Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimization of Thermotolerant Cellulase from Streptomyces sp. M127-1 with Response Surface Methodology using Solid-State Fermentation

Yıl 2024, Cilt: 24 Sayı: 1, 217 - 227, 27.02.2024
https://doi.org/10.35414/akufemubid.1336051

Öz

The study aims to optimise cellulase that can be used in composting from actinomycete isolate using the solid-state fermentation method with Response Surface Methodology and its partial characterisation. Five isolates (M127-1, M127-2B, 1M1, M45-1 and M6c-1) were previously determined to be candidate cellulase producers, were investigated for cellulase production by solid-state fermentation, and isolate M127-1 was selected for further studies. For solid substrate selection, solid-state fermentation was performed by isolate M127-1 in media-prepared combinations of different solid substrates (sawdust, soy flour, malt grass and wheat bran), and the highest enzyme activity was found to be wheat bran-malt grass (BM) medium (0.704 U/ml). Then, moisture, inoculum size, and incubation time were optimised with the central composite design for cellulase optimisation using BM medium. Optimum cellulase production conditions were determined as 79.93% moisture, 8.58 days incubation time and 8.38 (v/w) inoculum size, and it was observed that the enzyme activity increased by 1.8 times. The optimum pH of the enzyme was 6, and its temperature was 60C. The isolate was identified as Streptomyces sp. M127-1 by 16SrDNA sequence analysis. In conclusion, the thermotolerant cellulase production at high temperatures was optimised from Streptomyces sp. M127-1 through solid-state fermentation using cost-effective substrates.

