Araştırma Makalesi
BibTex RIS Kaynak Göster

A Study on the Effect of Addition Li, Na, and K on the Radiation Shielding Capabilities of B2O3-TeO2-ZnO-PbF2-Er2O3 Glass Structure

Yıl 2024, Cilt: 24 Sayı: 4, 789 - 797, 20.08.2024
https://doi.org/10.35414/akufemubid.1411091

Öz

The radiation shielding qualities of the B2O3-TeO2-ZnO-PbF2_ M2O/MF (M= Li, Na, and K) glass samples doped with Er2O3 were investigated in this research. The Phy-X/PSD software was simulated to evaluate the attenuation factors of glass systems at various energy regions. The results show that the addition of LiF instead of Li2O, Na2O, K2O, NaF, or KF to the base glass system (B2O3-TeO2-ZnO-PbF2-Er2O3) leads to an increase in the density of the glass and an increase in the linear attenuation coefficient. Also, it is seen that for the E4 sample (B2O3-TeO2-ZnO-PbF2-Er2O3-LiF), a decrease in half value layers and tenth value layers in high energy region 10-15 MeV.

Kaynakça

  • Abou Hussein, E. M., et al., 2021. Gamma ray interaction of optical, chemical, physical behavior of bismuth silicate glasses and their radiation shielding proficiency using Phy-X/PSD program. Journal of Non-Crystalline Solids, 570, 121021. https://doi.org/10.1016/j.jnoncrysol.2021.121021
  • Agar, O., et al., 2019. Evaluation of the shielding parameters of alkaline earth based phosphate glasses using MCNPX code, Results Phys, 12, 101. https://doi.org/10.1016/j.rinp.2018.11.054
  • Akkurt, I., and Malidarre, R. B., 2022. Physical, structural, and mechanical properties of the concrete by FLUKA code and phy-X/PSD software. Radiation Physics and Chemistry, 193, 109958. https://doi.org/10.1016/j.radphyschem.2021.109958
  • Alan, H. Y., et al., 2023. Non-decreasing monotonic effects of cerium and gadolinium on tellurite glasses toward enhanced heavy-charged particle stopping: alpha-proton particles as major a part of cosmic radiation. Journal of the Australian Ceramic Society, 1-10. https://doi.org/10.1007/s41779-023-00984-7
  • Al-Buriahi, M. S., et al. 2021. Newly developed glasses containing Si/Cd/Li/Gd and their high performance for radiation applications: role of Er 2 O 3. Journal of Materials Science: Materials in Electronics, 32, 9440-9451. https://doi.org/10.1007/s10854-021-05608-z
  • Al-Hadeethi, Y., and Sayyed, M. I., 2020a. A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 glass system using Phy-X/PSD software. Ceramics International, 46(5), 6136-6140. https://doi.org/10.1016/j.ceramint.2019.11.078
  • Al-Hadeethi, Y., and Sayyed, M. I., 2020b. Evaluation of gamma ray shielding characteristics of CaF2–BaO–P2O5 glass system using Phy-X/PSD computer program. Progress in Nuclear Energy, 126, 103397. https://doi.org/10.1016/j.pnucene.2020.103397
  • ALMisned, G. et al. 2023. Bismuth (III) oxide and boron (III) oxide substitution in bismuth-boro-zinc glasses: A focusing in nuclear radiation shielding properties. Optik, 272, 170214. https://doi.org/10.1016/j.ijleo.2022.170214
  • Almuqrin, A. H., et al., 2021. Li2O-K2O-B2O3-PbO glass system: Optical and gamma-ray shielding investigations. Optik, 247, 167792. https://doi.org/10.1016/j.ijleo.2021.167792
  • Arpaci, N., and Aygun, M. 2022. Determınatıon Of Radıatıon Shıeldıng Parameters Of Cocrfenıtıalx Alloys By Usıng Recently Developed Phy-X/Psd And Epıxs Softwares. Journal Of Amasya University The Institute Of Sciences And Technology, 3(1), 8-22. https://doi.org/10.54559/jauist.1075966
  • Aygun Z., and Aygun M., 2023. Evaluation of radiation shielding potentials of Ni-based alloys, Inconel-617 and Incoloy-800HT, candidates for high temperature applications especially for nuclear reactors, by EpiXS and Phy-X/PSD codes, Journal of Polytehnic, 26(2), 795-801. https://doi.org/10.2339/politeknik.1004657
