Araştırma Makalesi
BibTex RIS Kaynak Göster

Silika Aerojelin Hidrofobik Polistiren Nanoliflerin Termal Özellikleri Üzerine Etkisi

Yıl 2023, Cilt: 23 Sayı: 6, 1497 - 1506, 28.12.2023
https://doi.org/10.35414/akufemubid.1257557

Öz

Bu çalışmada, tetraetilen ortosilikat (TEOS) öncülünden sol-jel reaksiyonu ile sentezlenen silika aerojelleri (SA) içeren, elektroeğirme yöntemiyle üretilmiş hidrofobik polistiren (PS) bazlı nanoliflerin yapısal, morfolojik, ıslanabilirlik ve termal özellikleri sırasıyla FTIR, SEM, su temas açısı, DSC ve TGA analizleriyle incelenmiştir. FTIR analizi, SA’nın fiziksel bağlarla PS matrise dağıldığını, polimerin moleküler yapısını değiştirmediğini göstermiştir. SEM görüntülerinde SA miktarının artmasıyla birlikte nanolif çaplarında azalma, buna karşın topak oluşumunda ve yüzey pürüzlülüğünde artış görülmüştür. Ayrıca, yapısındaki Si–OH grupları nedeniyle artan SA miktarına bağlı olarak hidrofobik PS nanoliflerin su temas açılarında azalma meydana gelmiştir. Termal özelliklere bakıldığında, SA miktarının artmasıyla beraber PS bazlı nanoliflerin camsı geçiş sıcaklıklarında azalma meydana gelmiştir. Bu durum SA’ların plastikleştirici gibi davranarak polimer zincirleri arasındaki serbest hacmi arttırmasından ve zincir hareketlerini kolaylaştırmasından kaynaklanmıştır. Diğer taraftan SA miktarı arttıkça nanoliflerin termal dayanımları artmış, maksimum bozunma sıcaklıkları 33⁰C ötelenmiştir. Sonuçta SA katkısı, PS bazlı nanoliflerin hidrofobik özelliğini düşürse de plastikleştirici etkisiyle PS’nin işlenebilme sıcaklığını azaltmış, termal kararlılığını arttırmış ve daha geniş yüzey alanına sahip daha ince nanoliflerin eldesine imkan vermiştir.

