Araştırma Makalesi
BibTex RIS Kaynak Göster

A Perspective with in Silico Medicinal and Computational Methods to A New Schiff Base Molecule

Yıl 2023, Cilt: 23 Sayı: 4, 883 - 897, 31.08.2023
https://doi.org/10.35414/akufemubid.1237445

Öz

In this study, the synthesis and characterization of a new Schiff base molecule, (E)-1-(5-nitro-2-(piperidin-1-yl) phenyl)-N-(4-phenoxyphenyl) methanimine, were aimed. In addition, the molecular surface area, crystalline structure, intermolecular forces, electronic and spectroscopic properties of the molecule were investigated. Docking studies were also performed on the active sites of the main protease (Mpro) of SARS-CoV-2, and the docking result was compared with the efficacy of the native ligand N3 inhibitor. The main findings for the title molecule can be summarized as follows: The space group is P-1 and it crystallizes in the triclinic system. The unit cell consists of two monomeric units (Z=2). There are strong electrophilic attack sites in the molecule, but nucleophilic centers have low efficiency. According to the FMO analysis, the title compound is a soft, kinetically and chemically unstable and highly reactive material. The value of the binding free energy calculated by docking experiments (-9.28 kcal mol-1) is lower than that of the native inhibitor (-7.11 kcal/mol) and thus can be considered as a potential inhibitor candidate for the main protease of SARS-CoV-2.

