Study of Strength Transfer from tow to Textile Composite Using Different Reinforcement Architectures. Applied Composite Materials, 19, 427-442.
  • Dai, D. and Fan, M., 2014. Wood fibres as reinforcements in natural fibre composites: structure, properties, processing and applications. Natural Fibre Composites, 3–65.
  • Davallo, M. and Pasdar, H., 2009. Comparison of Mechanical Properties of Glass-Polyester Composites Formed by Resin Transfer Molding and Hand Lay-Up Technique. International Journal of ChemTech Research, 1, 470-475. Falaschetti, M.P., Rondina, F., Zavatta, N., Gragnani, L., Gironi, M., Troiani, E. and Donati, L., 2020. Material characterization for reliable resin transfer molding process simulation. Applied Sciences, 10(5), 1814.
  • Friedrich, M., Exner, W., and Wietgrefe, M., 2011. Sensitivity analysis of influencing factors on impregnation process of closed mould RTM. CEAS Aeronautical Journal, 2, 195-202.
  • Goumghar, A., Assarar, M., Zouari, W., Azouaoui, K., El Mahi, A. and Ayad., R., 2022. Study of the fatigue behaviour of hybrid flax-glass/epoxy composites, Composite Structures, 294, 115790.
  • Hillermeier, R.W., Hasson, T.D., Friedrich, L. and Ball, C.A., 2013. Advanced Thermosetting Resin Matrix Technology for Next Generation High Volume Manufacture of Automotive Composite Structures, SAE 2013 World Congress & Exhibition.
  • Khalil, H. P. S., Kang, C. W., Khairul, A., Ridzuan, R. and Adawi, T. O., 2009. The Effect of Different Laminations on Mechanical and Physical Properties of Hybrid Composites. Journal of Reinforced Plastics and Composites, 28(9), 1123–1137.
  • Laurenzi, S. and Marchetti, M., 2012. Advanced Composite Materials by Resin Transfer Molding for Aerospace Applications, IntechOpen, 198-226.
  • Lee, H., Jung, K. and Park, H., 2021. Study on Structural Design and Analysis of Composite Boat Hull Manufactured by Resin Infusion Simulation. Materials, 14(20), 5918.
  • Mehdikhani, M., Gorbatikh, L., Verpoest, I. and Lomov, S.V., 2018. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. Journal of Composite Materials, 53, 1579 – 1669. Miranda, B., Bourbigot, S., Fontaine, G. and Bonnet, F., 2022. Thermoplastic matrix-based composites produced by resin transfer molding: A review, Polymer Composites, 43 (5), 2485.
  • Opitz, M., Bertling, D. and Liebers, N., 2019. FAUST: Material Characterization Of Low-Cost Foam Materials Under Real Boundary Process Conditions For RTM Large-Scale Production. Technologies For Economical and Functional Lightweight Design.
  • Poodts, E., Minak, G., Mazzocchetti, L. and Giorgini, L., 2014. Fabrication, process simulation and testing of a thick CFRP component using the RTM process. Composites Part B: Engineering, 56, 673-680.
  • Radzi, A.M., Sheikh, A.Z., Mohamad, Z.H., Ilyas, R.A., Khairur, R.J., Mohd Yusof, M.D. and Sa’ardin, A. A., 2022. Bamboo-fiber-reinforced thermoset and thermoplastic polymer composites: A review of properties, fabrication, and potential applications. Polymers, 14(7), 1387.
  • Reddy, A.R., Reddy, B.S. and Reddy, K.R., 2012. Application of design of experiments and artificial neural networks for stacking sequence optimizations of laminated composite plates. International Journal of Engineering Science and Technology, 3, 295-310.
  • Saad, A., 2023. Control of Thermal Gradients in Thin Resin Transfer Molding Parts. Biointerface Research in Applied Chemistry, 13, 12.
  • Sakin, R., 2021. Layup Design Optimization for E-glass Woven Roving Fabric Reinforced Polyester Composite Laminates Produced by VARTM. Fibers and Polymers, 22(2), 509–527.
  • Santa, J.F., Vanegas-Jaramillo, J.D. and Patiño, I.D., 2016. Mechanical Characterization of Composites Manufactured by RTM Process: Effect of Fiber Content, Strain Rate and Orientation. Latin American Journal of Solids and Structures, 13, 344-364.