Kaynakça

  • Allan, S.E., Smith, B.W., and Anderson, K.A., 2012. Impact of the deepwater horizon oil spill on bioavailable polycyclic aromatic hydrocarbons in gulf of Mexico coastal waters. Environmental Science & Technology, 46(4), 2033-2039.
  • Arat, R., Baskan, H., Ozcan, G., Altay, P., 2022. Hydrophobic silica-aerogel integrated polyacrylonitrile nanofibers. Journal of Industrial Textiles. 51(3_suppl), 4740S-4756S.
  • Bidgoli, H., Khodadadi, A.A., Mortazavi, Y., 2019. A hydrophobic/oleophilic chitosan-based sorbent: Toward an effective oil spill remediation technology. Journal of Environmental Chemical Engineering, 7, 5, 103340.
  • Cao, Y., Zhang, X., Tao, L., Li, K., Xue, Z., Feng, L., and, Wei, Y., 2013. Mussel-inspired chemistry and Michael addition reaction for efficient oil/water separation. ACS Applied Materials & Interfaces, 5(10), 4438–4442.
  • Dai, Z., Yan, F., Qin, M., and Yan, X., 2020. Fabrication of flexible SiO2 nanofibrous yarn via a conjugate electrospinning process. e-Polymers, 20(1), 600-605.
  • Ding, Y., Xu, D., Shao, H., Cong, T., Hong, X., Zhao, H., 2019. Superhydrophobic-superoleophilic SiO2/Polystyrene porous micro/nanofibers for efficient oil-water separation. Fibers and Polymers, 20(10), 2017-2024.
  • Doğan, K., Hussaini, A.A., Erdal, M.O., Yıldırım, M., 2022. Examining the hydrophobic properties of electrospun oxide-induced polystyrene nanofibers for application in oil-water separation. International Advanced Researches and Engineering Journal, 06(02), 100-105.
  • Du, Y., Si, P., Wei, L., Wang, Y., Tu, Y., Zuo, G., Yu, B., Zhang, X., Ye, S., 2019. Demulsification of acidic oil-in-water emulsions driven by chitosan loaded Ti3C2Tx. Applied Surface Science, 476, 878-885.
  • Esfahani, M.R., Aktij, S.A., Dadaghian, Z., Firouzjaei, M.D., Rahimpour, A., Eke, J., Escobar, I.C., Abolhassani, M., Greenlee, L.F., Esfahani, A.R., Sadmani, A., Koutahzadeh, N., 2019. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Separation and Purification Technology, 213, 465-499.
  • Fayed, A.S., Abu-Hasel, K.A., Mahdy, S.M., Ali, A.A., 2021. Morphological, mechanical, and thermal characterization of electrospun three-dimensional graphite nanoplatelets/polystyrene ultra-fine fibril composite fabrics. Polymer Composites, 42, 1462–1472.
  • Gao, Q.L., Fang, F., Chen, C., Zhu, X.Y., Li, J., Tang, H.Y., Zhang, Z.B., Huang, X.J., 2016. A facile approach to silica-modified polysulfone microfiltration membranes for oil-in-water emulsion separation. RSC Advances, 6, 41323-41330.
  • Ge, B., Zhu, X., Li, Y., Men, X., Li, P., Zhang, Z., 2015. Versatile fabrication of magnetic superhydrophobic foams and application for oil–water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 687-692.
  • Halim, Z.A.A., Yajid, M.A.M., Idris, M.H., Hamdan, H., 2017. Dispersion of polymeric-coated aerogel particles in unsaturated polyester composites: Effects on thermal-mechanical properties. Journal of Dispersion Science and Technology, 39(8), 1093-1101.
  • Huang, Q., Liu, M., Mao, L., Xu, D., Zeng, G., Huang, H., Jiang, R., Deng, F., Zhang, X., Wei, Y., 2017. Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: Characterization and enhanced removal of organic dye. Journal of Colloid and Interface Science, 499, 170-179.
  • Kamgar, A., Hassanajili, S., Karimipourfard, G., 2018. Fe3O4@SiO2@MPS core/shell nanocomposites: The effect of the core weight on their magnetic properties and oil separation performance. Journal of Environmental Chemical Engineering, 6(2), 3034-3040.
  • Kang, L., Shi, L., Zeng, Q., Liao, B., Wang, B., Guo X., 2021. Melamine resin-coated lignocellulose fibers with robust superhydrophobicity for highly effective oil/water separation. Separation and Purification Technology, 279, 119737.
  • Kujawinski, E.B., Soule, M.C.K., Valentine, D.L., Boysen, A.K., Longnecker, K., and Redmond, M.C., 2011. Fate of dispersants associated with the deepwater horizon oil spill. Environmental Science & Technology, 45(4), 1298-1306.
  • Lee, M.W., An, S., Latthe, S.S., Lee, C., Hong, S., Yoon, S.S., 2013. Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil. ACS Applied Materials & Interfaces, 5(21), 10597–10604.
  • Lei, C., Hu, Z., Zhang, Y., Yang, H., Li, J., Hu, S., 2018. Tailoring structural and physical properties of polymethylsilsesquioxane aerogels by adjusting NH3•H2O concentration. Microporous Mesoporous Materials, 258, 236–243.
  • Li, Z., Cheng, X., He, S., Huang, D., Bi, H., Yang, H., 2014. Preparation of ambient pressure dried MTMS/TEOS co-precursor silica aerogel by adjusting NH4OH concentration. Materials Letters, 129, 12–15.
  • Li, Z., Cheng, X., He, S., Shi, X., Gong, L., Zhang, H., 2016. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance. Composites: Part A, 84, 316-325.
  • Liu, X., Tian, F., Zhao, X., Du, R., Xu, S., Wang, Y.Z., 2020. Recycling waste epoxy resin as hydrophobic coating of melamine foam for high-efficiency oil absorption. Applied Surface Science, 529, 147151.