Destekleyen Kurum

None

Proje Numarası

None

Teşekkür

None

Kaynakça

  • Alshrari, A. S., Hudu, S. A., Imran, M., Asdaq, S. M. B., Ali, A. M., and Rabbani, S. I., 2021. Innovations and development of Covid-19 vaccines: A patent review. Journal of Infection and Public Health, 15, 123-131. DOI: https://doi.org/10.1016/j.jiph.2021.10.021.
  • Amin, S. A., Banerjee, S., Ghosh, K., Gayen, S., and Jha, T., 2021. Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors. Bioorganic & Medicinal Chemistry, 29, 115860. DOI: https://doi.org/10.1016/j.bmc.2020.115860.
  • Artese, A., Svicher, V., Costa, G., Salpini, R., Di Maio, V. C., Alkhatib, M., Ambrosio, F. A., Santoro, M. M., Assaraf, Y. G., Alcaro, S., and Ceccherini-Silberstein, F., 2020. Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy, 53, 100721. DOI: 10.1016/j.drup.2020.100721.
  • Awadasseid, A., Wu, Y., Tanaka, Y., and Zhang, W., 2021. Effective drugs used to combat SARS-CoV-2 infection and the current status of vaccines. Biomedicine & Pharmacotherapy, 137, 111330. DOI: https://doi.org/10.1016/j.biopha.2021.111330.
  • Azhagiri, S., Jayakumar, S., Gunasekaran, S., and Srinivasan, S., 2014. Molecular structure, Mulliken charge, frontier molecular orbital and first hyperpolarizability analysis on 2-nitroaniline and 4-methoxy-2-nitroaniline using density functional theory. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124, 199-202. DOI: https://doi.org/10.1016/j.saa.2013.12.106.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E., 2000. The Protein Data Bank. Nucleic Acids Research, 28, 235-242. DOI: 10.1093/nar/28.1.235. Dömling, A. and Gao, L., 2020. Chemistry and Biology of SARS-CoV-2. Chem, 6, 1283-1295. DOI: 10.1016/j.chempr.2020.04.023.
  • Faheem, Kumar, B. K., Sekhar, K., Kunjiappan, S., Jamalis, J., Balaña-Fouce, R., Tekwani, B. L., and Sankaranarayanan, M., 2020. Druggable targets of SARS-CoV-2 and treatment opportunities for COVID-19. Bioorg Chem, 104, 104269. DOI: 10.1016/j.bioorg.2020.104269.
  • Faisal, H. M. N., Katti, K. S., and Katti, D. R., 2021. Binding of SARS-COV-2 (COVID-19) and SARS-COV to human ACE2: Identifying binding sites and consequences on ACE2 stiffness. Chemical Physics, 551, 111353. DOI: https://doi.org/10.1016/j.chemphys.2021.111353.
  • Frediansyah, A., Nainu, F., Dhama, K., Mudatsir, M., and Harapan, H., 2021. Remdesivir and its antiviral activity against COVID-19: A systematic review. Clinical Epidemiology and Global Health, 9, 123-127. DOI: https://doi.org/10.1016/j.cegh.2020.07.011.
  • Frisch, M., Trucks, G., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., and Petersson, G., 2009. gaussian 09, Revision d. 01, Gaussian. Inc., Wallingford CT, 201. Gao, S., Huang, T., Song, L., Xu, S., Cheng, Y., Cherukupalli, S., Kang, D., Zhao, T., Sun, L., Zhang, J., Zhan, P., and Liu, X., 2021. Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Acta Pharmaceutica Sinica B, 12, 581-599. DOI: https://doi.org/10.1016/j.apsb.2021.08.027.
  • Kumar, R., Kamal, R., Kumar, V., and Parkash, J., 2022. Bifunctionalization of α,β-unsaturated diaryl ketones into α-aryl-β,β-ditosyloxy ketones: Single crystal XRD, DFT, FMOs, molecular electrostatic potential, hirshfeld surface analysis, and 3D-energy frameworks. Journal of Molecular Structure, 1250, 131754. DOI: https://doi.org/10.1016/j.molstruc.2021.131754.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M., and Van De Streek, J., 2006. Mercury: Visualization and analysis of crystal structures. Journal of Applied Crystallography, 39, 453-457. DOI: 10.1107/S002188980600731X.
  • Mandal, M., Chowdhury, S. K., Khan, A. A., Baildya, N., Dutta, T., Misra, D., and Ghosh, N. N., 2021. Inhibitory efficacy of RNA virus drugs against SARS-CoV-2 proteins: An extensive study. Journal of Molecular Structure, 1234, 130152. DOI: https://doi.org/10.1016/j.molstruc.2021.130152.
  • Meng, X.-Y., Zhang, H.-X., Mezei, M., and Cui, M., 2011. Molecular docking: a powerful approach for structure-based drug discovery. Current computer-aided drug design, 7, 146-157. DOI: 10.2174/157340911795677602.
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., and Olson, A. J., 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational chemistry, 30, 2785-2791. DOI: 10.1002/jcc.21256.
  • Mueller, A. L., McNamara, M. S., and Sinclair, D. A., 2020. Why does COVID-19 disproportionately affect older people? Aging (Albany NY), 12, 9959-9981. DOI: 10.18632/aging.103344.
  • Parr, R. G., 1980. Density functional theory of atoms and molecules. Horizons of quantum chemistry, Fukui, K., and Pullman, B. Springer, 5-15.
  • Petrosillo, N., Viceconte, G., Ergonul, O., Ippolito, G., and Petersen, E., 2020. COVID-19, SARS and MERS: are they closely related? Clinical Microbiology and Infection, 26, 729-734. DOI: 10.1016/j.cmi.2020.03.026.
  • Raghi, K. R., Sherin, D. R., Saumya, M. J., Arun, P. S., Sobha, V. N., and Manojkumar, T. K., 2018. Computational study of molecular electrostatic potential, docking and dynamics simulations of gallic acid derivatives as ABL inhibitors. Computational Biology and Chemistry, 74, 239-246. DOI: https://doi.org/10.1016/j.compbiolchem.2018.04.001.
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., and Schroeder, M., 2015. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43, W443-W447. DOI: 10.1093/nar/gkv315. Shagufta, and Ahmad, I., 2021. The race to treat COVID-19: Potential therapeutic agents for the prevention and treatment of SARS-CoV-2. European Journal of Medicinal Chemistry, 213, 113157. DOI: https://doi.org/10.1016/j.ejmech.2021.113157.
  • Sheahan, T., Sims, A., Graham, R., Menachery, V., Gralinski, L., Case, J., Leist, S., Pyrc, K., Feng, J., Trantcheva, I., Bannister, R., Park, Y., Babusis, D., Clarke, M., Mackman, R., Spahn, J., Palmiotti, C., Siegel, D., Ray, A., and Baric, R., 2017. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine, 9, 1-10. DOI: 10.1126/scitranslmed.aal3653.
  • Sheikhpour, M., 2020. The Current Recommended Drugs and Strategies for the Treatment of Coronavirus Disease (COVID-19). Therapeutics and clinical risk management, 16, 933-946. DOI: 10.2147/TCRM.S262936. Sheldrick, G. M., 2015. Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry, 71, 3-8.
  • Sheldrick, G. M., 2015. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallographica Section A: Foundations of Crystallography, 71, 3-8. DOI: 10.1107/S2053273314026370.
  • Shukla, V. K., Al-Abdullah, E. S., El-Emam, A. A., Sachan, A. K., Pathak, S. K., Kumar, A., Prasad, O., Bishnoi, A., and Sinha, L., 2014. Spectroscopic (FT-IR, FT-Raman, and UV–visible) and quantum chemical studies on molecular geometry, Frontier molecular orbitals, NBO, NLO and thermodynamic properties of 1-acetylindole. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 626-638. DOI: https://doi.org/10.1016/j.saa.2014.06.043.
  • Sohag, A. A. M., Hannan, M. A., Rahman, S., Hossain, M., Hasan, M., Khan, M. K., Khatun, A., Dash, R., and Uddin, M. J., 2020. Revisiting potential druggable targets against SARS-CoV-2 and repurposing therapeutics under preclinical study and clinical trials: A comprehensive review. Drug development research, 81, 919-941. DOI: 10.1002/ddr.21709.
  • Srivastava, S., Ahmad, R., and Khare, S. K., 2021. Alzheimer’s disease and its treatment by different approaches: A review. European Journal of Medicinal Chemistry, 216, 113320. DOI: https://doi.org/10.1016/j.ejmech.2021.113320.
  • Turner, M., McKinnon, J., Wolff, S., Grimwood, D., Spackman, P., Jayatilaka, D., and Spackman, M., 2017. CrystalExplorer17. The University of Western Australia, 108, 76730.
  • Westrip, S. P., 2010. PublCIF: Software for editing, validating and formatting crystallographic information files. Journal of Applied Crystallography, 43, 920-925. DOI: 10.1107/S0021889810022120.
  • WHO. "WHO Coronavirus (COVID-19) Dashboard." from https://covid19.who.int/.
  • Xiang, R., Yu, Z., Wang, Y., Wang, L., Huo, S., Li, Y., Liang, R., Hao, Q., Ying, T., Gao, Y., Yu, F., and Jiang, S., 2021. Recent advances in developing small-molecule inhibitors against SARS-CoV-2. Acta Pharmaceutica Sinica B, 12, 1591-1623. DOI: https://doi.org/10.1016/j.apsb.2021.06.016.
  • Young, B., Tan, T. T., and Leo, Y. S., 2021. The place for remdesivir in COVID-19 treatment. The Lancet Infectious Diseases, 21, 20-21. DOI: 10.1016/S1473-3099(20)30911-7.