Proje Numarası

FYL-2020-22356

Kaynakça

  • Abdul Manan, M., Webb, C., 2017. Modern microbial solid state fermentation technology for future biorefineries for the production of added-value products. Biofuel Research Journal, 16, 730-740. https://doi.org/10.18331/BRJ2017.4.4.5
  • Antony, J., 2023. Design of experiment for engineers and scientist. Elsevier. Ayilara, M.S., Olanrewaju, O.S., Babalola, O.O., Odeyemi, O., 2020. Waste management through composting: Challenges and potentials. Sustainability, 12(11), 4456. https://doi.org/10.3390/su12114456
  • Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977. https://doi.org/10.1016/j.talanta.2008.05.019
  • Bhatti, A.A., Haq, S., Bhat, R.A., 2017. Actinomycetes benefaction role in soil and plant health. Microbial pathogenesis, 111, 458-467. https://doi.org/10.1016/j.micpath.2017.09.036
  • Bostubayeva, M., Baimbetova, E., Makenova, M., Shumenova, N., Sarmanova, R., Nauanova, A., 2023. Screening and evaluation of potential microbial bio-activators used in sewage sludge composting. Caspian Journal of Environmental Sciences, 1-9. https://doi.org/10.22124/CJES.2023.6936
  • Box, G.E., Hunter, W.H., Hunter, S. 1978. Statistics for experimenters (Vol. 664). New York: John Wiley and Sons. Celaya-Herrera, S., Casados-Vázquez, L.E., Valdez-Vazquez, I., Barona-Gómez, F., Bideshi, D.K., Barboza-Corona, J.E., 2021. A cellulolytic Streptomyces sp. isolated from a highly oligotrophic niche shows potential for hydrolyzing agricultural wastes. BioEnergy Research, 14, 333-343. https://doi.org/10.1007/s12155-020-10174-z
  • Chen, X., Cheng, W., Li, S., Tang, X., Wei, Z., 2021. The “quality” and “quantity” of microbial species drive the degradation of cellulose during composting. Bioresource Technology, 320, 124425. https://doi.org/10.1016/j.biortech.2020.124425
  • Crawford, D. L., 1978. Lignocellulose decomposition by selected Streptomyces strains. Applied and Environmental Microbiology, 35(6), 1041-1045. https://doi.org/10.1128/aem.35.6.1041-1045.1978
  • Crawford, D.L., Lynch, J.M., Whipps, J.M., Ousley, M. A., 1993. Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Applied and Environmental Microbiology, 59(11), 3899-3905. https://doi.org/10.1128/aem.59.11.3899-3905.1993
  • Cuesta, G., García-de-la-Fuente, R., Abad, M., Fornes, F., 2012. Isolation and identification of actinomycetes from a compost-amended soil with potential as biocontrol agents. Journal of Environmental Management, 95, S280-S284. https://doi.org/10.1016/j.jenvman.2010.11.023
  • Danso, B., Ali, S.S., Xie, R., Sun, J., 2022. Valorisation of wheat straw and bioethanol production by a novel xylanase-and cellulase-producing Streptomyces strain isolated from the wood-feeding termite, Microcerotermes species. Fuel, 310, 122333. https://doi.org/10.1016/j.fuel.2021.122333
  • Demir, T., Hameş, E.E., Öncel, S.S., Vardar-Sukan, F., 2015. An optimization approach to scale up keratinase production by Streptomyces sp. 2M21 by utilizing chicken feather. International Biodeterioration & Biodegradation, 103, 134-140. https://doi.org/10.1016/j.ibiod.2015.04.025
  • Duangupama, T., Pittayakhajonwut, P., Intaraudom, C., Suriyachadkun, C., Sirirote, P., He, Y.W., Thawai, C., 2022. Streptomyces sennicomposti sp. nov., an actinomycete isolated from compost of Senna siamea (Lam.). International Journal of Systematic and Evolutionary Microbiology, 72(4), 005320. https://doi.org/10.1099/ijsem.0.005320
  • Ghose, T. K., 1987. Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257-268. https://doi.org/10.1351/pac198759020257
  • Hobbs, G., Frazer, C.M., Gardner, D.C., Cullum, J.A., Oliver, S.G., 1989. Dispersed growth of Streptomyces in liquid culture. Applied Microbiology and Biotechnology, 31, 272-277. https://doi.org/10.1007/BF00258408
  • Insam, H., and De Bertoldi, M., 2007. Microbiology of the composting process. In Waste Management Series Vol. 8,. Elsevier, pp. 25-48. https://doi.org/10.1016/S1478-7482(07)80006-6
  • Kausar, H., Sariah, M., Mohd Saud, H., Zahangir Alam, M., Razi Ismail, M., 2011. Isolation and screening of potential actinobacteria for rapid composting of rice straw. Biodegradation, 22, 367-375. https://doi.org/10.1007/s10532-010-9407-3
  • Khan, M.N., Luna, I.Z., Islam, M.M., Sharmeen, S., Salem, K.S., Rashid, T.U., Zaman, A., Haque, P., Rahman, M.M., 2016. Cellulase in waste management applications. In New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, pp. 237-256. https://doi.org/10.1016/B978-0-444-63507-5.00021-6
  • Kocak, F.O., Tanir, S.G.E., Cetin, A.K., Degirmenci, L., 2023. Simulatenous evaluation of composting experiments and metagenome analyses to illuminate the effect of Streptomyces spp. on organic matter degradation. World Journal of Microbiology and Biotechnology, 39(3), 70. https://doi.org/10.1007/s11274-023-03516-4