  • Deliormanli, A. M., et al. 2021. Erbium (III)-and Terbium (III)-containing silicate-based bioactive glass powders: physical, structural and nuclear radiation shielding characteristics. Applied Physics A, 127(6), 463. https://doi.org/10.1007/s00339-021-04615-5
  • Effendy, N., et al., 2021. Influence of ZnO to the physical, elastic and gamma radiation shielding properties of the tellurite glass system using MCNP-5 simulation code. Radiation Physics and Chemistry, 188, 109665. https://doi.org/10.1016/j.radphyschem.2021.109665
  • Ekinci, N., et al., 2014. A study of the energy absorption and exposure buildup factors of some anti-inflammatory drugs, Appl. Radiat. Isot. 90, 265–273. https://doi.org/10.1016/j.apradiso.2014.05.003
  • Elazaka, A.L., et al., 2021. New approach to removal of hazardous Bypass Cement Dust (BCD) from the environment: 20Na2O–20BaCl2-(60-x)B2O3-(x)BCD glass system and optical, mechanical, structural and nuclear radiation shielding competences, J. Hazard. Mater. 403, 123738. https://doi.org/10.1016/j.jhazmat.2020.123738
  • El-Denglawey, A., et al., 2021. The impact of PbF2-based glasses on radiation shielding and mechanical concepts: an extensive theoretical and Monte Carlo simulation study. Journal of Inorganic and Organometallic Polymers and Materials, 31(10), 3934-3942. https://doi.org/10.1007/s10904-021-02088-w
  • Issa, Shams S.A., 2016. Effective atomic number and mass attenuation coefficient of PbO–BaO–B2O3 glass system. Radiation Physics and Chemistry. 120,33–37. https://doi.org/10.1016/j.radphyschem.2015.11.025
  • Jackson, D.F., and Hawkes, D.J., 1981. X-ray attenuation coefficients of elements and mixtures. Physics Report 70, 169–233. https://doi.org/10.1016/0370-1573(81)90014-4
  • Karpuz, N., 2023. Radiation shielding properties of glass composition. Journal of Radiation Research and Applied Sciences, 16(4), 100689. https://doi.org/10.1016/j.jrras.2023.100689
  • Katubi, K. M., et al. 2022. Enhancement on radiation shielding performance of B2O3+ Li2O+ ZnO+ Na2O glass system. Radiation Physics and Chemistry, 201, 110457. https://doi.org/10.1016/j.radphyschem.2022.110457
  • Khattari, Z. Y., and Al-Buriahi, M. S., 2022. Monte Carlo simulations and Phy-X/PSD study of radiation shielding effectiveness and elastic properties of barium zinc aluminoborosilicate glasses. Radiation Physics and Chemistry, 195, 110091. https://doi.org/10.1016/j.radphyschem.2022.110091
  • Lakshminarayana, G., et al. 2017. Structural, thermal and optical investigations of Dy3+-doped B2O3–WO3–ZnO–Li2O–Na2O glasses for warm white light emitting applications, J. Lumin. 186, https://doi.org/10.1016/j.jlumin.2017.02.049
  • Lakshminarayana, G., et al., 2023. Er3+: B2O3-TeO2-ZnO-PbF2− M2O/MF (M= Li, Na, and K) glasses: An inspection of structural, thermal, optical, chromatic, and near-infrared luminescence traits for displays and potential C-band amplification. Journal of Non-Crystalline Solids, 622, 122660. https://doi.org/10.1016/j.jnoncrysol.2023.122660
  • Malidarre, R. B., et al., 2021. Fast neutrons shielding properties for HAP-Fe2O3 composite materials. International Journal of Computational and Experimental Science and Engineering, 7(3), 143-145. https://doi.org/10.22399/ijcesen.1012039
  • Metwalli, E., et al. 2004. Properties and structure of copper ultraphosphate glasses, J. Non-Cryst. Solids, 344, (2004) 128. https://doi.org/10.1016/j.jnoncrysol.2004.07.058
  • Mokhtari, K., et al., 2021. Fabrication, characterization, simulation and experimental studies of the ordinary concrete reinforced with micro and nano lead oxide particles against gamma radiation. Nuclear Engineering and Technology, 53(9), 3051-3057. https://doi.org/10.1016/j.net.2021.04.001