  • Ma, W., Guo, Z., Zhao, J., Yu, Q., Wang, F., Han, J., Pan, H., Yao, J., Zhang, Q., Samal, S.K., De Smedt, S.C., Huang, C., 2017. Polyimide/cellulose acetate core/shell electrospun fibrous membranes for oil-water separation. Separation and Purification Technology, 177, 71-85.
  • Maghsoudi, K., & Motahari, S., 2018. Mechanical, thermal, and hydrophobic properties of silica aerogel–epoxy composites. Journal of Applied Polymer Science, 135(3), 45706.
  • Moatmed, S.M., Khedr, M.H., El-dek, S.I., Kim, H.Y., El-Deen, A.G., 2019. Highly efficient and reusable superhydrophobic/superoleophilic polystyrene@ Fe3O4 nanofiber membrane for high-performance oil/water separation. Journal of Environmental Chemical Engineering, 7(6), 103508.
  • Modi, A., and Bellare, J., 2019. Efficiently improved oil/water separation using high flux and superior antifouling polysulfone hollow fiber membranes modified with functionalized carbon nanotubes/graphene oxide nanohybrid. Journal of Environmental Chemical Engineering, 7(2), 102944.
  • Motahari, S., Motlagh, G.H., & Moharramzadeh, A., 2015. Thermal and Flammability Properties of Polypropylene/Silica Aerogel Composites. Journal of Macromolecular Science, Part B, 54:9, 1081-1091.
  • Nadargi, D.Y., Kalesh, R.R., Rao, A.V., 2009. Rapid reduction in gelation time and impregnation of hydrophobic property in the tetraethoxysilane (TEOS) based silica aerogels using NH4F catalyzed single step sol–gel process. Journal of Alloys and Compounds, 480(2), 689–95.
  • Nitanan, T., Opanasopit, P., Akkaramongkolporn, P., Rojanarata, T., Ngawhirunpat, T., Supaphol, Pitt., 2012. Effects of processing parameters on morphology of electrospun polystyrene nanofibers. Korean Journal of Chemical Engineering, 29(2), 173-181.
  • Padaki, M., Murali, R.S., Abdullah, M.S., Misdan, N., Moslehyani, A., Kassim, M.A., Hilal, N., Ismail, A.F., 2015. Membrane technology enhancement in oil–water separation. A review. Desalination, 357, 197-207.
  • Peterson, C.H., Rice, S.D., Short, J.W., Esler, D., Bodkin, J.L., Ballachey, B.E., and Irons, D.B., 2003. Long-term ecosystem response to the Exxon Valdez oil spill. Science, 302, 5653, 2082-2086.
  • Ramakrishna, S., Fujihara, K., Teo, W.E., Yong, T., Ma, Z., Ramaseshan, R., 2006. Electrospun nanofibers: solving global issues. Materials Today, 9(3), 40-50.
  • Rao, A.V., Kulkarni, M.M., Amalnerkar, D.P., Seth, T., 2003. Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes. Applied Surface Science, 206(1–4), 262–270.
  • Saleh, T.A., and Gupta, V.K., 2016. Nanomaterial and Polymer Membranes, Chapter 1 - An Overview of Membrane Science and Technology. Editor(s): Tawfik Abdo Saleh, Vinod Kumar Gupta, Elsevier, 1-23.
  • Shafi, S., & Zhao, Y., 2020. Superhydrophobic, enhanced strength and thermal insulation silica aerogel/glass fiber felt based on methyltrimethoxysilane precursor and silica gel impregnation. Journal of Porous Materials, 27, 495–502.
  • Wang, J.C., Lou, H., Cui, Z.H., Hou, Y., Li, Y., Zhang, Y., Jiang, K., Shi, W., Qu, L., 2019. Fabrication of porous polyacrylamide/polystyrene fibrous membranes for efficient oil-water separation. Separation and Purification Technology, 222, 278-283.
  • Wang, Z., Jiang, X., Cheng, X., Lau, C.H., Shao, Lu, 2015. Mussel-inspired hybrid coatings that transform membrane hydrophobicity into high hydrophilicity and underwater superoleophobicity for oil-in-water emulsion separation. ACS Applied Materials & Interfaces, 7(18), 9534–9545.
  • Yang, Y., Ding, Z., Liu, L., 2013. Fabrication of super-hydrophobic and super-oleophlic membranes and their separation of oil-water mixture. Beijing Huagong Daxue Xuebao (Ziran Kexueban)/Journal of Beijing University of Chemical Technology (Nat. Sci. Ed.), 40, 21-25.
  • Yanilmaz, M., Lu, Y., Zhu, J., Zhang, X., 2016. Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries. Journal of Power Sources, 313, 205–212.
  • Ye, S., Wang, B., Pu, Z., Liu, T., Feng, Y., Han, W., Liu, C., Shen, C., 2021. Flexible and robust porous thermoplastic polyurethane/reduced graphene oxide monolith with special wettability for continuous oil/water separation in harsh environment. Separation and Purification Technology, 266, 118553.
  • Zhang, X., Huang, Q., Deng, F., Huang, H., Wan, Q., Liu, M., Wei, Y., 2017. Mussel-inspired fabrication of functional materials and their environmental applications: Progress and prospects. Applied Materials Today, 7, 222-238.
  • Zhang, X., Wang, Y., Liu, Y., Xu, J., Han, Y., Xu, X., 2014. Preparation, performances of PVDF/ZnO hybrid membranes and their applications in the removal of copper ions. Applied Surface Science, 316, 333-340.
  • Zhou, X., Zhang, Z., Xu, X., Guo, F., Zhu, X., Men, X., Ge, B., 2013. Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Applied Materials & Interfaces, 5(15), 7208–7214.