  • Korsa, G., Konwarh, R., Masi, C., Ayele, A., Haile, S., 2023. Microbial cellulase production and its potential application for textile industries. Annals of Microbiology, 73(1), 13. https://doi.org/10.1186/s13213-023-01715-w
  • Kumar, M., Kumar, P., Das, P., Solanki, R., Kapur, M.K., 2022. Proactive role of Streptomyces spp. in plant growth stimulation and management of chemical pesticides and fertilizers. International Journal of Environmental Science and Technology, 19(10), 10457-10476. https://doi.org/10.1007/s13762-021-03473-1
  • Korn-Wendisch F, Kutzner HJ (1992) The family Streptomycetaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 921–995.
  • Lee, Y.J., Kim, B.K., Lee, B.H., Jo, K.I., Lee, N.K., Chung, C.H., Lee, Y-C., Lee, J.W., 2008. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresource Technology, 99(2), 378-386. https://doi.org/10.1016/j.biortech.2006.12.013
  • Manan, M.A., and Webb, C., 2017. Design aspects of solid state fermentation as applied to microbial bioprocessing. Journal of Applied Biotechnology and Bioengineering 4(1), 91. https://doi.org/10.15406/jabb.2017.04.00094
  • Mandenius, C.F., and Brundin, A., 2008. Bioprocess optimization using design‐of‐experiments methodology. Biotechnology Progress, 24(6), 1191-1203. https://doi.org/10.1002/btpr.67
  • Mazumder, P., Akhil, P.M., Khwairakpam, M., Mishra, U., Kalamdhad, A.S., 2021. Enhancement of soil physico-chemical properties post compost application: Optimization using Response Surface Methodology comprehending Central Composite Design. Journal of Environmental Management, 289, 112461. https://doi.org/10.1016/j.jenvman.2021.112461
  • Mendoza-Cal, A., Cuevas-Glory, L., Lizama-Uc, G., & Ortiz-Vázquez, E., 2010. Naringinase production from filamentous fungi using grapefruit rind in solid state fermentation. African Journal of Microbiology Research, 4(19), 1964-1969.
  • Palaniveloo, K., Amran, M.A., Norhashim, N.A., Mohamad-Fauzi, N., Peng-Hui, F., Hui-Wen, L., Kai-Lin, Y., Jiale, L., Chian-Yee, M. G., Jing-Yi, L., Gunasekaran, B.,Razak, S.A., 2020. Food waste composting and microbial community structure profiling. Processes, 8(6), 723. https://doi.org/10.3390/pr8060723
  • Patel, A.K., Singhania, R.R., Sim, S.J., & Pandey, A., 2019. Thermostable cellulases: current status and perspectives. Bioresource Technology, 279, 385-392. https://doi.org/10.1016/j.biortech.2019.01.049
  • Raimbault, M. 1998. General and Microbiological Aspects of Solid Substrate Fermentation Electronic Journal of Biotechnology, 1(3), 26-27. http://dx.doi.org/10.4067/S0717-34581998000300007
  • Ramachandra, M., Crawford, D.L., Hertel, G., 1988. Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Applied and Environmental Microbiology, 54(12), 3057-3063. https://doi.org/10.1128/aem.54.12.3057-3063.1988
  • Sánchez, Ó. J., Ospina, D. A., & Montoya, S. (2017). Compost supplementation with nutrients and microorganisms in composting process. Waste management, 69, 136-153. https://doi.org/10.1016/j.wasman.2017.08.012
  • Samuel, M.S., Govarthan, M., Selvarajan, E., 2022. A comprehensive review on strategic study of cellulase producing marine actinobacteria for biofuel applications. Environmental Research, 214, 114018. https://doi.org/10.1016/j.envres.2022.114018
  • Sargın, S, ve Göksungur, Y., 2007. Çeşitli tarımsal atık ve yan ürünlerin katı kültür fermantasyonu ile laktik asit üretiminde kullanılabilirliklerinin incelenmesi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 44(3), 89-99.
  • Sargın, S., ve Öngen, G., 2003. Kanatlı yemi katkısı olarak kullanılan ksilanaz enziminin katı kültür fermantasyon yöntemi ile üretiminde ölçek büyütme çalışmaları. Ege Üniversitesi Ziraat Fakültesi Dergisi, 40(3).
  • Sun, C., Wei, Y., Kou, J., Han, Z., Shi, Q., Liu, L., Sun, Z., 2021. Improve spent mushroom substrate decomposition, bacterial community and mature compost quality by adding cellulase during composting. Journal of Cleaner Production, 299, 126928. https://doi.org/10.1016/j.jclepro.2021.126928
  • Tamura, K., Stecher, G., Kumar, S., 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120
  • Topatan, Z.Ş., and Katı H., 2022. Screening of actinomycetes from Cystoseira barbata (Stackhouse) C. Agardh compost for their enzyme and antibacterial activities. Trakya University Journal of Natural Sciences. 23(2): 113-124. https://doi.org/10.23902/trkjnat.1059974
  • Tuomela, M., Vikman, M., Hatakka, A., Itävaara, M., 2000. Biodegradation of lignin in a compost environment: a review. Bioresource Technology, 72(2), 169-183. https://doi.org/10.1016/S0960-8524(99)00104-2
  • Zainudin, M.H.M., Zulkarnain, A., Azmi, A.S., Muniandy, S., Sakai, K., Shirai, Y., Hassan, M.A., 2022. Enhancement of agro-industrial waste composting process via the microbial inoculation: a brief review. Agronomy, 12(1), 198. https://doi.org/10.3390/agronomy12010198