  • Oruncak, B., 2023. Radiation shielding properties for 90 (Se)-(10-x)(Te)-x (Ag) chalcogenide glasses. Journal of Radiation Research and Applied Sciences, 16(4), 100723. https://doi.org/10.1016/j.jrras.2023.100723
  • Ozpolat, Ö. F., et al., 2020. Phy-X/ZeXTRa: a software for robust calculation of effective atomic numbers for photon, electron, proton, alpha particle, and carbon ion interactions. Radiation and Environmental Biophysics, 59(2), https://doi.org/10.1007/s00411-019-00829-7
  • Rammah, Y. S., et al. 2020. Role of ZnO on TeO2. Li2O. ZnO glasses for optical and nuclear radiation shielding applications utilizing MCNP5 simulations and WINXCOM program. Journal of Non-Crystalline Solids, 544, 120162. https://doi.org/10.1016/j.jnoncrysol.2020.120162
  • Rammah, Y. S., et al., 2021. The impact of PbF2 on the ionizing radiation shielding competence and mechanical properties of TeO2–PbF2 glasses and glass-ceramics. Ceramics International, 47(2), 2547-2556. https://doi.org/10.1016/j.ceramint.2020.09.100
  • Şakar, E., et al., 2020. Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496. https://doi.org/10.1016/j.radphyschem.2019.108496
  • Sayyed, M. I., 2023. The impact of Chemical composition, density and thickness on the Radiation Shielding properties of CaO–Al2O3–SiO2 glasses. Silicon, 1-10. https://doi.org/10.1007/s12633-023-02640-y
  • Singh, V. P., Badiger, N. M., and Kaewkhao, J., 2014. Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study. Journal of non-crystalline solids, 404, 167-173. https://doi.org/10.1016/j.jnoncrysol.2014.08.003
  • Singh, G., et al, 2015. Measurement ofattenuation coefficient, effective atomic number and electron density of oxides of lanthanides by using simplified ATM-method. J. Alloy. Compd. 619, 356–360. https://doi.org/10.1016/j.jallcom.2014.09.026
  • Susoy, G., 2020. Effect of TeO2 additions on nuclear radiation shielding behavior of Li2O–B2O3–P2O5–TeO2 glass-system. Ceramics International, 46(3), 3844-3854. https://doi.org/10.1016/j.ceramint.2019.10.108
  • Şengül, A., 2023. Gamma-ray attenuation properties of polymer biomaterials: Experiment, XCOM and GAMOS results. Journal of Radiation Research and Applied Sciences, 16(4), 100702. https://doi.org/10.1016/j.jrras.2023.100702
  • Tekin, H.O., et al., 2019. An extensive investigation on gamma-ray and neutron attenuation parameters of cobalt oxide and nickel oxide sub-stituted bioactive glasses, Ceram. Int. 45 (8), 9934–9949. https://doi.org/10.1016/j.ceramint.2019.02.036
  • Tekin, H. O., et al., 2022. Transmission factor (TF) behavior of Bi2O3–TeO2–Na2O–TiO2–ZnO glass system: a Monte Carlo simulation study. Sustainability, 14(5), 2893. https://doi.org/10.3390/su14052893
  • Zaid, M. H. M., et al., 2012. Effect of ZnO on the physical properties and optical band gap of soda lime silicate glass. International journal of molecular sciences, 13(6), 7550-7558. https://doi.org/10.3390/ijms13067550
  • Yilmaz, A., et al., 2023. Exploring the KERMA, mass stopping power and projected range values against heavy-charged particles: A focusing study on Sm, Yb, and Nd reinforced tellurite glass shields. Radiation Physics and Chemistry, 212, 111167. https://doi.org/10.1016/j.radphyschem.2023.111167
  • Yılmaz, D., et al. 2020. Erbium oxide and Cerium oxide-doped borosilicate glasses as radiation shielding material. Radiation Effects and Defects in Solids, 175(5-6), 458-471. https://doi.org/10.1080/10420150.2019.1674301
  • Internet References https://phy-x.net/module/physics/shielding/ (02.04.2023)