Yeni Bir Schiff Bazı Molekülüne in Siliko Tıbbi ve Hesaplamalı Yöntemlerle Bir Bakış

Yıl 2023, Cilt: 23 Sayı: 4, 883 - 897, 31.08.2023
https://doi.org/10.35414/akufemubid.1237445

Öz

Bu çalışmada yeni bir Schiff bazı molekülünün, (E)-1-(5-nitro-2-(piperidin-1-yl) phenyl)-N-(4-phenoxyphenyl) methanimine, sentezi ve karakterizasyonu amaçlandı. Bunun yanı sıra bu molekülün moleküler yüzey alanı, kristal yapısı, moleküler arası kuvvetleri, elektronik ve spektroskopik özellikleri araştırıldı. Ayrıca SARS-CoV-2 ana proteazının (Mpro) aktif yerleri üzerinde kenetleme deneyleri gerçekleştirildi ve sonuç yerli ligand N3 inhibitörünün etkinliği ile kıyaslandı. Başlık molekülü için ana bulgular aşağıdaki gibi özetlenebilir: Uzay grubu P-1’dir ve triklinik sistemde kristallenir. Birim hücre iki monomerik birimden oluşur. Molekülde güçlü elektrofilik saldırı pozisyonları vardır ama nükleofilik merkezler düşük etkinliktedir. FMO analizine göre, başlık bileşiği yumuşak, kinetik ve kimyasal olarak kararsız ve oldukça reaktif bir malzemedir. Moleküler kenetleme deneylerine göre, bağlanma serbest enerjisinin hesaplanan değeri (-9.28 kcal/mol) yerli inhibitörün değerinden (-7.11 kcal/mol) daha düşüktür ve bu yüzden başlık bileşiği SARS-CoV-2 ana proteazı için potansiyel bir inhibitör adayı olarak düşünülebilir.

