Araştırma Makalesi
BibTex RIS Kaynak Göster

L-Sistein Tayini için Çiçek Benzeri DOPANFs Modifiye Kalem Grafit Elektroda Dayalı Basit Bir Elektrokimyasal Sensör

Yıl 2023, Cilt: 23 Sayı: 5, 1112 - 1121, 30.10.2023
https://doi.org/10.35414/akufemubid.1347411

Öz

L-sisteinin (L-Cys) elektrokimyasal tayini için yeni bir tek kullanımlık çiçek benzeri DOPANFs modifiye
edilmiş kalem grafit elektrot üretildi. DOPANFs’in yapısı SEM, EDX, FTIR ve XPS analizleri ile karakterize
edildi. Karakterizasyon, DOPANFs’in üç boyutlu hiyerarşik çiçek benzeri bir yapı sergilediğini
göstermiştir. DOPANFs modifiye kalem grafit elektrotun (PGE) elektrokimyasal özelliği döngüsel
voltametri (CV) tekniği ile incelendi. L-Cys tayini için diferansiyel puls voltametri (DPV) tekniği
kullanılarak daha hassas ölçümler yapıldı. L-Cys için 1-20 μM doğrusal aralığında tayin sınırı 0.989 μM
olarak hesaplandı.

Teşekkür

Necmettin Erbakan Üniversitesi öğretim üyelerinden Prof. Dr. Emine Güler Akgemci'ye deneyler için laboratuvarını ve tüm laboratuvar olanaklarını sağladığı için teşekkür ederim.