Li, Na ve K İlavesinin B2O3-TeO2-ZnO-PbF2-Er2O3 Cam Yapısının Radyasyondan Korunma Yetenekleri Üzerindeki Etkisinin Değerlendirilmesi

Yıl 2024, Cilt: 24 Sayı: 4, 789 - 797, 20.08.2024
https://doi.org/10.35414/akufemubid.1411091

Öz

Bu çalışmada, Er2O3 katkılı B2O3-TeO2-ZnO-PbF2_M2O/MF (M=Li, Na ve K) cam örneklerinin radyasyondan korunma kabiliyetleri araştırıldı. Cam sistemlerinin çeşitli enerji bölgelerindeki radyasyon-zayıflatma faktörlerini değerlendirmek için Phy-X/PSD yazılımı kullanıldı. Sonuçlar, temel cam sisteminde (B2O3-TeO2-ZnO-PbF2-Er2O3), Li2O, Na2O, K2O, NaF veya KF yerine LiF eklenmesinin ana cam yoğunluğunda bir artışa ve lineer zayıflatma katsayısı değerlerinde bir artışa yol açtığını göstermektedir. Ayrıca E4 numunesi (B2O3-TeO2-ZnO-PbF2-Er2O3-LiF) için yüksek enerji bölgesinde yani 10-15 MeV enerjilerde yarı değer katmanı kalınlığı ve ondabir katman kalınlığı değerlerinde azalma olduğu görülmektedir.