Katı Hal Fermantasyonu Kullanılarak Streptomyces sp. M127-1’den Elde Edilen Termotolerant Selülazın Yanıt Yüzeyi Metodolojisi ile Optimizasyonu

Yıl 2024, Cilt: 24 Sayı: 1, 217 - 227, 27.02.2024
https://doi.org/10.35414/akufemubid.1336051

Öz

Çalışma, kompostlamada kullanılabilecek selülazın aktinomiset izolatından katı hal fermantasyon yöntemiyle Yanıt Yüzeyi Metodolojisi (RSM) kullanılarak optimizasyonunu ve enzimin kısmi karakterizasyonunu amaçlamaktadır. Selülaz üreticisi olduğu belirlenmiş 5 izolat (M127-1, M127-2B, 1M1, M45-1 ve M6c-1) katı hal fermantasyonu ile selülaz üretimi açısından değerlendirilmiş ve izolat M127-1 ileri çalışmalar için seçilmiştir. Katı substrat seçimi için farklı substratların (talaş, malt çimi, soya unu ve buğday kepeği) kombinasyonları ile hazırlanan ortamlarda izolat M127-1 ile katı hal fermantasyonu gerçekleştirilmiş ve en iyi enzim aktivitesinin buğday kepeği-malt çimi (BM) (0,704 U/ml) ortamında olduğu belirlenmiştir. Ardından BM ortamı kullanılarak selülaz üretim optimizasyonu için nem, aşı miktarı ve inkübasyon süresi merkezi kompozit tasarımı kullanılarak optimize edilmiştir. Optimum selülaz üretim koşulları % 79,93 nem, 8,58 gün inkübasyon süresi ve 8,38 (v/w) aşı miktarı olarak belirlenmiş ve enzim aktivitesinin 1,8 kat arttığı görülmüştür. Enzimin optimum pH’sı 6 ve optimum sıcaklığı 60C olarak belirlenmiştir. 16SrDNA dizi analizi ile izolat, Streptomyces sp. M127-1 olarak tanımlanmıştır. Sonuç olarak yüksek sıcaklıkta aktif selülazın uygun maliyetli substratlar kullanılarak katı hal fermantasyonu ile Streptomyces sp. M127-1’den istatistiksel üretim optimizasyonu gerçekleştirilmiştir.

Destekleyen Kurum

Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

FYL-2020-22356

Teşekkür

Bu çalışma Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü FYL-2020-22356 nolu proje ile desteklenmiştir. Yazarlar çalışmaya olan desteklerinden dolayı Prof. Dr. Sait SARGIN’a teşekkür ederler.

