Araştırma Makalesi
BibTex RIS Kaynak Göster

Düşük Maliyetli GNSS Alıcılarının Çoklu-GNSS PPP Performanslarının Farklı Anten Tipleri ve Ağırlık Modellerine Göre Araştırılması

Yıl 2024, Cilt: 24 Sayı: 2, 360 - 373, 29.04.2024
https://doi.org/10.35414/akufemubid.1380478

Öz

Düşük maliyetli GNSS donanımlarındaki güncel gelişmeler hassas konum belirleme uygulamalarında jeodezik donanımlara güçlü bir alternatif sunmaktadır. Bu donanımlar hem ekonomik hem de boyut olarak kullanıcılara birçok avantaj sağlamaktadır. Ancak tasarım yapısı itibariyle ve çok yolluluk etkisine daha fazla duyarlı olmalarından dolayı gözlemlerdeki gürültü seviyesi artmaktadır. Bu nedenle, Hassas Nokta Konumlama (PPP) çözümlerinde güvenilir bir kestirim sonucu için gözlemlerin uygun ağırlıklandırılması kritik önem teşkil eder. Bu çalışmada ana hedef olarak düşük maliyetli alıcı ve antenler için uygun ağırlıklandırma modeli araştırılmıştır. Deneysel bir düzenekle, çift frekanslı çoklu-GNSS gözlemleri toplayabilen düşük maliyetli u-blox ZED-F9P GNSS alıcısının PPP performansı farklı anten tiplerinin etkileri incelenecek şekilde ele alınmıştır. Bu amaçla, birbirine yakın iki sabit noktada, bu alıcılardan birine jeodezik NovAtel 702 anteni, diğerine ise düşük maliyetli u-blox ANN-MB-00-00 anteni bağlanarak eş zamanlı olarak GNSS verileri toplanmıştır. PPP çözümleri, uydu yükseklik açısına ve taşıyıcı-gürültü yoğunluk oranı (carrier-to-noise density ratio-C/N0)’a bağlı ağırlıklandırma modelleri kullanılarak; dört farklı GNSS kombinasyonuyla (GPS (G), GPS+GLONASS (GR), GPS+GLONASS+Galileo (GRE) ve GPS+GLONASS+Galileo+BDS-2 (GREC)) gerçekleştirilmiştir. Bu çalışmanın sonuçlarına göre; NovAtel 702 anteni çözümlerinde ağırlıklandırma modelleri arasında anlamlı farklar not edilmezken; GRE ve GREC kombinasyonlarında yaklaşık olarak 20 dk yakınsama süresinden sonra 3 boyutta 7 cm konumlama doğruluğu üretilmiştir. U-blox ANN-MB-00-00 anteni sonuçlarında ise C/N0 tabanlı ağırlıklandırma modeli yükseklik açısına bağlı ağırlıklandırma modelinden daha iyi sonuçlar vermiştir. Bu antende en iyi sonuç, 66,36 dk yakınsama süresi ve 3 boyutta 8,42 cm doğruluk ile GREC kombinasyonu ve C/N0 ağırlık modeli kullanılarak elde edilmiştir.