Kaynakça

  • Abou Hussein, E. M., et al., 2021. Gamma ray interaction of optical, chemical, physical behavior of bismuth silicate glasses and their radiation shielding proficiency using Phy-X/PSD program. Journal of Non-Crystalline Solids, 570, 121021. https://doi.org/10.1016/j.jnoncrysol.2021.121021
  • Agar, O., et al., 2019. Evaluation of the shielding parameters of alkaline earth based phosphate glasses using MCNPX code, Results Phys, 12, 101. https://doi.org/10.1016/j.rinp.2018.11.054
  • Akkurt, I., and Malidarre, R. B., 2022. Physical, structural, and mechanical properties of the concrete by FLUKA code and phy-X/PSD software. Radiation Physics and Chemistry, 193, 109958. https://doi.org/10.1016/j.radphyschem.2021.109958
  • Alan, H. Y., et al., 2023. Non-decreasing monotonic effects of cerium and gadolinium on tellurite glasses toward enhanced heavy-charged particle stopping: alpha-proton particles as major a part of cosmic radiation. Journal of the Australian Ceramic Society, 1-10. https://doi.org/10.1007/s41779-023-00984-7
  • Al-Buriahi, M. S., et al. 2021. Newly developed glasses containing Si/Cd/Li/Gd and their high performance for radiation applications: role of Er 2 O 3. Journal of Materials Science: Materials in Electronics, 32, 9440-9451. https://doi.org/10.1007/s10854-021-05608-z
  • Al-Hadeethi, Y., and Sayyed, M. I., 2020a. A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 glass system using Phy-X/PSD software. Ceramics International, 46(5), 6136-6140. https://doi.org/10.1016/j.ceramint.2019.11.078
  • Al-Hadeethi, Y., and Sayyed, M. I., 2020b. Evaluation of gamma ray shielding characteristics of CaF2–BaO–P2O5 glass system using Phy-X/PSD computer program. Progress in Nuclear Energy, 126, 103397. https://doi.org/10.1016/j.pnucene.2020.103397
  • ALMisned, G. et al. 2023. Bismuth (III) oxide and boron (III) oxide substitution in bismuth-boro-zinc glasses: A focusing in nuclear radiation shielding properties. Optik, 272, 170214. https://doi.org/10.1016/j.ijleo.2022.170214
  • Almuqrin, A. H., et al., 2021. Li2O-K2O-B2O3-PbO glass system: Optical and gamma-ray shielding investigations. Optik, 247, 167792. https://doi.org/10.1016/j.ijleo.2021.167792
  • Arpaci, N., and Aygun, M. 2022. Determınatıon Of Radıatıon Shıeldıng Parameters Of Cocrfenıtıalx Alloys By Usıng Recently Developed Phy-X/Psd And Epıxs Softwares. Journal Of Amasya University The Institute Of Sciences And Technology, 3(1), 8-22. https://doi.org/10.54559/jauist.1075966
  • Aygun Z., and Aygun M., 2023. Evaluation of radiation shielding potentials of Ni-based alloys, Inconel-617 and Incoloy-800HT, candidates for high temperature applications especially for nuclear reactors, by EpiXS and Phy-X/PSD codes, Journal of Polytehnic, 26(2), 795-801. https://doi.org/10.2339/politeknik.1004657
  • Deliormanli, A. M., et al. 2021. Erbium (III)-and Terbium (III)-containing silicate-based bioactive glass powders: physical, structural and nuclear radiation shielding characteristics. Applied Physics A, 127(6), 463. https://doi.org/10.1007/s00339-021-04615-5
  • Effendy, N., et al., 2021. Influence of ZnO to the physical, elastic and gamma radiation shielding properties of the tellurite glass system using MCNP-5 simulation code. Radiation Physics and Chemistry, 188, 109665. https://doi.org/10.1016/j.radphyschem.2021.109665
  • Ekinci, N., et al., 2014. A study of the energy absorption and exposure buildup factors of some anti-inflammatory drugs, Appl. Radiat. Isot. 90, 265–273. https://doi.org/10.1016/j.apradiso.2014.05.003
  • Elazaka, A.L., et al., 2021. New approach to removal of hazardous Bypass Cement Dust (BCD) from the environment: 20Na2O–20BaCl2-(60-x)B2O3-(x)BCD glass system and optical, mechanical, structural and nuclear radiation shielding competences, J. Hazard. Mater. 403, 123738. https://doi.org/10.1016/j.jhazmat.2020.123738
  • El-Denglawey, A., et al., 2021. The impact of PbF2-based glasses on radiation shielding and mechanical concepts: an extensive theoretical and Monte Carlo simulation study. Journal of Inorganic and Organometallic Polymers and Materials, 31(10), 3934-3942. https://doi.org/10.1007/s10904-021-02088-w
  • Issa, Shams S.A., 2016. Effective atomic number and mass attenuation coefficient of PbO–BaO–B2O3 glass system. Radiation Physics and Chemistry. 120,33–37. https://doi.org/10.1016/j.radphyschem.2015.11.025
  • Jackson, D.F., and Hawkes, D.J., 1981. X-ray attenuation coefficients of elements and mixtures. Physics Report 70, 169–233. https://doi.org/10.1016/0370-1573(81)90014-4
  • Karpuz, N., 2023. Radiation shielding properties of glass composition. Journal of Radiation Research and Applied Sciences, 16(4), 100689. https://doi.org/10.1016/j.jrras.2023.100689
  • Katubi, K. M., et al. 2022. Enhancement on radiation shielding performance of B2O3+ Li2O+ ZnO+ Na2O glass system. Radiation Physics and Chemistry, 201, 110457. https://doi.org/10.1016/j.radphyschem.2022.110457