Kaynakça

  • Abdul Manan, M., Webb, C., 2017. Modern microbial solid state fermentation technology for future biorefineries for the production of added-value products. Biofuel Research Journal, 16, 730-740. https://doi.org/10.18331/BRJ2017.4.4.5
  • Antony, J., 2023. Design of experiment for engineers and scientist. Elsevier. Ayilara, M.S., Olanrewaju, O.S., Babalola, O.O., Odeyemi, O., 2020. Waste management through composting: Challenges and potentials. Sustainability, 12(11), 4456. https://doi.org/10.3390/su12114456
  • Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977. https://doi.org/10.1016/j.talanta.2008.05.019
  • Bhatti, A.A., Haq, S., Bhat, R.A., 2017. Actinomycetes benefaction role in soil and plant health. Microbial pathogenesis, 111, 458-467. https://doi.org/10.1016/j.micpath.2017.09.036
  • Bostubayeva, M., Baimbetova, E., Makenova, M., Shumenova, N., Sarmanova, R., Nauanova, A., 2023. Screening and evaluation of potential microbial bio-activators used in sewage sludge composting. Caspian Journal of Environmental Sciences, 1-9. https://doi.org/10.22124/CJES.2023.6936
  • Box, G.E., Hunter, W.H., Hunter, S. 1978. Statistics for experimenters (Vol. 664). New York: John Wiley and Sons. Celaya-Herrera, S., Casados-Vázquez, L.E., Valdez-Vazquez, I., Barona-Gómez, F., Bideshi, D.K., Barboza-Corona, J.E., 2021. A cellulolytic Streptomyces sp. isolated from a highly oligotrophic niche shows potential for hydrolyzing agricultural wastes. BioEnergy Research, 14, 333-343. https://doi.org/10.1007/s12155-020-10174-z
  • Chen, X., Cheng, W., Li, S., Tang, X., Wei, Z., 2021. The “quality” and “quantity” of microbial species drive the degradation of cellulose during composting. Bioresource Technology, 320, 124425. https://doi.org/10.1016/j.biortech.2020.124425
  • Crawford, D. L., 1978. Lignocellulose decomposition by selected Streptomyces strains. Applied and Environmental Microbiology, 35(6), 1041-1045. https://doi.org/10.1128/aem.35.6.1041-1045.1978
  • Crawford, D.L., Lynch, J.M., Whipps, J.M., Ousley, M. A., 1993. Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Applied and Environmental Microbiology, 59(11), 3899-3905. https://doi.org/10.1128/aem.59.11.3899-3905.1993
  • Cuesta, G., García-de-la-Fuente, R., Abad, M., Fornes, F., 2012. Isolation and identification of actinomycetes from a compost-amended soil with potential as biocontrol agents. Journal of Environmental Management, 95, S280-S284. https://doi.org/10.1016/j.jenvman.2010.11.023
  • Danso, B., Ali, S.S., Xie, R., Sun, J., 2022. Valorisation of wheat straw and bioethanol production by a novel xylanase-and cellulase-producing Streptomyces strain isolated from the wood-feeding termite, Microcerotermes species. Fuel, 310, 122333. https://doi.org/10.1016/j.fuel.2021.122333
  • Demir, T., Hameş, E.E., Öncel, S.S., Vardar-Sukan, F., 2015. An optimization approach to scale up keratinase production by Streptomyces sp. 2M21 by utilizing chicken feather. International Biodeterioration & Biodegradation, 103, 134-140. https://doi.org/10.1016/j.ibiod.2015.04.025
  • Duangupama, T., Pittayakhajonwut, P., Intaraudom, C., Suriyachadkun, C., Sirirote, P., He, Y.W., Thawai, C., 2022. Streptomyces sennicomposti sp. nov., an actinomycete isolated from compost of Senna siamea (Lam.). International Journal of Systematic and Evolutionary Microbiology, 72(4), 005320. https://doi.org/10.1099/ijsem.0.005320
  • Ghose, T. K., 1987. Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257-268. https://doi.org/10.1351/pac198759020257
  • Hobbs, G., Frazer, C.M., Gardner, D.C., Cullum, J.A., Oliver, S.G., 1989. Dispersed growth of Streptomyces in liquid culture. Applied Microbiology and Biotechnology, 31, 272-277. https://doi.org/10.1007/BF00258408
  • Insam, H., and De Bertoldi, M., 2007. Microbiology of the composting process. In Waste Management Series Vol. 8,. Elsevier, pp. 25-48. https://doi.org/10.1016/S1478-7482(07)80006-6
  • Kausar, H., Sariah, M., Mohd Saud, H., Zahangir Alam, M., Razi Ismail, M., 2011. Isolation and screening of potential actinobacteria for rapid composting of rice straw. Biodegradation, 22, 367-375. https://doi.org/10.1007/s10532-010-9407-3
  • Khan, M.N., Luna, I.Z., Islam, M.M., Sharmeen, S., Salem, K.S., Rashid, T.U., Zaman, A., Haque, P., Rahman, M.M., 2016. Cellulase in waste management applications. In New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, pp. 237-256. https://doi.org/10.1016/B978-0-444-63507-5.00021-6
  • Kocak, F.O., Tanir, S.G.E., Cetin, A.K., Degirmenci, L., 2023. Simulatenous evaluation of composting experiments and metagenome analyses to illuminate the effect of Streptomyces spp. on organic matter degradation. World Journal of Microbiology and Biotechnology, 39(3), 70. https://doi.org/10.1007/s11274-023-03516-4