Kaynakça

  • Abd Rabbou, M., El-Rabbany, A., 2017. Performance analysis of precise point positioning using multi-constellation GNSS: GPS, GLONASS, Galileo and BeiDou. Survey Review, 49(352), 39–50. https://doi.org/10.1080/00396265.2015.1108068
  • Alkan, R.M., Saka, M.H., Ozulu, I.M., Ilci, V., 2017, Kinematic precise point positioning using GPS and GLONASS measurements in marine environments, Measurement, 109, 36-43. https://doi.org/10.1016/j.measurement.2017.05.054
  • Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger, D., Heflin, M., Lu, W., Miller, M., Moore, A. W., Murphy, D., Ries, P., Romans, L., Sibois, A., Sibthorpe, A., Szilagyi, B., Vallisneri, M., Willis, P., 2020. GipsyX/RTGx, a new tool set for space geodetic operations and research. Advances in Space Research, 66(3), 469–489. https://doi.org/10.1016/j.asr.2020.04.015
  • Bezcioğlu, M., 2023. Düşük Maliyetli GNSS Gözlemlerine Dayalı Gerçek-Zamanlı Hassas Nokta Konum Belirleme (RT-PPP) Tekniğinin Performansının Değerlendirilmesi ve Çoklu-GNSS Gözlemlerinin Katkısı. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(4), 1341-1350. https://doi.org/10.28948/ngumuh.1310577
  • Bezcioğlu, M., Yiğit, C.Ö., Bodur, M.N., 2019. Kinematik PPP-AR ve Geleneksel PPP Yöntemlerin Performanslarının Değerlendirilmesi: Antarktika Yarımadası Örneği. Afyon Kocatepe University Journal of Sciences and Engineering, 19(1), 162–169. https://doi.org/10.35414/akufemubid.467336
  • Bilich, A., Larson, K.M., 2007. Mapping the GPS multipath environment using the signal-to-noise ratio (SNR). Radio Science, 42(6). https://doi.org/10.1029/2007RS003652
  • Birinci, S., Saka, M.H., 2023. Sub-meter-level navigation with an enhanced multi-GNSS single-point positioning algorithm using iGMAS ultra-rapid products. Journal of Navigation, 76(1), 133–151. https://doi.org/10.1017/S0373463322000601
  • Cai, C., Gao, Y., 2013. Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solutions, 17(2), 223–236. https://doi.org/10.1007/s10291-012-0273-9
  • Carcanague, S., 2013. Low-cost GPS/GLONASS Precise Positioning Algorithm in Constrained Environment, PhD Thesis, Institut National Polytechnique de Toulouse, Toulouse, 200.
  • Chen, J., Zhao, X., Liu, C., Zhu, S., Liu, Z., Yue, D., 2021. Evaluating the Latest Performance of Precise Point Positioning in Multi-GNSS/RNSS: GPS, GLONASS, BDS, Galileo and QZSS. Journal of Navigation, 74(1), 247–267. https://doi.org/10.1017/S0373463320000508
  • Elmezayen, A., El-Rabbany, A., 2021. Performance Assessment of Real-Time Multiconstellation GNSS PPP Using a Low-Cost Dual-Frequency GNSS Module. Artificial Satellites, 56(3), 37–56. https://doi.org/10.2478/arsa-2021-0005
  • Ge, M., Gendt, G., Rothacher, M., Shi, C., Liu, J., 2008. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. Journal Of Geodesy, 82, 389–399. https://doi.org/10.1007/s00190-007-0187-4
  • Glaner, M.F., Weber, R., 2023. An open-source software package for Precise Point Positioning: raPPPid. GPS Solutions, 27(4), 174. https://doi.org/10.1007/s10291-023-01488-4
  • Hamza, V., Stopar, B., Sterle, O., 2021. Testing the Performance of Multi-Frequency Low-Cost GNSS Receivers and Antennas. Sensors, 21(6), 2029. https://doi.org/10.3390/s21062029
  • Hohensinn, R., Stauffer, R., Glaner, M. F., Herrera Pinzón, I.D., Vuadens, E., Rossi, Y., Clinton, J., Rothacher, M., 2022. Low-Cost GNSS and Real-Time PPP: Assessing the Precision of the u-blox ZED-F9P for Kinematic Monitoring Applications. Remote Sensing, 14(20), 5100. https://doi.org/10.3390/rs14205100
  • Kazmierski, K., Hadas, T., Sośnica, K., 2018. Weighting of Multi-GNSS Observations in Real-Time Precise Point Positioning. Remote Sensing, 10(2), 84. https://doi.org/10.3390/rs10010084
  • Kouba, J., Héroux, P., 2001. Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solutions, 5(2), 12–28. https://doi.org/10.1007/PL00012883
  • Landskron, D., Böhm, J., 2018. VMF3/GPT3: refined discrete and empirical troposphere mapping functions. Journal of Geodesy, 92(4), 349–360. https://doi.org/10.1007/s00190-017-1066-2
  • Li, B., Lou, L., Shen, Y., 2016. GNSS Elevation-Dependent Stochastic Modeling and Its Impacts on the Statistic Testing. Journal of Surveying Engineering, 142(2), 1–7. https://doi.org/10.1061/(asce)su.1943-5428.0000156