Proje Numarası

None

Kaynakça

  • Alshrari, A. S., Hudu, S. A., Imran, M., Asdaq, S. M. B., Ali, A. M., and Rabbani, S. I., 2021. Innovations and development of Covid-19 vaccines: A patent review. Journal of Infection and Public Health, 15, 123-131. DOI: https://doi.org/10.1016/j.jiph.2021.10.021.
  • Amin, S. A., Banerjee, S., Ghosh, K., Gayen, S., and Jha, T., 2021. Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors. Bioorganic & Medicinal Chemistry, 29, 115860. DOI: https://doi.org/10.1016/j.bmc.2020.115860.
  • Artese, A., Svicher, V., Costa, G., Salpini, R., Di Maio, V. C., Alkhatib, M., Ambrosio, F. A., Santoro, M. M., Assaraf, Y. G., Alcaro, S., and Ceccherini-Silberstein, F., 2020. Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy, 53, 100721. DOI: 10.1016/j.drup.2020.100721.
  • Awadasseid, A., Wu, Y., Tanaka, Y., and Zhang, W., 2021. Effective drugs used to combat SARS-CoV-2 infection and the current status of vaccines. Biomedicine & Pharmacotherapy, 137, 111330. DOI: https://doi.org/10.1016/j.biopha.2021.111330.
  • Azhagiri, S., Jayakumar, S., Gunasekaran, S., and Srinivasan, S., 2014. Molecular structure, Mulliken charge, frontier molecular orbital and first hyperpolarizability analysis on 2-nitroaniline and 4-methoxy-2-nitroaniline using density functional theory. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124, 199-202. DOI: https://doi.org/10.1016/j.saa.2013.12.106.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E., 2000. The Protein Data Bank. Nucleic Acids Research, 28, 235-242. DOI: 10.1093/nar/28.1.235. Dömling, A. and Gao, L., 2020. Chemistry and Biology of SARS-CoV-2. Chem, 6, 1283-1295. DOI: 10.1016/j.chempr.2020.04.023.
  • Faheem, Kumar, B. K., Sekhar, K., Kunjiappan, S., Jamalis, J., Balaña-Fouce, R., Tekwani, B. L., and Sankaranarayanan, M., 2020. Druggable targets of SARS-CoV-2 and treatment opportunities for COVID-19. Bioorg Chem, 104, 104269. DOI: 10.1016/j.bioorg.2020.104269.
  • Faisal, H. M. N., Katti, K. S., and Katti, D. R., 2021. Binding of SARS-COV-2 (COVID-19) and SARS-COV to human ACE2: Identifying binding sites and consequences on ACE2 stiffness. Chemical Physics, 551, 111353. DOI: https://doi.org/10.1016/j.chemphys.2021.111353.
  • Frediansyah, A., Nainu, F., Dhama, K., Mudatsir, M., and Harapan, H., 2021. Remdesivir and its antiviral activity against COVID-19: A systematic review. Clinical Epidemiology and Global Health, 9, 123-127. DOI: https://doi.org/10.1016/j.cegh.2020.07.011.
  • Frisch, M., Trucks, G., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., and Petersson, G., 2009. gaussian 09, Revision d. 01, Gaussian. Inc., Wallingford CT, 201. Gao, S., Huang, T., Song, L., Xu, S., Cheng, Y., Cherukupalli, S., Kang, D., Zhao, T., Sun, L., Zhang, J., Zhan, P., and Liu, X., 2021. Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Acta Pharmaceutica Sinica B, 12, 581-599. DOI: https://doi.org/10.1016/j.apsb.2021.08.027.
  • Kumar, R., Kamal, R., Kumar, V., and Parkash, J., 2022. Bifunctionalization of α,β-unsaturated diaryl ketones into α-aryl-β,β-ditosyloxy ketones: Single crystal XRD, DFT, FMOs, molecular electrostatic potential, hirshfeld surface analysis, and 3D-energy frameworks. Journal of Molecular Structure, 1250, 131754. DOI: https://doi.org/10.1016/j.molstruc.2021.131754.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M., and Van De Streek, J., 2006. Mercury: Visualization and analysis of crystal structures. Journal of Applied Crystallography, 39, 453-457. DOI: 10.1107/S002188980600731X.
  • Mandal, M., Chowdhury, S. K., Khan, A. A., Baildya, N., Dutta, T., Misra, D., and Ghosh, N. N., 2021. Inhibitory efficacy of RNA virus drugs against SARS-CoV-2 proteins: An extensive study. Journal of Molecular Structure, 1234, 130152. DOI: https://doi.org/10.1016/j.molstruc.2021.130152.
  • Meng, X.-Y., Zhang, H.-X., Mezei, M., and Cui, M., 2011. Molecular docking: a powerful approach for structure-based drug discovery. Current computer-aided drug design, 7, 146-157. DOI: 10.2174/157340911795677602.
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., and Olson, A. J., 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational chemistry, 30, 2785-2791. DOI: 10.1002/jcc.21256.
