Araştırma Makalesi
BibTex RIS Kaynak Göster

Grafting and Characterization of Ethylene Glycol Dimethacrylate on Sodium Alginate, Chitosan and Polyvinyl Alcohol Using Different Initiators

Yıl 2025, Cilt: 25 Sayı: 1, 59 - 69

Öz

In recent years, the usage areas of new graft copolymers synthesized from polymers have increased. Graft copolymerization is performed to reduce the weaknesses of polymers and expand their usage area. Graft copolymers are notable for their potential applications in wastewater treatment, biomedical, pharmaceutical, and nanomedicine fields. In our study, the free radical graft copolymerization method was used to eliminate the weak properties of sodium alginate (ALG), chitosan (CHI) and polyvinyl alcohol (PVA) polymer. By grafting ethylene glycol dimethacrylate (EGDMA) monomer onto the polymers, sodium alginate-graft-poly(ethylene glycol dimethacrylate) (ALG-g-PEGDMA), chitosan-graft-poly(ethylene glycol dimethacrylate) (CHI-g-PEGDMA), polyvinyl alcohol-polymer-poly(ethylene glycol dimethacrylate) (PVA-g-PEGDMA) graft copolymer was synthesized. The synthesis of graft copolymers was carried out using cerium ammonium nitrate (CAN), ammonium persulfate (APS) and benzoyl peroxide (BPO) initiators in a nitrogen gas atmosphere at temperatures suitable for the initiators. The graft percentage and grafting efficiency of graft copolymers synthesized with different initiators were calculated from the mass increase. The lowest grafting results were obtained with the CAN starter. The grafting percentage (15%) and grafting efficiency (6%) of PVA-g-PEGDMA graft copolymer synthesized with CAN initiator were found. The highest grafting results were obtained with the BPO starter. Grafting percentage (116%) and grafting efficiency (30%) of ALG-g-PEGDMA graft copolymer synthesized with BPO initiator were found. The synthesized graft copolymers were characterized by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA/dTG) methods. The glass transition temperature (Tg) of the copolymers were determined.