  • Li, X., Gou, H., Li, X., Shen, Z., Lyu, H., Zhou, Y., Wang, H., Zhang, Q., 2023. Performance analysis of frequency-mixed PPP-RTK using low-cost GNSS chipset with different antenna configurations. Satellite Navigation, 4(1), 26. https://doi.org/10.1186/s43020-023-00116-3
  • Liu, X., Jiang, W., Chen, H., Zhao, W., Huo, L., Huang, L., Chen, Q., 2019. An analysis of inter-system biases in BDS/GPS precise point positioning. GPS Solutions, 23(4), 116. https://doi.org/10.1007/s10291-019-0906-3
  • Montenbruck, O., Steigenberger, P., Prange, L., Deng, Z., Zhao, Q., Perosanz, F., Romero, I., Noll, C., Stürze, A., Weber, G., Schmid, R., MacLeod, K., Schaer, S., 2017. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) – Achievements, prospects and challenges. Advances in Space Research, 59(7), 1671–1697. https://doi.org/10.1016/j.asr.2017.01.011
  • Nie, Z., Liu, F., Gao, Y., 2020. Real-time precise point positioning with a low-cost dual-frequency GNSS device. GPS Solutions, 24(1), 9. https://doi.org/10.1007/s10291-019-0922-3
  • Ogutcu, S., 2019. The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning over Turkey: Consideration of observation time and satellite geometry. El-Cezerî Journal of Science and Engineering, 6(3), 642–658. https://doi.org/10.31202/ecjse.563802
  • Ogutcu, S., Alcay, S., Duman, H., Ozdemir, B.N., Konukseven, C., 2023. Static and kinematic PPP-AR performance of low-cost GNSS receiver in monitoring displacements. Advances in Space Research, 72(11), 4795-4808. https://doi.org/10.1016/j.asr.2023.09.025
  • Oku Topal, G., Karabulut, M.F., Aykut, N.O., Akpınar, B., 2023. Performance of low-cost GNSS equipment in monitoring of horizontal displacements. Survey Review, 55(393), 536–545. https://doi.org/10.1080/00396265.2023.2179910
  • Pan, L., Guo, F., 2018, Real-time tropospheric delay retrieval with GPS, GLONASS, Galileo and BDS data, Scientific Reports, 8(1), 17067. https://doi.org/10.1038/s41598-018-35155-3
  • Paziewski, J., 2020. Recent advances and perspectives for positioning and applications with smartphone GNSS observations. Measurement Science and Technology, 31(9), 091001. https://doi.org/10.1088/1361-6501/ab8a7d
  • Paziewski, J., Sieradzki, R., Baryla, R., 2019. Signal characterization and assessment of code GNSS positioning with low-power consumption smartphones. GPS Solutions, 23(4), 1–12. https://doi.org/10.1007/s10291-019-0892-5
  • Romero-Andrade, R., Trejo-Soto, M.E., Vázquez-Ontiveros, J.R., Hernández-Andrade, D., Cabanillas-Zavala, J.L., 2021. Sampling Rate Impact on Precise Point Positioning with a Low-Cost GNSS Receiver. Applied Sciences, 11(16), 7669. https://doi.org/10.3390/app11167669
  • Shinghal, G., Bisnath, S., 2021. Conditioning and PPP processing of smartphone GNSS measurements in realistic environments. Satellite Navigation, 2(1), 10. https://doi.org/10.1186/s43020-021-00042-2
  • Stępniak, K., Paziewski, J., 2022. On the quality of tropospheric estimates from low-cost GNSS receiver data processing. Measurement, 198, 111350. https://doi.org/10.1016/j.measurement.2022.111350
  • Wang, L., Li, Z., Wang, N., Wang, Z., 2021. Real-time GNSS precise point positioning for low-cost smart devices. GPS Solutions, 25(2), 69. https://doi.org/10.1007/s10291-021-01106-1
  • Wielgocka, N., Hadas, T., Kaczmarek, A., Marut, G., 2021. Feasibility of Using Low-Cost Dual-Frequency GNSS Receivers for Land Surveying. Sensors, 21(6), 1956. https://doi.org/10.3390/s21061956
  • Xue, C., Psimoulis, P., Zhang, Q., Meng, X., 2021. Analysis of the performance of closely spaced low-cost multi-GNSS receivers. Applied Geomatics, 13(3), 415–435. https://doi.org/10.1007/s12518-021-00361-8
  • Yi, D., Bisnath, S., Naciri, N., Vana, S., 2021. Effects of ionospheric constraints in Precise Point Positioning processing of geodetic, low-cost and smartphone GNSS measurements. Measurement, 183, 109887. https://doi.org/10.1016/j.measurement.2021.109887
  • Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., Webb, F.H., 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005–5017. https://doi.org/10.1029/96JB03860
  • https://www.u-blox.com/en/product/u-center, (25.12.2023)