Kaynakça

  • Abbaspour, A., Ghaffarinejad, A., 2008. Electrocatalytic oxidation of l-cysteine with a stable copper–cobalt hexacyanoferrate electrochemically modified carbon paste electrode. Electrochimica Acta, 53, 6643–6650.
  • Arul, P., Huang, S.T., Mani, V., Huang, C.H., 2022. Graphene quantum dots-based nanocomposite for electrocatalytic application of L-cysteine in whole blood and live cells. Electrochimica Acta, 428, 140937.
  • Atacan, K., 2019. CuFe2O4/reduced graphene oxide nanocomposite decorated with gold nanoparticles as a new electrochemical sensor material for L-cysteine detection. Journal of Alloys and Compounds, 791, 391-401.
  • Cai, Y., Chen, J., Liu, X., Hu, S., Wang, Z., 2022. Synthesis of C–N@GC Nanomaterial Derived from Core-Shell ZIF-8@ZIF-67 and Its Application in the Detection of L-Cysteine. Russian Journal of Physical Chemistry A, 96, S153–S159.
  • Cao, F., Dong, Q., Li, C., Kwak, D., Huang, Y., Song, D., Lei, Y., 2018. Sensitive and Selective electrochemical Determination of L-Cysteine Based on Cerium Oxide Nanofibers Modified Screen Printed Carbon Electrode. Electroanalysis, 30, 1133-1139.
  • Cui, J., Jia, S., 2017. Organic–inorganic hybrid nanoflowers: A novel host platform for immobilizing biomolecules. Coordination Chemistry Reviews, 352, 249-263.
  • Cummings, T.E., Elving, P.J., 1978 Determination of the electrochemically effective electrode area. Analytical Chemistry, 50, 480–488.
  • Çakıroğlu, B., Demirci, Y.C., Gökgöz, E., Özacar, M., 2019. A photoelectrochemical glucose and lactose biosensor consisting of gold nanoparticles, MnO2 and g-C3N4 decorated TiO2. Sensors and Actuators B: Chemical, 282, 282-289.
  • dos Santos Silva, F.D.A., da Silva, M.G.A, Lima, P.R., Meneghetti, M.R., Kubota, L.T., Goulart, M.O.F., 2013. A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods. Biosensors and Bioelectronics, 50, 202–209.
  • aFindik, M., Bingol, H., Erdem, A., 2021. Hybrid nanoflowers modified pencil graphite electrodes developed for electrochemical monitoring of interaction between Mitomycin C and DNA. Talanta, 222, 121647.
  • bFindik, M., Bingol, H., Erdem, A., 2021. Electrochemical detection of interaction between daunorubicin and DNA by hybrid nanoflowers modified graphite electrodes. Sensors and Actuators B: Chemical, 329, 129120.
  • Findik, M., 2023. ZnO nanoflowers modified pencil graphite electrode for voltammetric DNA detection and investigation of Gemcitabine–DNA interaction. Materials Chemistry and Physics, 307, 128117.
  • Gallo, M.C., Pires, B.M., Toledo, K.C., Jannuzzi, S.A., Arruda, E.G., Formiga, A.L., Bonacin, J.A., 2014. The use of modified electrodes by hybrid systems gold nanoparticles/Mn-porphyrin in electrochemical detection of cysteine. Synthetic Metals, 198, 335–339.
  • He, L., Zhang, S., Ji, H., Wang, M., Peng, D., Yan, F., Fang, S., Zhang, H., Jia, C., Zhang, Z., 2016. Protein-templated cobaltous phosphate nanocomposites for the highly sensitive and selective detection of platelet-derived growth factor-BB. Biosensors and Bioelectronics, 79, 553–560.
  • Hosseini, H., Ahmar, H., Dehghani, A., Bagheri, A., Tadjarodi, A., Fakhari, A.R., 2013. A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine. Biosensors and Bioelectronics, 42, 426–429.
  • Huang, J., Tao, F., Sun, Z., Li, F., Cai, Z., Zhang, Y., Fan, C., Pei, L., 2022. A facile synthesis route to BiPr composite nanosheets and sensitive electrochemical detection of L-cysteine. Microchemical Journal, 182, 107915.
  • Jerome, R., Keerthivasan, P.V., Murugan, N., Devi, N.R., Sundramoorthy, A.K., 2020. Preparation of Stable CuO/Boron Nitride Nanocomposite Modified Electrode for Selective Electrochemical Detection of L–Cysteine. Chemistry Select, 5, 9111–9118.
  • Kalinke, C., Oliveira, P.R., Janegitz, B.C., Bonacin, J.A., 2022. Prussian blue nanoparticles anchored on activated 3D printed sensor for the detection of L-cysteine. Sensors & Actuators: B. Chemical, 362, 131797.
  • Karsli, B., Uras, I. S., Konuklugil, B., Demirbas, A., 2023. Synthesis of Axinyssa digitata Extract Directed Hybrid Nanoflower and Investigation of Its Antimicrobial Activity. IEEE Transactions on Nanobioscience, 22(3), 523 – 528.
  • Kazemi, S., Karimi-Maleh, H., Hosseinzadeh, R., Faraji, F., 2013. Selective and sensitive voltammetric sensor based on modified multiwall carbon nanotubes paste electrode for simultaneous determination of L-cysteine and folic acid. Ionics, 19, 933–940.
  • Kılıç, A.B., Ildız, N., Yusufbeyoğlu, S., Öçsoy, İ., 2023. Nanoflower synthesis formed at different pH based on Crocus sativus L. (Croci stigma, saffron) extract and its major components: a new approach for enhancing antioxidant, antimicrobial and catalytic activities. Inorganic and Nano-Metal Chemistry. DOI: 10.1080/24701556.2023.2240757
  • Koca, F.D., 2022. Preparation of thymol incorporated organic-inorganic hybrid nanoflowers as a novel fenton agent with intrinsic catalytic and antimicrobial activities. Inorganic and Nano-Metal Chemistry, 52 (2), 322-327.
  • Koca, F.D., Muhy, H.M., Halici, M.G., 2023. Synthesis of hybrid Cu nanoflowers by using Tornabea scutellifera lichen extract, and evaluation of their dye degredation, and antioxidant activities. South African Journal of Botany, 16, 394-401.