  • Korsa, G., Konwarh, R., Masi, C., Ayele, A., Haile, S., 2023. Microbial cellulase production and its potential application for textile industries. Annals of Microbiology, 73(1), 13. https://doi.org/10.1186/s13213-023-01715-w
  • Kumar, M., Kumar, P., Das, P., Solanki, R., Kapur, M.K., 2022. Proactive role of Streptomyces spp. in plant growth stimulation and management of chemical pesticides and fertilizers. International Journal of Environmental Science and Technology, 19(10), 10457-10476. https://doi.org/10.1007/s13762-021-03473-1
  • Korn-Wendisch F, Kutzner HJ (1992) The family Streptomycetaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 921–995.
  • Lee, Y.J., Kim, B.K., Lee, B.H., Jo, K.I., Lee, N.K., Chung, C.H., Lee, Y-C., Lee, J.W., 2008. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresource Technology, 99(2), 378-386. https://doi.org/10.1016/j.biortech.2006.12.013
  • Manan, M.A., and Webb, C., 2017. Design aspects of solid state fermentation as applied to microbial bioprocessing. Journal of Applied Biotechnology and Bioengineering 4(1), 91. https://doi.org/10.15406/jabb.2017.04.00094
  • Mandenius, C.F., and Brundin, A., 2008. Bioprocess optimization using design‐of‐experiments methodology. Biotechnology Progress, 24(6), 1191-1203. https://doi.org/10.1002/btpr.67
  • Mazumder, P., Akhil, P.M., Khwairakpam, M., Mishra, U., Kalamdhad, A.S., 2021. Enhancement of soil physico-chemical properties post compost application: Optimization using Response Surface Methodology comprehending Central Composite Design. Journal of Environmental Management, 289, 112461. https://doi.org/10.1016/j.jenvman.2021.112461
  • Mendoza-Cal, A., Cuevas-Glory, L., Lizama-Uc, G., & Ortiz-Vázquez, E., 2010. Naringinase production from filamentous fungi using grapefruit rind in solid state fermentation. African Journal of Microbiology Research, 4(19), 1964-1969.
  • Palaniveloo, K., Amran, M.A., Norhashim, N.A., Mohamad-Fauzi, N., Peng-Hui, F., Hui-Wen, L., Kai-Lin, Y., Jiale, L., Chian-Yee, M. G., Jing-Yi, L., Gunasekaran, B.,Razak, S.A., 2020. Food waste composting and microbial community structure profiling. Processes, 8(6), 723. https://doi.org/10.3390/pr8060723
  • Patel, A.K., Singhania, R.R., Sim, S.J., & Pandey, A., 2019. Thermostable cellulases: current status and perspectives. Bioresource Technology, 279, 385-392. https://doi.org/10.1016/j.biortech.2019.01.049
  • Raimbault, M. 1998. General and Microbiological Aspects of Solid Substrate Fermentation Electronic Journal of Biotechnology, 1(3), 26-27. http://dx.doi.org/10.4067/S0717-34581998000300007
  • Ramachandra, M., Crawford, D.L., Hertel, G., 1988. Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Applied and Environmental Microbiology, 54(12), 3057-3063. https://doi.org/10.1128/aem.54.12.3057-3063.1988
  • Sánchez, Ó. J., Ospina, D. A., & Montoya, S. (2017). Compost supplementation with nutrients and microorganisms in composting process. Waste management, 69, 136-153. https://doi.org/10.1016/j.wasman.2017.08.012
  • Samuel, M.S., Govarthan, M., Selvarajan, E., 2022. A comprehensive review on strategic study of cellulase producing marine actinobacteria for biofuel applications. Environmental Research, 214, 114018. https://doi.org/10.1016/j.envres.2022.114018
  • Sargın, S, ve Göksungur, Y., 2007. Çeşitli tarımsal atık ve yan ürünlerin katı kültür fermantasyonu ile laktik asit üretiminde kullanılabilirliklerinin incelenmesi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 44(3), 89-99.
  • Sargın, S., ve Öngen, G., 2003. Kanatlı yemi katkısı olarak kullanılan ksilanaz enziminin katı kültür fermantasyon yöntemi ile üretiminde ölçek büyütme çalışmaları. Ege Üniversitesi Ziraat Fakültesi Dergisi, 40(3).
  • Sun, C., Wei, Y., Kou, J., Han, Z., Shi, Q., Liu, L., Sun, Z., 2021. Improve spent mushroom substrate decomposition, bacterial community and mature compost quality by adding cellulase during composting. Journal of Cleaner Production, 299, 126928. https://doi.org/10.1016/j.jclepro.2021.126928
  • Tamura, K., Stecher, G., Kumar, S., 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120
  • Topatan, Z.Ş., and Katı H., 2022. Screening of actinomycetes from Cystoseira barbata (Stackhouse) C. Agardh compost for their enzyme and antibacterial activities. Trakya University Journal of Natural Sciences. 23(2): 113-124. https://doi.org/10.23902/trkjnat.1059974
  • Tuomela, M., Vikman, M., Hatakka, A., Itävaara, M., 2000. Biodegradation of lignin in a compost environment: a review. Bioresource Technology, 72(2), 169-183. https://doi.org/10.1016/S0960-8524(99)00104-2
  • Zainudin, M.H.M., Zulkarnain, A., Azmi, A.S., Muniandy, S., Sakai, K., Shirai, Y., Hassan, M.A., 2022. Enhancement of agro-industrial waste composting process via the microbial inoculation: a brief review. Agronomy, 12(1), 198. https://doi.org/10.3390/agronomy12010198
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyomühendislik (Diğer)
Bölüm Makaleler
Yazarlar