Effect of Silica Aerogel on Thermal Properties of Hydrophobic Polystyrene Nanofibers

Yıl 2023, Cilt: 23 Sayı: 6, 1497 - 1506, 28.12.2023
https://doi.org/10.35414/akufemubid.1257557

Öz

In this study, the structural, morphological, wettability and thermal properties of hydrophobic polystyrene (PS) based electrospun nanofibers, which contains the silica aerogels (SA) synthesized from tetraethylene orthosilicate (TEOS) precursor by sol-gel reaction, were investigated by FTIR, SEM, water contact angle, DSC and TGA analyzes, respectively. FTIR analysis showed that the SA dispersed into the PS matrix by physical bonds and did not change the molecular structure of the polymer. The SEM images displayed that the nanofiber diameters decreased with increasing SA amount, while agglomeration and surface roughness increased. In addition, the water contact angle of the hydrophobic PS nanofibers decreased due to the increased amount of SA containing the Si–OH groups in its structure. Considering the thermal properties, the glass transition temperature of PS based nanofibers decreased with the increase of SA amount. This is due to the fact that the SA act as plasticizers, increasing the free volume between polymer chains and facilitating the chain movements. On the other hand, as the amount of SA increased, the thermal stability of the nanofibers increased, and the maximum decomposition temperature was shifted by 33⁰C. As a result, the SA additives facilitated the processability of the PS matrix thanks to their plasticizing effect, and increased the thermal stability of the nanofibers. Even though the additives reduced the hydrophobic properties of the nanofibers, provided the formation of thinner fibers with larger surface areas.