  • Mueller, A. L., McNamara, M. S., and Sinclair, D. A., 2020. Why does COVID-19 disproportionately affect older people? Aging (Albany NY), 12, 9959-9981. DOI: 10.18632/aging.103344.
  • Parr, R. G., 1980. Density functional theory of atoms and molecules. Horizons of quantum chemistry, Fukui, K., and Pullman, B. Springer, 5-15.
  • Petrosillo, N., Viceconte, G., Ergonul, O., Ippolito, G., and Petersen, E., 2020. COVID-19, SARS and MERS: are they closely related? Clinical Microbiology and Infection, 26, 729-734. DOI: 10.1016/j.cmi.2020.03.026.
  • Raghi, K. R., Sherin, D. R., Saumya, M. J., Arun, P. S., Sobha, V. N., and Manojkumar, T. K., 2018. Computational study of molecular electrostatic potential, docking and dynamics simulations of gallic acid derivatives as ABL inhibitors. Computational Biology and Chemistry, 74, 239-246. DOI: https://doi.org/10.1016/j.compbiolchem.2018.04.001.
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., and Schroeder, M., 2015. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43, W443-W447. DOI: 10.1093/nar/gkv315. Shagufta, and Ahmad, I., 2021. The race to treat COVID-19: Potential therapeutic agents for the prevention and treatment of SARS-CoV-2. European Journal of Medicinal Chemistry, 213, 113157. DOI: https://doi.org/10.1016/j.ejmech.2021.113157.
  • Sheahan, T., Sims, A., Graham, R., Menachery, V., Gralinski, L., Case, J., Leist, S., Pyrc, K., Feng, J., Trantcheva, I., Bannister, R., Park, Y., Babusis, D., Clarke, M., Mackman, R., Spahn, J., Palmiotti, C., Siegel, D., Ray, A., and Baric, R., 2017. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine, 9, 1-10. DOI: 10.1126/scitranslmed.aal3653.
  • Sheikhpour, M., 2020. The Current Recommended Drugs and Strategies for the Treatment of Coronavirus Disease (COVID-19). Therapeutics and clinical risk management, 16, 933-946. DOI: 10.2147/TCRM.S262936. Sheldrick, G. M., 2015. Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry, 71, 3-8.
  • Sheldrick, G. M., 2015. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallographica Section A: Foundations of Crystallography, 71, 3-8. DOI: 10.1107/S2053273314026370.
  • Shukla, V. K., Al-Abdullah, E. S., El-Emam, A. A., Sachan, A. K., Pathak, S. K., Kumar, A., Prasad, O., Bishnoi, A., and Sinha, L., 2014. Spectroscopic (FT-IR, FT-Raman, and UV–visible) and quantum chemical studies on molecular geometry, Frontier molecular orbitals, NBO, NLO and thermodynamic properties of 1-acetylindole. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 626-638. DOI: https://doi.org/10.1016/j.saa.2014.06.043.
  • Sohag, A. A. M., Hannan, M. A., Rahman, S., Hossain, M., Hasan, M., Khan, M. K., Khatun, A., Dash, R., and Uddin, M. J., 2020. Revisiting potential druggable targets against SARS-CoV-2 and repurposing therapeutics under preclinical study and clinical trials: A comprehensive review. Drug development research, 81, 919-941. DOI: 10.1002/ddr.21709.
  • Srivastava, S., Ahmad, R., and Khare, S. K., 2021. Alzheimer’s disease and its treatment by different approaches: A review. European Journal of Medicinal Chemistry, 216, 113320. DOI: https://doi.org/10.1016/j.ejmech.2021.113320.
  • Turner, M., McKinnon, J., Wolff, S., Grimwood, D., Spackman, P., Jayatilaka, D., and Spackman, M., 2017. CrystalExplorer17. The University of Western Australia, 108, 76730.
  • Westrip, S. P., 2010. PublCIF: Software for editing, validating and formatting crystallographic information files. Journal of Applied Crystallography, 43, 920-925. DOI: 10.1107/S0021889810022120.
  • WHO. "WHO Coronavirus (COVID-19) Dashboard." from https://covid19.who.int/.
  • Xiang, R., Yu, Z., Wang, Y., Wang, L., Huo, S., Li, Y., Liang, R., Hao, Q., Ying, T., Gao, Y., Yu, F., and Jiang, S., 2021. Recent advances in developing small-molecule inhibitors against SARS-CoV-2. Acta Pharmaceutica Sinica B, 12, 1591-1623. DOI: https://doi.org/10.1016/j.apsb.2021.06.016.
  • Young, B., Tan, T. T., and Leo, Y. S., 2021. The place for remdesivir in COVID-19 treatment. The Lancet Infectious Diseases, 21, 20-21. DOI: 10.1016/S1473-3099(20)30911-7.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fiziksel Kimya (Diğer)
Bölüm Makaleler
Yazarlar