Investigation of Multi-GNSS PPP Performance of Low-Cost GNSS Receivers with Different Antenna Types and Weight Models

Yıl 2024, Cilt: 24 Sayı: 2, 360 - 373, 29.04.2024
https://doi.org/10.35414/akufemubid.1380478

Öz

Recent developments in low-cost GNSS equipment offer a powerful alternative to geodetic equipment for precise positioning applications. The low-cost equipment has many advantages to users both economically and in terms of size. However, the noise level in the observations increases because they are more sensitive to the multipath effect. Thus, the appropriate weighting of observations is critical for an efficient and reliable estimation result in Precise Point Positioning (PPP) solutions. The main objective of the study is to investigate the appropriate weighting model for low-cost antennas and receivers. In an experimental setup, the PPP performance of a low-cost u-blox ZED-F9P GNSS receiver capable of collecting dual-frequency multi-GNSS observations is examined by analyzing the effects of different antenna types. For this purpose, GNSS data were collected simultaneously at two fixed points close to each other by connecting a geodetic NovAtel 702 antenna to one of these receivers and a low-cost u-blox ANN-MB-00-00 antenna to the other. PPP solutions were carried out with four different GNSS combinations using weighting models based on satellite elevation angle and carrier-to-noise density ratio (C/N0). According to the results of this study, there were no significant differences in the weighting models for the NovAtel 702 antenna solutions, while the GRE and GREC combinations generated a positioning accuracy of 7 cm in 3D after a convergence time of approximately 20 minutes. For the U-blox antenna results, the C/N0-based weighting model outperformed the elevation angle-based weighting model. The best result for this antenna was obtained using the GREC combination and the C/N0 weight model with a convergence time of 66.36 min and an accuracy of 8.42 cm in 3D.