Kaynakça

  • Allan, S.E., Smith, B.W., and Anderson, K.A., 2012. Impact of the deepwater horizon oil spill on bioavailable polycyclic aromatic hydrocarbons in gulf of Mexico coastal waters. Environmental Science & Technology, 46(4), 2033-2039.
  • Arat, R., Baskan, H., Ozcan, G., Altay, P., 2022. Hydrophobic silica-aerogel integrated polyacrylonitrile nanofibers. Journal of Industrial Textiles. 51(3_suppl), 4740S-4756S.
  • Bidgoli, H., Khodadadi, A.A., Mortazavi, Y., 2019. A hydrophobic/oleophilic chitosan-based sorbent: Toward an effective oil spill remediation technology. Journal of Environmental Chemical Engineering, 7, 5, 103340.
  • Cao, Y., Zhang, X., Tao, L., Li, K., Xue, Z., Feng, L., and, Wei, Y., 2013. Mussel-inspired chemistry and Michael addition reaction for efficient oil/water separation. ACS Applied Materials & Interfaces, 5(10), 4438–4442.
  • Dai, Z., Yan, F., Qin, M., and Yan, X., 2020. Fabrication of flexible SiO2 nanofibrous yarn via a conjugate electrospinning process. e-Polymers, 20(1), 600-605.
  • Ding, Y., Xu, D., Shao, H., Cong, T., Hong, X., Zhao, H., 2019. Superhydrophobic-superoleophilic SiO2/Polystyrene porous micro/nanofibers for efficient oil-water separation. Fibers and Polymers, 20(10), 2017-2024.
  • Doğan, K., Hussaini, A.A., Erdal, M.O., Yıldırım, M., 2022. Examining the hydrophobic properties of electrospun oxide-induced polystyrene nanofibers for application in oil-water separation. International Advanced Researches and Engineering Journal, 06(02), 100-105.
  • Du, Y., Si, P., Wei, L., Wang, Y., Tu, Y., Zuo, G., Yu, B., Zhang, X., Ye, S., 2019. Demulsification of acidic oil-in-water emulsions driven by chitosan loaded Ti3C2Tx. Applied Surface Science, 476, 878-885.
  • Esfahani, M.R., Aktij, S.A., Dadaghian, Z., Firouzjaei, M.D., Rahimpour, A., Eke, J., Escobar, I.C., Abolhassani, M., Greenlee, L.F., Esfahani, A.R., Sadmani, A., Koutahzadeh, N., 2019. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Separation and Purification Technology, 213, 465-499.
  • Fayed, A.S., Abu-Hasel, K.A., Mahdy, S.M., Ali, A.A., 2021. Morphological, mechanical, and thermal characterization of electrospun three-dimensional graphite nanoplatelets/polystyrene ultra-fine fibril composite fabrics. Polymer Composites, 42, 1462–1472.
  • Gao, Q.L., Fang, F., Chen, C., Zhu, X.Y., Li, J., Tang, H.Y., Zhang, Z.B., Huang, X.J., 2016. A facile approach to silica-modified polysulfone microfiltration membranes for oil-in-water emulsion separation. RSC Advances, 6, 41323-41330.
  • Ge, B., Zhu, X., Li, Y., Men, X., Li, P., Zhang, Z., 2015. Versatile fabrication of magnetic superhydrophobic foams and application for oil–water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 687-692.
  • Halim, Z.A.A., Yajid, M.A.M., Idris, M.H., Hamdan, H., 2017. Dispersion of polymeric-coated aerogel particles in unsaturated polyester composites: Effects on thermal-mechanical properties. Journal of Dispersion Science and Technology, 39(8), 1093-1101.
  • Huang, Q., Liu, M., Mao, L., Xu, D., Zeng, G., Huang, H., Jiang, R., Deng, F., Zhang, X., Wei, Y., 2017. Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: Characterization and enhanced removal of organic dye. Journal of Colloid and Interface Science, 499, 170-179.
  • Kamgar, A., Hassanajili, S., Karimipourfard, G., 2018. Fe3O4@SiO2@MPS core/shell nanocomposites: The effect of the core weight on their magnetic properties and oil separation performance. Journal of Environmental Chemical Engineering, 6(2), 3034-3040.
  • Kang, L., Shi, L., Zeng, Q., Liao, B., Wang, B., Guo X., 2021. Melamine resin-coated lignocellulose fibers with robust superhydrophobicity for highly effective oil/water separation. Separation and Purification Technology, 279, 119737.
  • Kujawinski, E.B., Soule, M.C.K., Valentine, D.L., Boysen, A.K., Longnecker, K., and Redmond, M.C., 2011. Fate of dispersants associated with the deepwater horizon oil spill. Environmental Science & Technology, 45(4), 1298-1306.
  • Lee, M.W., An, S., Latthe, S.S., Lee, C., Hong, S., Yoon, S.S., 2013. Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil. ACS Applied Materials & Interfaces, 5(21), 10597–10604.
  • Lei, C., Hu, Z., Zhang, Y., Yang, H., Li, J., Hu, S., 2018. Tailoring structural and physical properties of polymethylsilsesquioxane aerogels by adjusting NH3•H2O concentration. Microporous Mesoporous Materials, 258, 236–243.
  • Li, Z., Cheng, X., He, S., Huang, D., Bi, H., Yang, H., 2014. Preparation of ambient pressure dried MTMS/TEOS co-precursor silica aerogel by adjusting NH4OH concentration. Materials Letters, 129, 12–15.
  • Li, Z., Cheng, X., He, S., Shi, X., Gong, L., Zhang, H., 2016. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance. Composites: Part A, 84, 316-325.
  • Liu, X., Tian, F., Zhao, X., Du, R., Xu, S., Wang, Y.Z., 2020. Recycling waste epoxy resin as hydrophobic coating of melamine foam for high-efficiency oil absorption. Applied Surface Science, 529, 147151.