  • Kubalczyk, P. Bald, E. Furmaniak, P. Głowacki, R., 2014. Simultaneous determination of total homocysteine and cysteine in human plasma by capillary zone electrophoresis with pH-mediated sample stacking, Analytical Methods, 6, 4138.
  • Kurniawan, A. Kurniawan, F. Gunawan, F. Chou, S.H. Wang, M.J., 2019. Disposable electrochemical sensor based on copper-electrodeposited screenprinted gold electrode and its application in sensing L-cysteine. Electrochimica Acta, 293, 318–327.
  • Le, H.T., Tran, D.T., Doan, T.L.L., Kim, N.H., Lee, J.H., 2019. Hierarchical Cu@CuxO nanowires arrays-coated gold nanodots as a highly sensitive self-supported electrocatalyst for L-cysteine oxidation. Biosensor and Bioelectronic, 139, 111327.
  • Lee, S.W., Cheon, S.A., Kim, M.I., Park, T.J., 2015. Organic–inorganic hybrid nanoflowers: types, characteristics, and future prospects. Journal of Nanobiotechnology, 13, 54.
  • Lianga, S., Lia, F., Wangb, C., Duc, C., Wanga, Z., Wang, L., 2023. Hemoglobin-inorganic hybrid nanoflowers: Synthesis and applications for carbene N–H insertion reaction. Biocatalysis and Biotransformation. DOI: 10.1080/10242422.2023.2195036
  • Liu, W. Luo, J. Guo, Y. Kou, J. Li, B. Zhang, Z., 2014. Nanoparticle coated paper-based chemiluminescence device for the determination of L-cysteine. Talanta, 120, 336–341.
  • Malkondu, S., Erdemir, S., 2022. Sistein Tayini İçin Yeni Bir Algılayıcı Molekülün Sentezi ve Karakterizasyonu. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 48(2), 79-87.
  • Manibalan, G., Murugadoss, G., Marimuthu, R., Rajabathar, J.R., Kumar, M.R., 2022. Facile synthesis of heterostructure NiO–SnO2 nanocomposite for selective electrochemical determination of L-cysteine. Journal of Materials Science: Materials in Electronics, 33, 6592–6602.
  • Mohammadnavaz, A., Beitollahi, H., Modiri, S., 2023. Electro-catalytic determination of L-Cysteine using multi walled carbon nanotubes-Co3O4 nanocomposite/benzoylferrocene/ionic liquid modified carbon paste electrode. Inorganica Chimica Acta, 548, 121340.
  • Saylam, E., Akkaya, Y., Ilhan, E., Cesur, S., Guler, E., Sahin, A., Cam, M.E., Ekren, N., Oktar, F.N., Gunduz, O., Ficai, D., Ficai, A., 2021. Levodopa-Loaded 3D-Printed Poly (Lactic) Acid/Chitosan Neural Tissue Scaffold as a Promising Drug Delivery System for the Treatment of Parkinson’s Disease. Applied Sciences, 11, 10727.
  • Silva, C.C.C., Breitkreitz, M.C., Santhiago, M., Corrêa, C.C., Kubota, L.T., 2012. Construction of a new functional platform by grafting poly(4-vinylpyridine) in multi-walled carbon nanotubes for complexing copper ions aiming the amperometric detection of L-cysteine. Electrochimica Acta, 71(3), 150-158.
  • Song, Y., Ji, H., Wang, M., He, L., Song, R., Zhang, Z., 2017. Feasible synthesis of protein-templated zinc phosphate-supported Pt nanoparticle with enhanced electrocatalysis for methanol oxidation. Applied Surface Science, 422, 228-238.
  • Wang, L., Tricard, S., Yue, P., Zhao, J., Fang, J., Shen, W., 2016. Polypyrrole and graphene quantum dots@Prussian blue hybrid film on graphite felt electrodes: application for amperometric determination of L-cysteine. Biosensors and Bioelectronics, 77, 1112–1118.
  • Wang, Y., Peng, W. Liu, L., Gao, F., Li, M., 2012. The electrochemical determination of l-cysteine at a Ce-doped Mg–Al layered double hydroxide glassy carbon electrode. Electrochimica Acta, 70, 193–198.
  • Wang, Y.Q., Wang, W., Li, G.F., Liu, Q., Wei, T., Li, B.S., Jiang, C.Y., Sun, Y.M., 2016. Electrochemical detection of L-cysteine using a glassy carbon electrode modified with a two-dimensional composite prepared from platinum and Fe3O4 nanoparticles on reduced graphene oxide. Microchimica Acta, 183, 3221–3228.
  • Tao, Y., Zhang, X., Wang, J., Wang, X., Yang, N., 2012. Simultaneous determination of cysteine, ascorbic acid and uric acid by capillary electrophoresis with electrochemiluminescence. Journal of Electroanalytical Chemistry, 674, 65-70.
  • Yang, L., Zhang, X., Li, M., Qu, L., Liu, Z., 2022. Acetylcholinesterase–Cu3(PO4)2 hybrid nanoflowers for electrochemical detection of dichlorvos using square-wave voltammetry. Analytical Methods, 14, 3911–3920.
  • Yang, S., Li, G., Xia, N., Wang, Y., Liu, P., Qu, L., 2021. Fabrication of hierarchical 3D prickly ball-like Co-La oxides/reduced graphene oxide composite for electrochemical sensing of L-cysteine. Journal of Alloys and Compounds, 853, 157077.
  • Yu, X., Hu, L., He, H., Zhang, F., Wang, M., Wei, W., Xia, Z., 2019. Y-shaped DNA-Mediated hybrid nanoflowers as efficient gene carriers for fluorescence imaging of tumor-related mRNA in living cells. Analytica Chimica Acta, 1057, 114–122.
  • Zaeifi, F., Sedaghati, F., Samari, F., 2022. A new electrochemical sensor based on green synthesized CuO nanostructures modified carbon ionic liquid electrode for electrocatalytic oxidation and monitoring of L-cysteine. Microchemical Journal, 183, 107969.
  • Ziyatdinova, G., Kozlova, E., Budnikov, H., 2018. Selective electrochemical sensor based on the electropolymerized p-coumaric acid for the direct determination of L-cysteine. Electrochimica Acta, 270, 369-377.