Kaynakça

  • Abd Rabbou, M., El-Rabbany, A., 2017. Performance analysis of precise point positioning using multi-constellation GNSS: GPS, GLONASS, Galileo and BeiDou. Survey Review, 49(352), 39–50. https://doi.org/10.1080/00396265.2015.1108068
  • Alkan, R.M., Saka, M.H., Ozulu, I.M., Ilci, V., 2017, Kinematic precise point positioning using GPS and GLONASS measurements in marine environments, Measurement, 109, 36-43. https://doi.org/10.1016/j.measurement.2017.05.054
  • Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger, D., Heflin, M., Lu, W., Miller, M., Moore, A. W., Murphy, D., Ries, P., Romans, L., Sibois, A., Sibthorpe, A., Szilagyi, B., Vallisneri, M., Willis, P., 2020. GipsyX/RTGx, a new tool set for space geodetic operations and research. Advances in Space Research, 66(3), 469–489. https://doi.org/10.1016/j.asr.2020.04.015
  • Bezcioğlu, M., 2023. Düşük Maliyetli GNSS Gözlemlerine Dayalı Gerçek-Zamanlı Hassas Nokta Konum Belirleme (RT-PPP) Tekniğinin Performansının Değerlendirilmesi ve Çoklu-GNSS Gözlemlerinin Katkısı. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(4), 1341-1350. https://doi.org/10.28948/ngumuh.1310577
  • Bezcioğlu, M., Yiğit, C.Ö., Bodur, M.N., 2019. Kinematik PPP-AR ve Geleneksel PPP Yöntemlerin Performanslarının Değerlendirilmesi: Antarktika Yarımadası Örneği. Afyon Kocatepe University Journal of Sciences and Engineering, 19(1), 162–169. https://doi.org/10.35414/akufemubid.467336
  • Bilich, A., Larson, K.M., 2007. Mapping the GPS multipath environment using the signal-to-noise ratio (SNR). Radio Science, 42(6). https://doi.org/10.1029/2007RS003652
  • Birinci, S., Saka, M.H., 2023. Sub-meter-level navigation with an enhanced multi-GNSS single-point positioning algorithm using iGMAS ultra-rapid products. Journal of Navigation, 76(1), 133–151. https://doi.org/10.1017/S0373463322000601
  • Cai, C., Gao, Y., 2013. Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solutions, 17(2), 223–236. https://doi.org/10.1007/s10291-012-0273-9
  • Carcanague, S., 2013. Low-cost GPS/GLONASS Precise Positioning Algorithm in Constrained Environment, PhD Thesis, Institut National Polytechnique de Toulouse, Toulouse, 200.
  • Chen, J., Zhao, X., Liu, C., Zhu, S., Liu, Z., Yue, D., 2021. Evaluating the Latest Performance of Precise Point Positioning in Multi-GNSS/RNSS: GPS, GLONASS, BDS, Galileo and QZSS. Journal of Navigation, 74(1), 247–267. https://doi.org/10.1017/S0373463320000508
  • Elmezayen, A., El-Rabbany, A., 2021. Performance Assessment of Real-Time Multiconstellation GNSS PPP Using a Low-Cost Dual-Frequency GNSS Module. Artificial Satellites, 56(3), 37–56. https://doi.org/10.2478/arsa-2021-0005
  • Ge, M., Gendt, G., Rothacher, M., Shi, C., Liu, J., 2008. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. Journal Of Geodesy, 82, 389–399. https://doi.org/10.1007/s00190-007-0187-4
  • Glaner, M.F., Weber, R., 2023. An open-source software package for Precise Point Positioning: raPPPid. GPS Solutions, 27(4), 174. https://doi.org/10.1007/s10291-023-01488-4
  • Hamza, V., Stopar, B., Sterle, O., 2021. Testing the Performance of Multi-Frequency Low-Cost GNSS Receivers and Antennas. Sensors, 21(6), 2029. https://doi.org/10.3390/s21062029
  • Hohensinn, R., Stauffer, R., Glaner, M. F., Herrera Pinzón, I.D., Vuadens, E., Rossi, Y., Clinton, J., Rothacher, M., 2022. Low-Cost GNSS and Real-Time PPP: Assessing the Precision of the u-blox ZED-F9P for Kinematic Monitoring Applications. Remote Sensing, 14(20), 5100. https://doi.org/10.3390/rs14205100
  • Kazmierski, K., Hadas, T., Sośnica, K., 2018. Weighting of Multi-GNSS Observations in Real-Time Precise Point Positioning. Remote Sensing, 10(2), 84. https://doi.org/10.3390/rs10010084
  • Kouba, J., Héroux, P., 2001. Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solutions, 5(2), 12–28. https://doi.org/10.1007/PL00012883
  • Landskron, D., Böhm, J., 2018. VMF3/GPT3: refined discrete and empirical troposphere mapping functions. Journal of Geodesy, 92(4), 349–360. https://doi.org/10.1007/s00190-017-1066-2
  • Li, B., Lou, L., Shen, Y., 2016. GNSS Elevation-Dependent Stochastic Modeling and Its Impacts on the Statistic Testing. Journal of Surveying Engineering, 142(2), 1–7. https://doi.org/10.1061/(asce)su.1943-5428.0000156