Muzaffer Binek Bu kişi benim 0000-0002-5254-1111

Elif Esin Hameş 0000-0001-7302-4781

Proje Numarası FYL-2020-22356
Yayımlanma Tarihi 27 Şubat 2024
Gönderilme Tarihi 1 Ağustos 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 24 Sayı: 1

Kaynak Göster

APA Binek, M., & Hameş, E. E. (2024). Katı Hal Fermantasyonu Kullanılarak Streptomyces sp. M127-1’den Elde Edilen Termotolerant Selülazın Yanıt Yüzeyi Metodolojisi ile Optimizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(1), 217-227. https://doi.org/10.35414/akufemubid.1336051
AMA Binek M, Hameş EE. Katı Hal Fermantasyonu Kullanılarak Streptomyces sp. M127-1’den Elde Edilen Termotolerant Selülazın Yanıt Yüzeyi Metodolojisi ile Optimizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Şubat 2024;24(1):217-227. doi:10.35414/akufemubid.1336051
Chicago Binek, Muzaffer, ve Elif Esin Hameş. “Katı Hal Fermantasyonu Kullanılarak Streptomyces Sp. M127-1’den Elde Edilen Termotolerant Selülazın Yanıt Yüzeyi Metodolojisi Ile Optimizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, sy. 1 (Şubat 2024): 217-27. https://doi.org/10.35414/akufemubid.1336051.
EndNote Binek M, Hameş EE (01 Şubat 2024) Katı Hal Fermantasyonu Kullanılarak Streptomyces sp. M127-1’den Elde Edilen Termotolerant Selülazın Yanıt Yüzeyi Metodolojisi ile Optimizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 1 217–227.
IEEE M. Binek ve E. E. Hameş, “Katı Hal Fermantasyonu Kullanılarak Streptomyces sp. M127-1’den Elde Edilen Termotolerant Selülazın Yanıt Yüzeyi Metodolojisi ile Optimizasyonu”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 1, ss. 217–227, 2024, doi: 10.35414/akufemubid.1336051.
ISNAD Binek, Muzaffer - Hameş, Elif Esin. “Katı Hal Fermantasyonu Kullanılarak Streptomyces Sp. M127-1’den Elde Edilen Termotolerant Selülazın Yanıt Yüzeyi Metodolojisi Ile Optimizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/1 (Şubat 2024), 217-227. https://doi.org/10.35414/akufemubid.1336051.
JAMA Binek M, Hameş EE. Katı Hal Fermantasyonu Kullanılarak Streptomyces sp. M127-1’den Elde Edilen Termotolerant Selülazın Yanıt Yüzeyi Metodolojisi ile Optimizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:217–227.
MLA Binek, Muzaffer ve Elif Esin Hameş. “Katı Hal Fermantasyonu Kullanılarak Streptomyces Sp. M127-1’den Elde Edilen Termotolerant Selülazın Yanıt Yüzeyi Metodolojisi Ile Optimizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 1, 2024, ss. 217-2, doi:10.35414/akufemubid.1336051.
Vancouver Binek M, Hameş EE. Katı Hal Fermantasyonu Kullanılarak Streptomyces sp. M127-1’den Elde Edilen Termotolerant Selülazın Yanıt Yüzeyi Metodolojisi ile Optimizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(1):217-2.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.