A Simple Electrochemical Sensor Based on Flower-like DOPANFs Modified Pencil Graphite Electrode for L-Cysteine Determination

Yıl 2023, Cilt: 23 Sayı: 5, 1112 - 1121, 30.10.2023
https://doi.org/10.35414/akufemubid.1347411

Öz

A novel disposable flower-like DOPANFs modified pencil graphite electrode for the electrochemical
determination of L-cysteine (L-Cys) has been fabricated. The structure of DOPANFs was characterised
by SEM, EDX, FTIR and XPS analyses. The characterization showed that DOPANFs exhibited a three
dimensional hierarchical flower-like structure. The electrochemical property of DOPANFs modified
pencil graphite electrode (PGE) was investigated by cyclic voltammetry (CV) technique. More sensitive
measurements were made by using differential pulse voltammetry (DPV) technique for L-Cys
determination. The limit of detection for L-Cys in the linear range 1-20 μM was calculated as 0.989 μM.

Kaynakça

  • Abbaspour, A., Ghaffarinejad, A., 2008. Electrocatalytic oxidation of l-cysteine with a stable copper–cobalt hexacyanoferrate electrochemically modified carbon paste electrode. Electrochimica Acta, 53, 6643–6650.
  • Arul, P., Huang, S.T., Mani, V., Huang, C.H., 2022. Graphene quantum dots-based nanocomposite for electrocatalytic application of L-cysteine in whole blood and live cells. Electrochimica Acta, 428, 140937.
  • Atacan, K., 2019. CuFe2O4/reduced graphene oxide nanocomposite decorated with gold nanoparticles as a new electrochemical sensor material for L-cysteine detection. Journal of Alloys and Compounds, 791, 391-401.
  • Cai, Y., Chen, J., Liu, X., Hu, S., Wang, Z., 2022. Synthesis of C–N@GC Nanomaterial Derived from Core-Shell ZIF-8@ZIF-67 and Its Application in the Detection of L-Cysteine. Russian Journal of Physical Chemistry A, 96, S153–S159.
  • Cao, F., Dong, Q., Li, C., Kwak, D., Huang, Y., Song, D., Lei, Y., 2018. Sensitive and Selective electrochemical Determination of L-Cysteine Based on Cerium Oxide Nanofibers Modified Screen Printed Carbon Electrode. Electroanalysis, 30, 1133-1139.
  • Cui, J., Jia, S., 2017. Organic–inorganic hybrid nanoflowers: A novel host platform for immobilizing biomolecules. Coordination Chemistry Reviews, 352, 249-263.
  • Cummings, T.E., Elving, P.J., 1978 Determination of the electrochemically effective electrode area. Analytical Chemistry, 50, 480–488.
  • Çakıroğlu, B., Demirci, Y.C., Gökgöz, E., Özacar, M., 2019. A photoelectrochemical glucose and lactose biosensor consisting of gold nanoparticles, MnO2 and g-C3N4 decorated TiO2. Sensors and Actuators B: Chemical, 282, 282-289.
  • dos Santos Silva, F.D.A., da Silva, M.G.A, Lima, P.R., Meneghetti, M.R., Kubota, L.T., Goulart, M.O.F., 2013. A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods. Biosensors and Bioelectronics, 50, 202–209.
  • aFindik, M., Bingol, H., Erdem, A., 2021. Hybrid nanoflowers modified pencil graphite electrodes developed for electrochemical monitoring of interaction between Mitomycin C and DNA. Talanta, 222, 121647.
  • bFindik, M., Bingol, H., Erdem, A., 2021. Electrochemical detection of interaction between daunorubicin and DNA by hybrid nanoflowers modified graphite electrodes. Sensors and Actuators B: Chemical, 329, 129120.
  • Findik, M., 2023. ZnO nanoflowers modified pencil graphite electrode for voltammetric DNA detection and investigation of Gemcitabine–DNA interaction. Materials Chemistry and Physics, 307, 128117.
  • Gallo, M.C., Pires, B.M., Toledo, K.C., Jannuzzi, S.A., Arruda, E.G., Formiga, A.L., Bonacin, J.A., 2014. The use of modified electrodes by hybrid systems gold nanoparticles/Mn-porphyrin in electrochemical detection of cysteine. Synthetic Metals, 198, 335–339.