Kaynakça

  • Akın, A. and Işıklan, N., 2016. Microwave assisted synthesis and characterization of sodium alginate-graft-poly (N, N′-dimethylacrylamide). International Journal of Biological Macromolecules, 82, 530-540. https://doi.org/10.1016/j.ijbiomac.2015.10.050
  • Ayhan, H., ve Ayhan, F., 2014. Kontrollu ilaç salımı için fotoçapraz bağlı poli (Etilen glikol) hidrojeller. Türk Biyokimya Dergisi, 39, 403-15.
  • Bielecka-Kowalska, A., Czarny, P., Wigner, P., Synowiec, E., Kowalski, B., Szwed, M. and Majsterek, I., 2018. Ethylene glycol dimethacrylate and diethylene glycol dimethacrylate exhibits cytotoxic and genotoxic effect on human gingival fibroblasts via induction of reactive oxygen species. Toxicology In Vitro, 47, 8-17. https://doi.org/10.1016/j.tiv.2017.10.028
  • Bi, J., Tian, C., Zhang, G. L., Hao, H., and Hou, H. M., 2021. Novel procyanidins-loaded chitosan-graft-polyvinyl alcohol film with sustained antibacterial activity for food packaging. Food Chemistry, 365, 130534. https://doi.org/10.1016/j.foodchem.2021.130534
  • Bulut, E., 2021. Development and optimization of Fe3+-crosslinked sodium alginate-methylcellulose semi-interpenetrating polymer network beads for controlled release of ibuprofen. International Journal of Biological Macromolecules, 168, 823-833. https://doi.org/10.1016/j.ijbiomac.2020.11.147
  • Bulut, E., 2022. Design and Optimization of pH‐Responsive Chitosan‐Coated Zn‐Carboxymethyl Cellulose Hydrogel Bead Carriers for Amoxicillin Trihydrate Delivery. ChemistrySelect, 7(24), e202200471. https://doi.org/10.1002/slct.202200471
  • Cha, C., Kim, S. Y., Cao, L. and Kong, H., 2010. Decoupled control of stiffness and permeability with a cell-encapsulating poly (ethylene glycol) dimethacrylate hydrogel. Biomaterials, 31(18), 4864-4871. https://doi.org/10.1016/j.biomaterials.2010.02.059
  • Chowdhury, P. and Pal, C. M., 1999. Graft copolymerization of methyl acrylate onto polyvinyl alcohol using Ce (IV) initiator. European Polymer Journal, 35(12), 2207-2213. https://doi.org/10.1016/S0014-3057(99)00017-8
  • Çiftci, Ş., Özek, S., Aksoy, S. A., Aksoy, K., ve Göde, F., 2015. Nanokil katkılı PVA/kitosan nanolif sentezi ve karakterizasyonu. Süleyman Demirel Üniversitesi Fen Dergisi, 10(1), 118-128. https://doi.org/10.29233/sdufeffd.134825
  • Djordjevic, S., Nikolic, L., Kovacevic, S., Miljkovic, M., and Djordjevic, D., 2013. Graft copolymerization of acrylic acid onto hydrolyzed potato starch using various initiators. Periodica Polytechnica Chemical Engineering, 57(1-2), 55-61. https://doi.org/10.3311/PPch.2171
  • Ding, J., Chen, S. C., Wang, X. L. and Wang, Y. Z., 2009. Synthesis and properties of thermoplastic poly (vinyl alcohol)-graft-lactic acid copolymers. Industrial & Engineering Chemistry Research, 48(2), 788-793. https://doi.org/10.1021/ie8013428
  • Erol, Ü. H., 2016. Polimerik blend nanokürelerin hazırlanması ve in vitro ilaç geçiş özelliklerinin incelenmesi. Yüksek Lisans Tezi, Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü, Kırıkkale, 123. Erol, Ü. H., Güncüm, E. and Işıklan, N., 2023. Development of chitosan-graphene oxide blend nanoparticles for controlled flurbiprofen delivery. International Journal of Biological Macromolecules, 246, 125627. https://doi.org/10.1016/j.ijbiomac.2023.125627
  • Garcia-Valdez, O., Champagne, P. and Cunningham, M. F., 2018. Graft modification of natural polysaccharides via reversible deactivation radical polymerization. Progress in Polymer Science, 76, 151-173. https://doi.org/10.1016/j.progpolymsci.2017.08.001
  • Geyik, G., 2020. -karagenan kopolimerlerin sentezlenmesi ve taşıyıcı sistemlerinin geliştirilmesi. Doktora Tezi, Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü, Kırıkkale, 211. Geyik, G., 2024. Ca2+ İyonları ile Çapraz Bağlı Sodyum Aljinat/-Karagenan Kürelerden Nifedipinin Kontrollü Salımı. International Journal of Engineering Research and Development, 16(1), 150-162. https://doi.org/10.29137/umagd.1384946
  • Geyik, G., Güncüm, E. and Işıklan, N., 2023. Design and development of pH-responsive alginate-based nanogel carriers for etoposide delivery. International Journal of Biological Macromolecules, 250, 126242. https://doi.org/10.1016/j.ijbiomac.2023.126242
  • Geyik, G. and Işıklan, N., 2020a. pH/temperature‐responsive poly(dimethylaminoethyl methacrylate) grafted κ‐carrageenan copolymer: Synthesis and physicochemical properties. Journal of Applied Polymer Science, 137(48), 49596. https://doi.org/10.1002/app.49596