  • Ma, W., Guo, Z., Zhao, J., Yu, Q., Wang, F., Han, J., Pan, H., Yao, J., Zhang, Q., Samal, S.K., De Smedt, S.C., Huang, C., 2017. Polyimide/cellulose acetate core/shell electrospun fibrous membranes for oil-water separation. Separation and Purification Technology, 177, 71-85.
  • Maghsoudi, K., & Motahari, S., 2018. Mechanical, thermal, and hydrophobic properties of silica aerogel–epoxy composites. Journal of Applied Polymer Science, 135(3), 45706.
  • Moatmed, S.M., Khedr, M.H., El-dek, S.I., Kim, H.Y., El-Deen, A.G., 2019. Highly efficient and reusable superhydrophobic/superoleophilic polystyrene@ Fe3O4 nanofiber membrane for high-performance oil/water separation. Journal of Environmental Chemical Engineering, 7(6), 103508.
  • Modi, A., and Bellare, J., 2019. Efficiently improved oil/water separation using high flux and superior antifouling polysulfone hollow fiber membranes modified with functionalized carbon nanotubes/graphene oxide nanohybrid. Journal of Environmental Chemical Engineering, 7(2), 102944.
  • Motahari, S., Motlagh, G.H., & Moharramzadeh, A., 2015. Thermal and Flammability Properties of Polypropylene/Silica Aerogel Composites. Journal of Macromolecular Science, Part B, 54:9, 1081-1091.
  • Nadargi, D.Y., Kalesh, R.R., Rao, A.V., 2009. Rapid reduction in gelation time and impregnation of hydrophobic property in the tetraethoxysilane (TEOS) based silica aerogels using NH4F catalyzed single step sol–gel process. Journal of Alloys and Compounds, 480(2), 689–95.
  • Nitanan, T., Opanasopit, P., Akkaramongkolporn, P., Rojanarata, T., Ngawhirunpat, T., Supaphol, Pitt., 2012. Effects of processing parameters on morphology of electrospun polystyrene nanofibers. Korean Journal of Chemical Engineering, 29(2), 173-181.
  • Padaki, M., Murali, R.S., Abdullah, M.S., Misdan, N., Moslehyani, A., Kassim, M.A., Hilal, N., Ismail, A.F., 2015. Membrane technology enhancement in oil–water separation. A review. Desalination, 357, 197-207.
  • Peterson, C.H., Rice, S.D., Short, J.W., Esler, D., Bodkin, J.L., Ballachey, B.E., and Irons, D.B., 2003. Long-term ecosystem response to the Exxon Valdez oil spill. Science, 302, 5653, 2082-2086.
  • Ramakrishna, S., Fujihara, K., Teo, W.E., Yong, T., Ma, Z., Ramaseshan, R., 2006. Electrospun nanofibers: solving global issues. Materials Today, 9(3), 40-50.
  • Rao, A.V., Kulkarni, M.M., Amalnerkar, D.P., Seth, T., 2003. Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes. Applied Surface Science, 206(1–4), 262–270.
  • Saleh, T.A., and Gupta, V.K., 2016. Nanomaterial and Polymer Membranes, Chapter 1 - An Overview of Membrane Science and Technology. Editor(s): Tawfik Abdo Saleh, Vinod Kumar Gupta, Elsevier, 1-23.
  • Shafi, S., & Zhao, Y., 2020. Superhydrophobic, enhanced strength and thermal insulation silica aerogel/glass fiber felt based on methyltrimethoxysilane precursor and silica gel impregnation. Journal of Porous Materials, 27, 495–502.
  • Wang, J.C., Lou, H., Cui, Z.H., Hou, Y., Li, Y., Zhang, Y., Jiang, K., Shi, W., Qu, L., 2019. Fabrication of porous polyacrylamide/polystyrene fibrous membranes for efficient oil-water separation. Separation and Purification Technology, 222, 278-283.
  • Wang, Z., Jiang, X., Cheng, X., Lau, C.H., Shao, Lu, 2015. Mussel-inspired hybrid coatings that transform membrane hydrophobicity into high hydrophilicity and underwater superoleophobicity for oil-in-water emulsion separation. ACS Applied Materials & Interfaces, 7(18), 9534–9545.
  • Yang, Y., Ding, Z., Liu, L., 2013. Fabrication of super-hydrophobic and super-oleophlic membranes and their separation of oil-water mixture. Beijing Huagong Daxue Xuebao (Ziran Kexueban)/Journal of Beijing University of Chemical Technology (Nat. Sci. Ed.), 40, 21-25.
  • Yanilmaz, M., Lu, Y., Zhu, J., Zhang, X., 2016. Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries. Journal of Power Sources, 313, 205–212.
  • Ye, S., Wang, B., Pu, Z., Liu, T., Feng, Y., Han, W., Liu, C., Shen, C., 2021. Flexible and robust porous thermoplastic polyurethane/reduced graphene oxide monolith with special wettability for continuous oil/water separation in harsh environment. Separation and Purification Technology, 266, 118553.
  • Zhang, X., Huang, Q., Deng, F., Huang, H., Wan, Q., Liu, M., Wei, Y., 2017. Mussel-inspired fabrication of functional materials and their environmental applications: Progress and prospects. Applied Materials Today, 7, 222-238.
  • Zhang, X., Wang, Y., Liu, Y., Xu, J., Han, Y., Xu, X., 2014. Preparation, performances of PVDF/ZnO hybrid membranes and their applications in the removal of copper ions. Applied Surface Science, 316, 333-340.
  • Zhou, X., Zhang, Z., Xu, X., Guo, F., Zhu, X., Men, X., Ge, B., 2013. Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Applied Materials & Interfaces, 5(15), 7208–7214.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fiziksel Kimya, Polimer Bilimi ve Teknolojileri, Kompozit ve Hibrit Malzemeler
Bölüm Makaleler
Yazarlar