  • Li, X., Gou, H., Li, X., Shen, Z., Lyu, H., Zhou, Y., Wang, H., Zhang, Q., 2023. Performance analysis of frequency-mixed PPP-RTK using low-cost GNSS chipset with different antenna configurations. Satellite Navigation, 4(1), 26. https://doi.org/10.1186/s43020-023-00116-3
  • Liu, X., Jiang, W., Chen, H., Zhao, W., Huo, L., Huang, L., Chen, Q., 2019. An analysis of inter-system biases in BDS/GPS precise point positioning. GPS Solutions, 23(4), 116. https://doi.org/10.1007/s10291-019-0906-3
  • Montenbruck, O., Steigenberger, P., Prange, L., Deng, Z., Zhao, Q., Perosanz, F., Romero, I., Noll, C., Stürze, A., Weber, G., Schmid, R., MacLeod, K., Schaer, S., 2017. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) – Achievements, prospects and challenges. Advances in Space Research, 59(7), 1671–1697. https://doi.org/10.1016/j.asr.2017.01.011
  • Nie, Z., Liu, F., Gao, Y., 2020. Real-time precise point positioning with a low-cost dual-frequency GNSS device. GPS Solutions, 24(1), 9. https://doi.org/10.1007/s10291-019-0922-3
  • Ogutcu, S., 2019. The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning over Turkey: Consideration of observation time and satellite geometry. El-Cezerî Journal of Science and Engineering, 6(3), 642–658. https://doi.org/10.31202/ecjse.563802
  • Ogutcu, S., Alcay, S., Duman, H., Ozdemir, B.N., Konukseven, C., 2023. Static and kinematic PPP-AR performance of low-cost GNSS receiver in monitoring displacements. Advances in Space Research, 72(11), 4795-4808. https://doi.org/10.1016/j.asr.2023.09.025
  • Oku Topal, G., Karabulut, M.F., Aykut, N.O., Akpınar, B., 2023. Performance of low-cost GNSS equipment in monitoring of horizontal displacements. Survey Review, 55(393), 536–545. https://doi.org/10.1080/00396265.2023.2179910
  • Pan, L., Guo, F., 2018, Real-time tropospheric delay retrieval with GPS, GLONASS, Galileo and BDS data, Scientific Reports, 8(1), 17067. https://doi.org/10.1038/s41598-018-35155-3
  • Paziewski, J., 2020. Recent advances and perspectives for positioning and applications with smartphone GNSS observations. Measurement Science and Technology, 31(9), 091001. https://doi.org/10.1088/1361-6501/ab8a7d
  • Paziewski, J., Sieradzki, R., Baryla, R., 2019. Signal characterization and assessment of code GNSS positioning with low-power consumption smartphones. GPS Solutions, 23(4), 1–12. https://doi.org/10.1007/s10291-019-0892-5
  • Romero-Andrade, R., Trejo-Soto, M.E., Vázquez-Ontiveros, J.R., Hernández-Andrade, D., Cabanillas-Zavala, J.L., 2021. Sampling Rate Impact on Precise Point Positioning with a Low-Cost GNSS Receiver. Applied Sciences, 11(16), 7669. https://doi.org/10.3390/app11167669
  • Shinghal, G., Bisnath, S., 2021. Conditioning and PPP processing of smartphone GNSS measurements in realistic environments. Satellite Navigation, 2(1), 10. https://doi.org/10.1186/s43020-021-00042-2
  • Stępniak, K., Paziewski, J., 2022. On the quality of tropospheric estimates from low-cost GNSS receiver data processing. Measurement, 198, 111350. https://doi.org/10.1016/j.measurement.2022.111350
  • Wang, L., Li, Z., Wang, N., Wang, Z., 2021. Real-time GNSS precise point positioning for low-cost smart devices. GPS Solutions, 25(2), 69. https://doi.org/10.1007/s10291-021-01106-1
  • Wielgocka, N., Hadas, T., Kaczmarek, A., Marut, G., 2021. Feasibility of Using Low-Cost Dual-Frequency GNSS Receivers for Land Surveying. Sensors, 21(6), 1956. https://doi.org/10.3390/s21061956
  • Xue, C., Psimoulis, P., Zhang, Q., Meng, X., 2021. Analysis of the performance of closely spaced low-cost multi-GNSS receivers. Applied Geomatics, 13(3), 415–435. https://doi.org/10.1007/s12518-021-00361-8
  • Yi, D., Bisnath, S., Naciri, N., Vana, S., 2021. Effects of ionospheric constraints in Precise Point Positioning processing of geodetic, low-cost and smartphone GNSS measurements. Measurement, 183, 109887. https://doi.org/10.1016/j.measurement.2021.109887
  • Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., Webb, F.H., 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005–5017. https://doi.org/10.1029/96JB03860
  • https://www.u-blox.com/en/product/u-center, (25.12.2023)
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Navigasyon ve Konum Sabitleme, Uydu Tabanlı Konumlama
Bölüm Makaleler
Yazarlar