  • He, L., Zhang, S., Ji, H., Wang, M., Peng, D., Yan, F., Fang, S., Zhang, H., Jia, C., Zhang, Z., 2016. Protein-templated cobaltous phosphate nanocomposites for the highly sensitive and selective detection of platelet-derived growth factor-BB. Biosensors and Bioelectronics, 79, 553–560.
  • Hosseini, H., Ahmar, H., Dehghani, A., Bagheri, A., Tadjarodi, A., Fakhari, A.R., 2013. A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine. Biosensors and Bioelectronics, 42, 426–429.
  • Huang, J., Tao, F., Sun, Z., Li, F., Cai, Z., Zhang, Y., Fan, C., Pei, L., 2022. A facile synthesis route to BiPr composite nanosheets and sensitive electrochemical detection of L-cysteine. Microchemical Journal, 182, 107915.
  • Jerome, R., Keerthivasan, P.V., Murugan, N., Devi, N.R., Sundramoorthy, A.K., 2020. Preparation of Stable CuO/Boron Nitride Nanocomposite Modified Electrode for Selective Electrochemical Detection of L–Cysteine. Chemistry Select, 5, 9111–9118.
  • Kalinke, C., Oliveira, P.R., Janegitz, B.C., Bonacin, J.A., 2022. Prussian blue nanoparticles anchored on activated 3D printed sensor for the detection of L-cysteine. Sensors & Actuators: B. Chemical, 362, 131797.
  • Karsli, B., Uras, I. S., Konuklugil, B., Demirbas, A., 2023. Synthesis of Axinyssa digitata Extract Directed Hybrid Nanoflower and Investigation of Its Antimicrobial Activity. IEEE Transactions on Nanobioscience, 22(3), 523 – 528.
  • Kazemi, S., Karimi-Maleh, H., Hosseinzadeh, R., Faraji, F., 2013. Selective and sensitive voltammetric sensor based on modified multiwall carbon nanotubes paste electrode for simultaneous determination of L-cysteine and folic acid. Ionics, 19, 933–940.
  • Kılıç, A.B., Ildız, N., Yusufbeyoğlu, S., Öçsoy, İ., 2023. Nanoflower synthesis formed at different pH based on Crocus sativus L. (Croci stigma, saffron) extract and its major components: a new approach for enhancing antioxidant, antimicrobial and catalytic activities. Inorganic and Nano-Metal Chemistry. DOI: 10.1080/24701556.2023.2240757
  • Koca, F.D., 2022. Preparation of thymol incorporated organic-inorganic hybrid nanoflowers as a novel fenton agent with intrinsic catalytic and antimicrobial activities. Inorganic and Nano-Metal Chemistry, 52 (2), 322-327.
  • Koca, F.D., Muhy, H.M., Halici, M.G., 2023. Synthesis of hybrid Cu nanoflowers by using Tornabea scutellifera lichen extract, and evaluation of their dye degredation, and antioxidant activities. South African Journal of Botany, 16, 394-401.
  • Kubalczyk, P. Bald, E. Furmaniak, P. Głowacki, R., 2014. Simultaneous determination of total homocysteine and cysteine in human plasma by capillary zone electrophoresis with pH-mediated sample stacking, Analytical Methods, 6, 4138.
  • Kurniawan, A. Kurniawan, F. Gunawan, F. Chou, S.H. Wang, M.J., 2019. Disposable electrochemical sensor based on copper-electrodeposited screenprinted gold electrode and its application in sensing L-cysteine. Electrochimica Acta, 293, 318–327.
  • Le, H.T., Tran, D.T., Doan, T.L.L., Kim, N.H., Lee, J.H., 2019. Hierarchical Cu@CuxO nanowires arrays-coated gold nanodots as a highly sensitive self-supported electrocatalyst for L-cysteine oxidation. Biosensor and Bioelectronic, 139, 111327.
  • Lee, S.W., Cheon, S.A., Kim, M.I., Park, T.J., 2015. Organic–inorganic hybrid nanoflowers: types, characteristics, and future prospects. Journal of Nanobiotechnology, 13, 54.
  • Lianga, S., Lia, F., Wangb, C., Duc, C., Wanga, Z., Wang, L., 2023. Hemoglobin-inorganic hybrid nanoflowers: Synthesis and applications for carbene N–H insertion reaction. Biocatalysis and Biotransformation. DOI: 10.1080/10242422.2023.2195036
  • Liu, W. Luo, J. Guo, Y. Kou, J. Li, B. Zhang, Z., 2014. Nanoparticle coated paper-based chemiluminescence device for the determination of L-cysteine. Talanta, 120, 336–341.
  • Malkondu, S., Erdemir, S., 2022. Sistein Tayini İçin Yeni Bir Algılayıcı Molekülün Sentezi ve Karakterizasyonu. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 48(2), 79-87.