  • Khattari, Z. Y., and Al-Buriahi, M. S., 2022. Monte Carlo simulations and Phy-X/PSD study of radiation shielding effectiveness and elastic properties of barium zinc aluminoborosilicate glasses. Radiation Physics and Chemistry, 195, 110091. https://doi.org/10.1016/j.radphyschem.2022.110091
  • Lakshminarayana, G., et al. 2017. Structural, thermal and optical investigations of Dy3+-doped B2O3–WO3–ZnO–Li2O–Na2O glasses for warm white light emitting applications, J. Lumin. 186, https://doi.org/10.1016/j.jlumin.2017.02.049
  • Lakshminarayana, G., et al., 2023. Er3+: B2O3-TeO2-ZnO-PbF2− M2O/MF (M= Li, Na, and K) glasses: An inspection of structural, thermal, optical, chromatic, and near-infrared luminescence traits for displays and potential C-band amplification. Journal of Non-Crystalline Solids, 622, 122660. https://doi.org/10.1016/j.jnoncrysol.2023.122660
  • Malidarre, R. B., et al., 2021. Fast neutrons shielding properties for HAP-Fe2O3 composite materials. International Journal of Computational and Experimental Science and Engineering, 7(3), 143-145. https://doi.org/10.22399/ijcesen.1012039
  • Metwalli, E., et al. 2004. Properties and structure of copper ultraphosphate glasses, J. Non-Cryst. Solids, 344, (2004) 128. https://doi.org/10.1016/j.jnoncrysol.2004.07.058
  • Mokhtari, K., et al., 2021. Fabrication, characterization, simulation and experimental studies of the ordinary concrete reinforced with micro and nano lead oxide particles against gamma radiation. Nuclear Engineering and Technology, 53(9), 3051-3057. https://doi.org/10.1016/j.net.2021.04.001
  • Oruncak, B., 2023. Radiation shielding properties for 90 (Se)-(10-x)(Te)-x (Ag) chalcogenide glasses. Journal of Radiation Research and Applied Sciences, 16(4), 100723. https://doi.org/10.1016/j.jrras.2023.100723
  • Ozpolat, Ö. F., et al., 2020. Phy-X/ZeXTRa: a software for robust calculation of effective atomic numbers for photon, electron, proton, alpha particle, and carbon ion interactions. Radiation and Environmental Biophysics, 59(2), https://doi.org/10.1007/s00411-019-00829-7
  • Rammah, Y. S., et al. 2020. Role of ZnO on TeO2. Li2O. ZnO glasses for optical and nuclear radiation shielding applications utilizing MCNP5 simulations and WINXCOM program. Journal of Non-Crystalline Solids, 544, 120162. https://doi.org/10.1016/j.jnoncrysol.2020.120162
  • Rammah, Y. S., et al., 2021. The impact of PbF2 on the ionizing radiation shielding competence and mechanical properties of TeO2–PbF2 glasses and glass-ceramics. Ceramics International, 47(2), 2547-2556. https://doi.org/10.1016/j.ceramint.2020.09.100
  • Şakar, E., et al., 2020. Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496. https://doi.org/10.1016/j.radphyschem.2019.108496
  • Sayyed, M. I., 2023. The impact of Chemical composition, density and thickness on the Radiation Shielding properties of CaO–Al2O3–SiO2 glasses. Silicon, 1-10. https://doi.org/10.1007/s12633-023-02640-y
  • Singh, V. P., Badiger, N. M., and Kaewkhao, J., 2014. Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study. Journal of non-crystalline solids, 404, 167-173. https://doi.org/10.1016/j.jnoncrysol.2014.08.003
  • Singh, G., et al, 2015. Measurement ofattenuation coefficient, effective atomic number and electron density of oxides of lanthanides by using simplified ATM-method. J. Alloy. Compd. 619, 356–360. https://doi.org/10.1016/j.jallcom.2014.09.026
  • Susoy, G., 2020. Effect of TeO2 additions on nuclear radiation shielding behavior of Li2O–B2O3–P2O5–TeO2 glass-system. Ceramics International, 46(3), 3844-3854. https://doi.org/10.1016/j.ceramint.2019.10.108
  • Şengül, A., 2023. Gamma-ray attenuation properties of polymer biomaterials: Experiment, XCOM and GAMOS results. Journal of Radiation Research and Applied Sciences, 16(4), 100702. https://doi.org/10.1016/j.jrras.2023.100702
  • Tekin, H.O., et al., 2019. An extensive investigation on gamma-ray and neutron attenuation parameters of cobalt oxide and nickel oxide sub-stituted bioactive glasses, Ceram. Int. 45 (8), 9934–9949. https://doi.org/10.1016/j.ceramint.2019.02.036
  • Tekin, H. O., et al., 2022. Transmission factor (TF) behavior of Bi2O3–TeO2–Na2O–TiO2–ZnO glass system: a Monte Carlo simulation study. Sustainability, 14(5), 2893. https://doi.org/10.3390/su14052893
  • Zaid, M. H. M., et al., 2012. Effect of ZnO on the physical properties and optical band gap of soda lime silicate glass. International journal of molecular sciences, 13(6), 7550-7558. https://doi.org/10.3390/ijms13067550
  • Yilmaz, A., et al., 2023. Exploring the KERMA, mass stopping power and projected range values against heavy-charged particles: A focusing study on Sm, Yb, and Nd reinforced tellurite glass shields. Radiation Physics and Chemistry, 212, 111167. https://doi.org/10.1016/j.radphyschem.2023.111167
  • Yılmaz, D., et al. 2020. Erbium oxide and Cerium oxide-doped borosilicate glasses as radiation shielding material. Radiation Effects and Defects in Solids, 175(5-6), 458-471. https://doi.org/10.1080/10420150.2019.1674301
  • Internet References https://phy-x.net/module/physics/shielding/ (02.04.2023)
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nükleer Fizik
Bölüm Makaleler
Yazarlar