The Effect of Gelcoat and Lamination Plan on Mechanical Properties of the Final Product in RTM Method

Yıl 2023, Cilt: 23 Sayı: 3, 772 - 779, 28.06.2023
https://doi.org/10.35414/akufemubid.1201258

Öz

This study investigated the effect of fiber weight and gelcoat on the mechanical properties of glass fiber-reinforced composite plates produced by Resin Transfer Molding (RTM). Three different lamination plans and gelcoat versions of these plans were used. Tensile test, three-point bending test and Barcol hardness tests were performed to examine the samples. Fibers of 3 different weights, 300 g/m2, 450 g/m2, and 600 g/m2, were used in the lamination plans. In addition, 180 g/m2 and 250 g/m2 polypropylene core material was used between lamination. One gelcoat and one non-gelcoat plate were produced for each lamination. At the end of the production, 6 plates with thicknesses ranging from 2.5 mm to 3.2 mm were produced. For the three-point bending and tensile test, 10 samples were cut each, the Barcol hardness test was taken from 5 points on the plate. As a result of the tests, it was observed that the strength values increased and the elongation values decreased with the increase in fiber weight. A decrease in mechanical properties in the 5 - 15% range was observed in the gelcoat versions of each lamination.

Kaynakça

  • Asim, M., Jawaid, M., Saba, N., Ramengmawii, N.M. and Sultan, M.T.H., 2017. Processing of hybrid polymer composites—a review. Hybrid Polymer Composite Materials, 1–22.
  • Baumann, A., May, D. and Hausmann, J., 2022. Characterization of metallic bushings in RTM-made composites by in-situ leak detection under mechanical loading. Composites Part C, 7, 100226.
  • Cristian, I.N., Nauman, S., Boussu, F., Koncar, V., 2011. A Study of Strength Transfer from tow to Textile Composite Using Different Reinforcement Architectures. Applied Composite Materials, 19, 427-442.
  • Dai, D. and Fan, M., 2014. Wood fibres as reinforcements in natural fibre composites: structure, properties, processing and applications. Natural Fibre Composites, 3–65.
  • Davallo, M. and Pasdar, H., 2009. Comparison of Mechanical Properties of Glass-Polyester Composites Formed by Resin Transfer Molding and Hand Lay-Up Technique. International Journal of ChemTech Research, 1, 470-475. Falaschetti, M.P., Rondina, F., Zavatta, N., Gragnani, L., Gironi, M., Troiani, E. and Donati, L., 2020. Material characterization for reliable resin transfer molding process simulation. Applied Sciences, 10(5), 1814.
  • Friedrich, M., Exner, W., and Wietgrefe, M., 2011. Sensitivity analysis of influencing factors on impregnation process of closed mould RTM. CEAS Aeronautical Journal, 2, 195-202.
  • Goumghar, A., Assarar, M., Zouari, W., Azouaoui, K., El Mahi, A. and Ayad., R., 2022. Study of the fatigue behaviour of hybrid flax-glass/epoxy composites, Composite Structures, 294, 115790.
  • Hillermeier, R.W., Hasson, T.D., Friedrich, L. and Ball, C.A., 2013. Advanced Thermosetting Resin Matrix Technology for Next Generation High Volume Manufacture of Automotive Composite Structures, SAE 2013 World Congress & Exhibition.
  • Khalil, H. P. S., Kang, C. W., Khairul, A., Ridzuan, R. and Adawi, T. O., 2009. The Effect of Different Laminations on Mechanical and Physical Properties of Hybrid Composites. Journal of Reinforced Plastics and Composites, 28(9), 1123–1137.
  • Laurenzi, S. and Marchetti, M., 2012. Advanced Composite Materials by Resin Transfer Molding for Aerospace Applications, IntechOpen, 198-226.
  • Lee, H., Jung, K. and Park, H., 2021. Study on Structural Design and Analysis of Composite Boat Hull Manufactured by Resin Infusion Simulation. Materials, 14(20), 5918.
  • Mehdikhani, M., Gorbatikh, L., Verpoest, I. and Lomov, S.V., 2018. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. Journal of Composite Materials, 53, 1579 – 1669. Miranda, B., Bourbigot, S., Fontaine, G. and Bonnet, F., 2022. Thermoplastic matrix-based composites produced by resin transfer molding: A review, Polymer Composites, 43 (5), 2485.
  • Opitz, M., Bertling, D. and Liebers, N., 2019. FAUST: Material Characterization Of Low-Cost Foam Materials Under Real Boundary Process Conditions For RTM Large-Scale Production. Technologies For Economical and Functional Lightweight Design.
  • Poodts, E., Minak, G., Mazzocchetti, L. and Giorgini, L., 2014. Fabrication, process simulation and testing of a thick CFRP component using the RTM process. Composites Part B: Engineering, 56, 673-680.
  • Radzi, A.M., Sheikh, A.Z., Mohamad, Z.H., Ilyas, R.A., Khairur, R.J., Mohd Yusof, M.D. and Sa’ardin, A. A., 2022. Bamboo-fiber-reinforced thermoset and thermoplastic polymer composites: A review of properties, fabrication, and potential applications. Polymers, 14(7), 1387.
  • Reddy, A.R., Reddy, B.S. and Reddy, K.R., 2012. Application of design of experiments and artificial neural networks for stacking sequence optimizations of laminated composite plates. International Journal of Engineering Science and Technology, 3, 295-310.
  • Saad, A., 2023. Control of Thermal Gradients in Thin Resin Transfer Molding Parts. Biointerface Research in Applied Chemistry, 13, 12.
  • Sakin, R., 2021. Layup Design Optimization for E-glass Woven Roving Fabric Reinforced Polyester Composite Laminates Produced by VARTM. Fibers and Polymers, 22(2), 509–527.
  • Santa, J.F., Vanegas-Jaramillo, J.D. and Patiño, I.D., 2016. Mechanical Characterization of Composites Manufactured by RTM Process: Effect of Fiber Content, Strain Rate and Orientation. Latin American Journal of Solids and Structures, 13, 344-364.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler
Bölüm Makaleler
Yazarlar