  • Manibalan, G., Murugadoss, G., Marimuthu, R., Rajabathar, J.R., Kumar, M.R., 2022. Facile synthesis of heterostructure NiO–SnO2 nanocomposite for selective electrochemical determination of L-cysteine. Journal of Materials Science: Materials in Electronics, 33, 6592–6602.
  • Mohammadnavaz, A., Beitollahi, H., Modiri, S., 2023. Electro-catalytic determination of L-Cysteine using multi walled carbon nanotubes-Co3O4 nanocomposite/benzoylferrocene/ionic liquid modified carbon paste electrode. Inorganica Chimica Acta, 548, 121340.
  • Saylam, E., Akkaya, Y., Ilhan, E., Cesur, S., Guler, E., Sahin, A., Cam, M.E., Ekren, N., Oktar, F.N., Gunduz, O., Ficai, D., Ficai, A., 2021. Levodopa-Loaded 3D-Printed Poly (Lactic) Acid/Chitosan Neural Tissue Scaffold as a Promising Drug Delivery System for the Treatment of Parkinson’s Disease. Applied Sciences, 11, 10727.
  • Silva, C.C.C., Breitkreitz, M.C., Santhiago, M., Corrêa, C.C., Kubota, L.T., 2012. Construction of a new functional platform by grafting poly(4-vinylpyridine) in multi-walled carbon nanotubes for complexing copper ions aiming the amperometric detection of L-cysteine. Electrochimica Acta, 71(3), 150-158.
  • Song, Y., Ji, H., Wang, M., He, L., Song, R., Zhang, Z., 2017. Feasible synthesis of protein-templated zinc phosphate-supported Pt nanoparticle with enhanced electrocatalysis for methanol oxidation. Applied Surface Science, 422, 228-238.
  • Wang, L., Tricard, S., Yue, P., Zhao, J., Fang, J., Shen, W., 2016. Polypyrrole and graphene quantum dots@Prussian blue hybrid film on graphite felt electrodes: application for amperometric determination of L-cysteine. Biosensors and Bioelectronics, 77, 1112–1118.
  • Wang, Y., Peng, W. Liu, L., Gao, F., Li, M., 2012. The electrochemical determination of l-cysteine at a Ce-doped Mg–Al layered double hydroxide glassy carbon electrode. Electrochimica Acta, 70, 193–198.
  • Wang, Y.Q., Wang, W., Li, G.F., Liu, Q., Wei, T., Li, B.S., Jiang, C.Y., Sun, Y.M., 2016. Electrochemical detection of L-cysteine using a glassy carbon electrode modified with a two-dimensional composite prepared from platinum and Fe3O4 nanoparticles on reduced graphene oxide. Microchimica Acta, 183, 3221–3228.
  • Tao, Y., Zhang, X., Wang, J., Wang, X., Yang, N., 2012. Simultaneous determination of cysteine, ascorbic acid and uric acid by capillary electrophoresis with electrochemiluminescence. Journal of Electroanalytical Chemistry, 674, 65-70.
  • Yang, L., Zhang, X., Li, M., Qu, L., Liu, Z., 2022. Acetylcholinesterase–Cu3(PO4)2 hybrid nanoflowers for electrochemical detection of dichlorvos using square-wave voltammetry. Analytical Methods, 14, 3911–3920.
  • Yang, S., Li, G., Xia, N., Wang, Y., Liu, P., Qu, L., 2021. Fabrication of hierarchical 3D prickly ball-like Co-La oxides/reduced graphene oxide composite for electrochemical sensing of L-cysteine. Journal of Alloys and Compounds, 853, 157077.
  • Yu, X., Hu, L., He, H., Zhang, F., Wang, M., Wei, W., Xia, Z., 2019. Y-shaped DNA-Mediated hybrid nanoflowers as efficient gene carriers for fluorescence imaging of tumor-related mRNA in living cells. Analytica Chimica Acta, 1057, 114–122.
  • Zaeifi, F., Sedaghati, F., Samari, F., 2022. A new electrochemical sensor based on green synthesized CuO nanostructures modified carbon ionic liquid electrode for electrocatalytic oxidation and monitoring of L-cysteine. Microchemical Journal, 183, 107969.
  • Ziyatdinova, G., Kozlova, E., Budnikov, H., 2018. Selective electrochemical sensor based on the electropolymerized p-coumaric acid for the direct determination of L-cysteine. Electrochimica Acta, 270, 369-377.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrokimya
Bölüm Makaleler
Yazarlar