Songül Şahin 0000-0003-4713-3137

Necmi Dege 0000-0003-0660-4721

Proje Numarası None
Erken Görünüm Tarihi 29 Ağustos 2023
Yayımlanma Tarihi 31 Ağustos 2023
Gönderilme Tarihi 19 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 23 Sayı: 4

Kaynak Göster

APA Şahin, S., & Dege, N. (2023). A Perspective with in Silico Medicinal and Computational Methods to A New Schiff Base Molecule. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(4), 883-897. https://doi.org/10.35414/akufemubid.1237445
AMA Şahin S, Dege N. A Perspective with in Silico Medicinal and Computational Methods to A New Schiff Base Molecule. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ağustos 2023;23(4):883-897. doi:10.35414/akufemubid.1237445
Chicago Şahin, Songül, ve Necmi Dege. “A Perspective With in Silico Medicinal and Computational Methods to A New Schiff Base Molecule”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, sy. 4 (Ağustos 2023): 883-97. https://doi.org/10.35414/akufemubid.1237445.
EndNote Şahin S, Dege N (01 Ağustos 2023) A Perspective with in Silico Medicinal and Computational Methods to A New Schiff Base Molecule. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 4 883–897.
IEEE S. Şahin ve N. Dege, “A Perspective with in Silico Medicinal and Computational Methods to A New Schiff Base Molecule”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 4, ss. 883–897, 2023, doi: 10.35414/akufemubid.1237445.
ISNAD Şahin, Songül - Dege, Necmi. “A Perspective With in Silico Medicinal and Computational Methods to A New Schiff Base Molecule”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/4 (Ağustos 2023), 883-897. https://doi.org/10.35414/akufemubid.1237445.
JAMA Şahin S, Dege N. A Perspective with in Silico Medicinal and Computational Methods to A New Schiff Base Molecule. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:883–897.
MLA Şahin, Songül ve Necmi Dege. “A Perspective With in Silico Medicinal and Computational Methods to A New Schiff Base Molecule”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 4, 2023, ss. 883-97, doi:10.35414/akufemubid.1237445.
Vancouver Şahin S, Dege N. A Perspective with in Silico Medicinal and Computational Methods to A New Schiff Base Molecule. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(4):883-97.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.