Bu çalışmada iki Lucas sayısının birleşimi olan tüm Mulatu sayılarının 11,17,73,118 olduğunu buluyoruz. 〖(M_k)〗_(k≥0) ve 〖(L_k)〗_(k≥0) Mulatu ve Lucas dizileri olsun. Yani biz negatif olmayan (k,m,n,d) tam sayılarında M_k=L_m L_n=〖10〗^d L_m+L_n Diyofant denklemini çözüyoruz, burada d, L_n nin basamak sayısını gösterir. Bu denklemin çözümleri (k,m,n,d)=(4,1,1,1),(5,1,4,1),(8,4,2,1),(9,1,6,2) ile ifade edilir. Bir başka deyişle M_4=L_1 L_1=11, M_5=L_1 L_4=17, M_8=L_4 L_2=73, M_9=L_1 L_6=118 çözümlerine sahibiz. İspat Baker’in teorisine dayanmakta ve biz bu denklemi çözmek için logaritmalarda doğrusal formları ve indirgeme metodunu kullandık.
Lucas sayıları Mulatu sayıları Logaritmalarda lineer formlar Diophantine denklemleri
In this paper, we find that all Mulatu numbers, which are concatenations of two Lucas numbers are 11,17,73,118. Let 〖(M_k)〗_(k≥0) and 〖(L_k)〗_(k≥0) be the Mulatu and Lucas sequences. That is, we solve the Diophantine equation M_k=L_m L_n=10^d L_m+L_n in non-negative integers (k,m,n,d), where d denotes the number of digits of L_n. Solutions of this equation are denoted by (k,m,n,d)=(4,1,1,1),(5,1,4,1),(8,4,2,1),(9,1,6,2). In other words, we have the solutions M_4=L_1 L_1=11, M_5=L_1 L_4=17, M_8=L_4 L_2=73, M_9=L_1 L_6=118. The proof based on Baker’s theory and we used linear forms in logarithms and reduction method to solve of this Diophantine equation.
Lucas numbers Mulatu numbers Linear forms in logarithms Diophantine equations
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 29 Ağustos 2023 |
Yayımlanma Tarihi | 31 Ağustos 2023 |
Gönderilme Tarihi | 22 Ocak 2023 |
Yayımlandığı Sayı | Yıl 2023 Cilt: 23 Sayı: 4 |
Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.