  • Geyik, G. and Işıklan, N., 2020b. Synthesis, characterization and swelling performance of a temperature/pH-sensitive κ-carrageenan graft copolymer. International Journal of Biological Macromolecules, 152, 359-370. https://doi.org/10.1016/j.ijbiomac.2020.02.129
  • Geyik, G. and Işıklan, N., 2023. Chemical modification of κ-carrageenan with poly(2-hydroxypropylmethacrylamide) through microwave induced graft copolymerization: Characterization and swelling features. International Journal of Biological Macromolecules, 235, 123888. https://doi.org/10.1016/j.ijbiomac.2023.126242
  • Haoue, S., Derdar, H., Belbachir, M. and Harrane, A., 2020. Polymerization of ethylene glycol dimethacrylate (EGDM), using an Algerian clay as eco-catalyst (maghnite-H+ and Maghnite-Na+). Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 221-230. https://doi.org/10.9767/bcrec.15.1.6297.221-230
  • Horiike, S., Matsuzawa, S. and Yamaura, K., 2002. Preparation of chemically crosslinked gels with maleate‐denatured poly (vinyl alcohol) and its application to drug release. Journal of Applied Polymer Science, 84(6), 1178-1184. https://doi.org/10.1002/app.10411
  • İnal, M., Işıklan, N. and Yiğitoğlu, M., 2017. Preparation and characterization of pH-sensitive alginate-g-poly (N-vinyl-2-pyrrolidone)/gelatin blend beads. Journal of Industrial and Engineering Chemistry, 52, 128-137. https://doi.org/10.1016/j.jiec.2017.03.034
  • Işıklan, N. and Altınışık, Z., 2018. Temperature‐responsive alginate‐g‐poly (N, N‐diethylacrylamide) copolymer: Synthesis, characterization, and swelling behavior. Journal of Applied Polymer Science, 135(38), 46688. https://doi.org/10.1002/app.46688
  • Işıklan, N., Hussien, N. A. and Türk, M., 2021. Synthesis and drug delivery performance of gelatin-decorated magnetic graphene oxide nanoplatform. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 616, 126256. https://doi.org/10.1016/j.colsurfa.2021.126256
  • Işıklan, N. and Kazan, H., 2018. Thermoresponsive and biocompatible poly(vinyl alcohol)‐graft‐poly(N, N‐diethylacrylamide) copolymer: microwave‐assisted synthesis, characterization, and swelling behavior. Journal of Applied Polymer Science, 135(12), 45969. https://doi.org/10.1002/app.45969
  • Işıklan, N. and Küçükbalcı, G., 2012. Microwave-induced synthesis of alginate–graft-poly(N-isopropylacrylamide) and drug release properties of dual pH-and temperature-responsive beads. European Journal of Pharmaceutics and Biopharmaceutics, 82(2), 316-331. https://doi.org/10.1016/j.ejpb.2012.07.015
  • Işıklan, N. and Küçükbalcı, G., 2016. Synthesis and characterization of pH-and temperature-sensitive materials based on alginate and poly (N-isopropylacrylamide/acrylic acid) for drug delivery. Polymer Bulletin, 73, 1321-1342. https://doi.org/10.1007/s00289-015-1550-x
  • Işıklan, N. and Tokmak, Ş., 2019. Development of thermo/pH-responsive chitosan coated pectin-graft-poly (N, N-diethyl acrylamide) microcarriers. Carbohydrate Polymers, 218, 112-125. https://doi.org/10.1016/j.carbpol.2019.04.068
  • Işıklan, N., Kurşun, F. and İnal, M., 2010. Graft copolymerization of itaconic acid onto sodium alginate using benzoyl peroxide. Carbohydrate Polymers, 79(3), 665-672. https://doi.org/10.1016/j.carbpol.2009.09.021
  • Kumar, D., Pandey, J., Raj, V. and Kumar, P., 2017. A review on the modification of polysaccharide through graft copolymerization for various potential applications. The Open Medicinal ChemistryJjournal, 11, 109. https://doi.org/10.2174/1874104501711010109
  • Karaman, D. Ş., ve Pamukçu, A., 2022). Polietilen Glikol Dimetakrilat Doku İskeletlerinin Dentritik Gözenekleri Genişletilmiş Mezogözenekli Silika Nanoparçacıklar ile Katkılandırılması ve In Vitro İncelemeleri. Konya Journal of Engineering Sciences, 10(1), 229-239. https://doi.org/10.36306/konjes.1027750
  • Kurşun, F., 2016. Poli(vinil alkol)-aşı-poli(N-izopropilakrilamid) ve poli(vinil alkol)-aşı-poli(N-hidroksimetilakrilamid) kopolimerlerinin sentezi, karakterizasyonu ve pervaporasyon, evapomasyon, sıcaklık farklı evapomasyonda kullanımı. Doktora Tezi, Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü, Kırıkkale, 188.
  • Kurşun, F., 2020. Application of PVA-b-NaY zeolite mixture membranes in pervaporation method. Journal of Molecular Structure, 1201, 127170. https://doi.org/10.1016/j.molstruc.2019.127170
  • Kurşun, F. and Işıklan, N., 2016. Development of thermo-responsive poly (vinyl alcohol)-g-poly (N-isopropylacrylamide) copolymeric membranes for separation of isopropyl alcohol/water mixtures via pervaporation. Journal of Industrial and Engineering Chemistry, 41, 91-104. https://doi.org/10.1016/j.jiec.2016.07.011