Refik Arat 0000-0002-5330-1478

Erken Görünüm Tarihi 22 Aralık 2023
Yayımlanma Tarihi 28 Aralık 2023
Gönderilme Tarihi 28 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 23 Sayı: 6

Kaynak Göster

APA Arat, R. (2023). Silika Aerojelin Hidrofobik Polistiren Nanoliflerin Termal Özellikleri Üzerine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(6), 1497-1506. https://doi.org/10.35414/akufemubid.1257557
AMA Arat R. Silika Aerojelin Hidrofobik Polistiren Nanoliflerin Termal Özellikleri Üzerine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Aralık 2023;23(6):1497-1506. doi:10.35414/akufemubid.1257557
Chicago Arat, Refik. “Silika Aerojelin Hidrofobik Polistiren Nanoliflerin Termal Özellikleri Üzerine Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, sy. 6 (Aralık 2023): 1497-1506. https://doi.org/10.35414/akufemubid.1257557.
EndNote Arat R (01 Aralık 2023) Silika Aerojelin Hidrofobik Polistiren Nanoliflerin Termal Özellikleri Üzerine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 6 1497–1506.
IEEE R. Arat, “Silika Aerojelin Hidrofobik Polistiren Nanoliflerin Termal Özellikleri Üzerine Etkisi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 6, ss. 1497–1506, 2023, doi: 10.35414/akufemubid.1257557.
ISNAD Arat, Refik. “Silika Aerojelin Hidrofobik Polistiren Nanoliflerin Termal Özellikleri Üzerine Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/6 (Aralık 2023), 1497-1506. https://doi.org/10.35414/akufemubid.1257557.
JAMA Arat R. Silika Aerojelin Hidrofobik Polistiren Nanoliflerin Termal Özellikleri Üzerine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:1497–1506.
MLA Arat, Refik. “Silika Aerojelin Hidrofobik Polistiren Nanoliflerin Termal Özellikleri Üzerine Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 6, 2023, ss. 1497-06, doi:10.35414/akufemubid.1257557.
Vancouver Arat R. Silika Aerojelin Hidrofobik Polistiren Nanoliflerin Termal Özellikleri Üzerine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(6):1497-506.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.