Sinan Birinci 0000-0001-6668-9160

Furkan Soğukkuyu Bu kişi benim 0000-0003-2904-8713

Nezir Sözen Bu kişi benim 0009-0003-6111-1193

Mustafa İkiz Bu kişi benim 0009-0003-1608-8043

Miray Ezgi Kerimoğlu Bu kişi benim 0009-0009-0322-6535

Halis Saka 0000-0002-5283-9065

Erken Görünüm Tarihi 14 Nisan 2024
Yayımlanma Tarihi 29 Nisan 2024
Gönderilme Tarihi 24 Ekim 2023
Kabul Tarihi 7 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 24 Sayı: 2

Kaynak Göster

APA Birinci, S., Soğukkuyu, F., Sözen, N., İkiz, M., vd. (2024). Düşük Maliyetli GNSS Alıcılarının Çoklu-GNSS PPP Performanslarının Farklı Anten Tipleri ve Ağırlık Modellerine Göre Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(2), 360-373. https://doi.org/10.35414/akufemubid.1380478
AMA Birinci S, Soğukkuyu F, Sözen N, İkiz M, Kerimoğlu ME, Saka H. Düşük Maliyetli GNSS Alıcılarının Çoklu-GNSS PPP Performanslarının Farklı Anten Tipleri ve Ağırlık Modellerine Göre Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Nisan 2024;24(2):360-373. doi:10.35414/akufemubid.1380478
Chicago Birinci, Sinan, Furkan Soğukkuyu, Nezir Sözen, Mustafa İkiz, Miray Ezgi Kerimoğlu, ve Halis Saka. “Düşük Maliyetli GNSS Alıcılarının Çoklu-GNSS PPP Performanslarının Farklı Anten Tipleri Ve Ağırlık Modellerine Göre Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, sy. 2 (Nisan 2024): 360-73. https://doi.org/10.35414/akufemubid.1380478.
EndNote Birinci S, Soğukkuyu F, Sözen N, İkiz M, Kerimoğlu ME, Saka H (01 Nisan 2024) Düşük Maliyetli GNSS Alıcılarının Çoklu-GNSS PPP Performanslarının Farklı Anten Tipleri ve Ağırlık Modellerine Göre Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 2 360–373.
IEEE S. Birinci, F. Soğukkuyu, N. Sözen, M. İkiz, M. E. Kerimoğlu, ve H. Saka, “Düşük Maliyetli GNSS Alıcılarının Çoklu-GNSS PPP Performanslarının Farklı Anten Tipleri ve Ağırlık Modellerine Göre Araştırılması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 2, ss. 360–373, 2024, doi: 10.35414/akufemubid.1380478.
ISNAD Birinci, Sinan vd. “Düşük Maliyetli GNSS Alıcılarının Çoklu-GNSS PPP Performanslarının Farklı Anten Tipleri Ve Ağırlık Modellerine Göre Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/2 (Nisan 2024), 360-373. https://doi.org/10.35414/akufemubid.1380478.
JAMA Birinci S, Soğukkuyu F, Sözen N, İkiz M, Kerimoğlu ME, Saka H. Düşük Maliyetli GNSS Alıcılarının Çoklu-GNSS PPP Performanslarının Farklı Anten Tipleri ve Ağırlık Modellerine Göre Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:360–373.
MLA Birinci, Sinan vd. “Düşük Maliyetli GNSS Alıcılarının Çoklu-GNSS PPP Performanslarının Farklı Anten Tipleri Ve Ağırlık Modellerine Göre Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 2, 2024, ss. 360-73, doi:10.35414/akufemubid.1380478.
Vancouver Birinci S, Soğukkuyu F, Sözen N, İkiz M, Kerimoğlu ME, Saka H. Düşük Maliyetli GNSS Alıcılarının Çoklu-GNSS PPP Performanslarının Farklı Anten Tipleri ve Ağırlık Modellerine Göre Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(2):360-73.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.