  • Küçükbalci, G., 2011. Sıcaklık ve ph duyarlı aljinat bazlı mikrokürelerin tasarımı ve indometasin salımında kullanımı. Yüksek Lisans Tezi, Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü, Kırıkkale, 148.
  • Laurienzo, P., Malinconico, M., Motta, A., and Vicinanza, A., 2005. Synthesis and characterization of a novel alginate–poly (ethylene glycol) graft copolymer. Carbohydrate Polymers, 62(3), 274-282. https://doi.org/10.1016/j.carbpol.2005.08.005
  • Lin, M.C., Tai, H.Y., Ou, T.C. and Don, T.M., 2012. Preparation and characterization of UV-sensitive chitosan for UV-cure with poly (ethylene glycol) dimethacrylate. Cellulose, 19, 1689-1700. https://doi.org/10.1007/s10570-012-9758-5
  • Maji, B. and Maiti, S., 2021. Chemical modification of xanthan gum through graft copolymerization: Tailored properties and potential applications in drug delivery and wastewater treatment. Carbohydrate Polymers, 251, 117095. https://doi.org/10.1016/j.carbpol.2020.117095
  • Marcasuzaa, P., Reynaud, S., Ehrenfeld, F., Khoukh, A. and Desbrieres, J., 2010. Chitosan-graft-polyaniline-based hydrogels: elaboration and properties. Biomacromolecules, 11(6), 1684-1691. https://doi.org/10.1021/bm100379z
  • Park, I. K., Kim, T. H., Park, Y. H., Shin, B. A., Choi, E. S., Chowdhury, E. H., and Cho, C. S., 2001. Galactosylated chitosan-graft-poly (ethylene glycol) as hepatocyte-targeting DNA carrier. Journal of Controlled Release, 76(3), 349-362. https://doi.org/10.1016/S0168-3659(01)00448-5
  • Park, M. S., Choi, Y., Lee, K. B., and Kim, J. H., 2018. Synthesis of PVA-g-POEM graft copolymers and their use in highly permeable thin film composite membranes. Chemical Engineering Journal, 346, 739-747. https://doi.org/10.1016/j.cej.2018.04.036
  • Prabaharan, M., Grailer, J. J., Steeber, D. A., and Gong, S., 2008. Stimuli‐responsive chitosan‐graft‐poly (N‐vinylcaprolactam) as a promising material for controlled hydrophobic drug delivery. Macromolecular Bioscience, 8(9), 843-851. https://doi.org/10.1002/mabi.200800010
  • Singh, R. P., Nayak, B. R., Biswal, D. R., Tripathy, T., Banik, K., 2003. Biobased polymeric flocculants for industrial effluent treatment. Materials Research Innovations, 7(5), 331-340. https://doi.org/10.1007/s10019-003-0273-z
  • Singh, V., Tiwari, A., Tripathi, D. N. and Sanghi, R., 2006. Microwave enhanced synthesis of chitosan-graft-polyacrylamide. Polymer, 47(1), 254-260. https://doi.org/10.1016/j.polymer.2005.10.101
  • Spagnol, C., Rodrigues, F. H., Pereira, A. G., Fajardo, A. R., Rubira, A. F., and Muniz, E. C., 2012. Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly (acrylic acid). Carbohydrate Polymers, 87(3), 2038-2045. https://doi.org/10.1016/j.carbpol.2011.10.017
  • Sreenivasan, K., 1997. On the restriction of the release of water‐soluble component from polyvinyl alcohol film by blending β‐cyclodextrin. Journal of Applied Polymer Science, 65(9), 1829-1832. https://doi.org/10.1002/(SICI)1097-4628(19970829)65:9%3C1829::AID-APP20%3E3.0.CO;2-G
  • Şanlı, O., Ay, N. and Işıklan, N., 2007. Release characteristics of diclofenac sodium from poly (vinyl alcohol)/sodium alginate and poly (vinyl alcohol)-grafted-poly (acrylamide)/sodium alginate blend beads. European Journal of Pharmaceutics and Biopharmaceutics, 65(2), 204-214. https://doi.org/10.1016/j.ejpb.2006.08.004
  • Şanlı, O. and Işıklan, N., 2006. Controlled release formulations of carbaryl based on copper alginate, barium alginate, and alginic acid beads. Journal of Applied Polymer Science, 102(5), 4245-4253. https://doi.org/10.1002/app.24882
  • Şanlı, O., Karaca, İ. and Işıklan, N., 2009. Preparation, characterization, and salicylic acid release behavior of chitosan/poly (vinyl alcohol) blend microspheres. Journal of Applied Polymer Science, 111(6), 2731-2740. https://doi.org/10.1002/app.29319
  • Şimşek, Ş., 2007. Büyüme hormonu (somatotropin) içeren biyolojik olarak parçalanabilen mikrokürelerin hazırlanması. Doktora Tezi, Marmara Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 222.
  • Toumi, S., Yahoum, M. M., Lefnaoui, S. and Hadjsadok, A., 2021. Synthesis, characterization and potential application of hydrophobically modified carrageenan derivatives as pharmaceutical excipients. Carbohydrate Polymers, 251, 116997. https://doi.org/10.1016/j.carbpol.2020.116997
  • Tripathy, T. and Singh, R., 2000. High performance flocculating agent based on partially hydrolysed sodium alginate–g–polyacrylamide. European Polymer Journal, 36(7), 1471-1476. https://doi.org/10.1016/S0014-3057(99)00201-3