Mustafa Can Topbaşoğlu 0000-0002-4130-9798

Cihan Kaboğlu 0000-0002-6249-0565

Mustafa Keleş 0000-0003-1687-4303

Erken Görünüm Tarihi 22 Haziran 2023
Yayımlanma Tarihi 28 Haziran 2023
Gönderilme Tarihi 17 Kasım 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 23 Sayı: 3

Kaynak Göster

APA Topbaşoğlu, M. C., Kaboğlu, C., & Keleş, M. (2023). RTM Yönteminde Jelkot ve Laminasyon Planının Nihai Ürünün Mekanik Özelliklerine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(3), 772-779. https://doi.org/10.35414/akufemubid.1201258
AMA Topbaşoğlu MC, Kaboğlu C, Keleş M. RTM Yönteminde Jelkot ve Laminasyon Planının Nihai Ürünün Mekanik Özelliklerine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Haziran 2023;23(3):772-779. doi:10.35414/akufemubid.1201258
Chicago Topbaşoğlu, Mustafa Can, Cihan Kaboğlu, ve Mustafa Keleş. “RTM Yönteminde Jelkot Ve Laminasyon Planının Nihai Ürünün Mekanik Özelliklerine Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, sy. 3 (Haziran 2023): 772-79. https://doi.org/10.35414/akufemubid.1201258.
EndNote Topbaşoğlu MC, Kaboğlu C, Keleş M (01 Haziran 2023) RTM Yönteminde Jelkot ve Laminasyon Planının Nihai Ürünün Mekanik Özelliklerine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 3 772–779.
IEEE M. C. Topbaşoğlu, C. Kaboğlu, ve M. Keleş, “RTM Yönteminde Jelkot ve Laminasyon Planının Nihai Ürünün Mekanik Özelliklerine Etkisi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 3, ss. 772–779, 2023, doi: 10.35414/akufemubid.1201258.
ISNAD Topbaşoğlu, Mustafa Can vd. “RTM Yönteminde Jelkot Ve Laminasyon Planının Nihai Ürünün Mekanik Özelliklerine Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/3 (Haziran 2023), 772-779. https://doi.org/10.35414/akufemubid.1201258.
JAMA Topbaşoğlu MC, Kaboğlu C, Keleş M. RTM Yönteminde Jelkot ve Laminasyon Planının Nihai Ürünün Mekanik Özelliklerine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:772–779.
MLA Topbaşoğlu, Mustafa Can vd. “RTM Yönteminde Jelkot Ve Laminasyon Planının Nihai Ürünün Mekanik Özelliklerine Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 3, 2023, ss. 772-9, doi:10.35414/akufemubid.1201258.
Vancouver Topbaşoğlu MC, Kaboğlu C, Keleş M. RTM Yönteminde Jelkot ve Laminasyon Planının Nihai Ürünün Mekanik Özelliklerine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(3):772-9.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.