Hatice Yılmaz Alan 0000-0002-9783-4620

Erken Görünüm Tarihi 23 Temmuz 2024
Yayımlanma Tarihi 20 Ağustos 2024
Gönderilme Tarihi 28 Aralık 2023
Kabul Tarihi 20 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 24 Sayı: 4

Kaynak Göster

APA Yılmaz Alan, H. (2024). A Study on the Effect of Addition Li, Na, and K on the Radiation Shielding Capabilities of B2O3-TeO2-ZnO-PbF2-Er2O3 Glass Structure. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(4), 789-797. https://doi.org/10.35414/akufemubid.1411091
AMA Yılmaz Alan H. A Study on the Effect of Addition Li, Na, and K on the Radiation Shielding Capabilities of B2O3-TeO2-ZnO-PbF2-Er2O3 Glass Structure. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ağustos 2024;24(4):789-797. doi:10.35414/akufemubid.1411091
Chicago Yılmaz Alan, Hatice. “A Study on the Effect of Addition Li, Na, and K on the Radiation Shielding Capabilities of B2O3-TeO2-ZnO-PbF2-Er2O3 Glass Structure”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, sy. 4 (Ağustos 2024): 789-97. https://doi.org/10.35414/akufemubid.1411091.
EndNote Yılmaz Alan H (01 Ağustos 2024) A Study on the Effect of Addition Li, Na, and K on the Radiation Shielding Capabilities of B2O3-TeO2-ZnO-PbF2-Er2O3 Glass Structure. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 4 789–797.
IEEE H. Yılmaz Alan, “A Study on the Effect of Addition Li, Na, and K on the Radiation Shielding Capabilities of B2O3-TeO2-ZnO-PbF2-Er2O3 Glass Structure”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 4, ss. 789–797, 2024, doi: 10.35414/akufemubid.1411091.
ISNAD Yılmaz Alan, Hatice. “A Study on the Effect of Addition Li, Na, and K on the Radiation Shielding Capabilities of B2O3-TeO2-ZnO-PbF2-Er2O3 Glass Structure”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/4 (Ağustos 2024), 789-797. https://doi.org/10.35414/akufemubid.1411091.
JAMA Yılmaz Alan H. A Study on the Effect of Addition Li, Na, and K on the Radiation Shielding Capabilities of B2O3-TeO2-ZnO-PbF2-Er2O3 Glass Structure. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:789–797.
MLA Yılmaz Alan, Hatice. “A Study on the Effect of Addition Li, Na, and K on the Radiation Shielding Capabilities of B2O3-TeO2-ZnO-PbF2-Er2O3 Glass Structure”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 4, 2024, ss. 789-97, doi:10.35414/akufemubid.1411091.
Vancouver Yılmaz Alan H. A Study on the Effect of Addition Li, Na, and K on the Radiation Shielding Capabilities of B2O3-TeO2-ZnO-PbF2-Er2O3 Glass Structure. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(4):789-97.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.