Etilen Glikol Dimetakrilatın, Sodyum Aljinat, Kitosan ve Polivinil Alkol Üzerine Farklı Başlatıcılar Kullanılarak Aşılanması ve Karakterizasyonu

Yıl 2025, Cilt: 25 Sayı: 1, 59 - 69

Öz

Son yıllarda polimerlerden sentezlenen yeni aşı kopolimerlerin kullanım alanları artmaktadır. Polimerlerin zayıf yönle azaltmak ve kullanım alanını genişletmek için aşı kopolimerizasyon yapılmaktadır. Aşı kopolimerler atık su arıtma, biyomedikal, farmasötik, nanotıp alanlarındaki potansiyel uygulamaları nedeniyle dikkat çekicidir. Çalışmamızda sodyum aljinat (ALG), kitosan (CHI) ve polivinil alkol (PVA) polimerinin zayıf özelliklerini bertaraf etmek için serbest radikalik aşı kopolimerizasyon yöntemi kullanıldı. Polimerler üzerine etilen glikol dimetakrilat (EGDMA) monomeri aşılanarak sodyum aljinat-aşı-poli(etilen glikol dimetakrilat) (ALG-g-PEGDMA), kitosan-aşı-poli(etilen glikol dimetakrilat) (CHI-g-PEGDMA) ve polivinil alkol-aşı-poli(etilen glikol dimetakrilat) (PVA-g-PEGDMA) aşı kopolimeri sentezlendi. Aşı kopolimerlerin sentezi, seryum amonyum nitrat (CAN), amonyum persülfat (APS) ve benzoil peroksit (BPO) başlatıcıları kullanılarak azot gazı atmosferinde başlatıcılara uygun sıcaklıklarda gerçekleştirildi. Farklı başlatıcılarla sentezlenen aşı kopolimerlerin aşı yüzdesi ve aşılama verimi kütle artışından hesaplandı. En düşük aşılama sonuçları CAN başlatıcısında elde edildi. CAN başlatıcısı ile sentezlenen PVA-g-PEGDMA aşı kopolimerin aşı yüzdesi (%15) ve aşılama verimi (%6) bulundu. En yüksek aşılama sonuçları BPO başlatıcısı ile elde edildi. BPO başlatıcısı ile sentezlenen ALG-g-PEGDMA aşı kopolimerin aşı yüzdesi (%116) ve aşılama verimi (%30) bulundu. Sentezlenen aşı kopolimerler Fourier dönüşümlü kızılötesi spektroskopisi (FT-IR) ve termogravimetrik analiz (TGA/dTG) yöntemleri ile karakterize edildi. Kopolimerlerin camsı geçiş sıcaklıkları (Tg) belirlendi.