Mükerrem Fındık 0000-0002-9441-0814

Erken Görünüm Tarihi 27 Ekim 2023
Yayımlanma Tarihi 30 Ekim 2023
Gönderilme Tarihi 21 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 23 Sayı: 5

Kaynak Göster

APA Fındık, M. (2023). L-Sistein Tayini için Çiçek Benzeri DOPANFs Modifiye Kalem Grafit Elektroda Dayalı Basit Bir Elektrokimyasal Sensör. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(5), 1112-1121. https://doi.org/10.35414/akufemubid.1347411
AMA Fındık M. L-Sistein Tayini için Çiçek Benzeri DOPANFs Modifiye Kalem Grafit Elektroda Dayalı Basit Bir Elektrokimyasal Sensör. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ekim 2023;23(5):1112-1121. doi:10.35414/akufemubid.1347411
Chicago Fındık, Mükerrem. “L-Sistein Tayini için Çiçek Benzeri DOPANFs Modifiye Kalem Grafit Elektroda Dayalı Basit Bir Elektrokimyasal Sensör”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, sy. 5 (Ekim 2023): 1112-21. https://doi.org/10.35414/akufemubid.1347411.
EndNote Fındık M (01 Ekim 2023) L-Sistein Tayini için Çiçek Benzeri DOPANFs Modifiye Kalem Grafit Elektroda Dayalı Basit Bir Elektrokimyasal Sensör. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 5 1112–1121.
IEEE M. Fındık, “L-Sistein Tayini için Çiçek Benzeri DOPANFs Modifiye Kalem Grafit Elektroda Dayalı Basit Bir Elektrokimyasal Sensör”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 5, ss. 1112–1121, 2023, doi: 10.35414/akufemubid.1347411.
ISNAD Fındık, Mükerrem. “L-Sistein Tayini için Çiçek Benzeri DOPANFs Modifiye Kalem Grafit Elektroda Dayalı Basit Bir Elektrokimyasal Sensör”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/5 (Ekim 2023), 1112-1121. https://doi.org/10.35414/akufemubid.1347411.
JAMA Fındık M. L-Sistein Tayini için Çiçek Benzeri DOPANFs Modifiye Kalem Grafit Elektroda Dayalı Basit Bir Elektrokimyasal Sensör. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:1112–1121.
MLA Fındık, Mükerrem. “L-Sistein Tayini için Çiçek Benzeri DOPANFs Modifiye Kalem Grafit Elektroda Dayalı Basit Bir Elektrokimyasal Sensör”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 5, 2023, ss. 1112-21, doi:10.35414/akufemubid.1347411.
Vancouver Fındık M. L-Sistein Tayini için Çiçek Benzeri DOPANFs Modifiye Kalem Grafit Elektroda Dayalı Basit Bir Elektrokimyasal Sensör. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(5):1112-21.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.