Kaynakça

  • Akın, A. and Işıklan, N., 2016. Microwave assisted synthesis and characterization of sodium alginate-graft-poly (N, N′-dimethylacrylamide). International Journal of Biological Macromolecules, 82, 530-540. https://doi.org/10.1016/j.ijbiomac.2015.10.050
  • Ayhan, H., ve Ayhan, F., 2014. Kontrollu ilaç salımı için fotoçapraz bağlı poli (Etilen glikol) hidrojeller. Türk Biyokimya Dergisi, 39, 403-15.
  • Bielecka-Kowalska, A., Czarny, P., Wigner, P., Synowiec, E., Kowalski, B., Szwed, M. and Majsterek, I., 2018. Ethylene glycol dimethacrylate and diethylene glycol dimethacrylate exhibits cytotoxic and genotoxic effect on human gingival fibroblasts via induction of reactive oxygen species. Toxicology In Vitro, 47, 8-17. https://doi.org/10.1016/j.tiv.2017.10.028
  • Bi, J., Tian, C., Zhang, G. L., Hao, H., and Hou, H. M., 2021. Novel procyanidins-loaded chitosan-graft-polyvinyl alcohol film with sustained antibacterial activity for food packaging. Food Chemistry, 365, 130534. https://doi.org/10.1016/j.foodchem.2021.130534
  • Bulut, E., 2021. Development and optimization of Fe3+-crosslinked sodium alginate-methylcellulose semi-interpenetrating polymer network beads for controlled release of ibuprofen. International Journal of Biological Macromolecules, 168, 823-833. https://doi.org/10.1016/j.ijbiomac.2020.11.147
  • Bulut, E., 2022. Design and Optimization of pH‐Responsive Chitosan‐Coated Zn‐Carboxymethyl Cellulose Hydrogel Bead Carriers for Amoxicillin Trihydrate Delivery. ChemistrySelect, 7(24), e202200471. https://doi.org/10.1002/slct.202200471
  • Cha, C., Kim, S. Y., Cao, L. and Kong, H., 2010. Decoupled control of stiffness and permeability with a cell-encapsulating poly (ethylene glycol) dimethacrylate hydrogel. Biomaterials, 31(18), 4864-4871. https://doi.org/10.1016/j.biomaterials.2010.02.059
  • Chowdhury, P. and Pal, C. M., 1999. Graft copolymerization of methyl acrylate onto polyvinyl alcohol using Ce (IV) initiator. European Polymer Journal, 35(12), 2207-2213. https://doi.org/10.1016/S0014-3057(99)00017-8
  • Çiftci, Ş., Özek, S., Aksoy, S. A., Aksoy, K., ve Göde, F., 2015. Nanokil katkılı PVA/kitosan nanolif sentezi ve karakterizasyonu. Süleyman Demirel Üniversitesi Fen Dergisi, 10(1), 118-128. https://doi.org/10.29233/sdufeffd.134825
  • Djordjevic, S., Nikolic, L., Kovacevic, S., Miljkovic, M., and Djordjevic, D., 2013. Graft copolymerization of acrylic acid onto hydrolyzed potato starch using various initiators. Periodica Polytechnica Chemical Engineering, 57(1-2), 55-61. https://doi.org/10.3311/PPch.2171
  • Ding, J., Chen, S. C., Wang, X. L. and Wang, Y. Z., 2009. Synthesis and properties of thermoplastic poly (vinyl alcohol)-graft-lactic acid copolymers. Industrial & Engineering Chemistry Research, 48(2), 788-793. https://doi.org/10.1021/ie8013428
  • Erol, Ü. H., 2016. Polimerik blend nanokürelerin hazırlanması ve in vitro ilaç geçiş özelliklerinin incelenmesi. Yüksek Lisans Tezi, Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü, Kırıkkale, 123. Erol, Ü. H., Güncüm, E. and Işıklan, N., 2023. Development of chitosan-graphene oxide blend nanoparticles for controlled flurbiprofen delivery. International Journal of Biological Macromolecules, 246, 125627. https://doi.org/10.1016/j.ijbiomac.2023.125627
  • Garcia-Valdez, O., Champagne, P. and Cunningham, M. F., 2018. Graft modification of natural polysaccharides via reversible deactivation radical polymerization. Progress in Polymer Science, 76, 151-173. https://doi.org/10.1016/j.progpolymsci.2017.08.001
  • Geyik, G., 2020. -karagenan kopolimerlerin sentezlenmesi ve taşıyıcı sistemlerinin geliştirilmesi. Doktora Tezi, Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü, Kırıkkale, 211. Geyik, G., 2024. Ca2+ İyonları ile Çapraz Bağlı Sodyum Aljinat/-Karagenan Kürelerden Nifedipinin Kontrollü Salımı. International Journal of Engineering Research and Development, 16(1), 150-162. https://doi.org/10.29137/umagd.1384946
  • Geyik, G., Güncüm, E. and Işıklan, N., 2023. Design and development of pH-responsive alginate-based nanogel carriers for etoposide delivery. International Journal of Biological Macromolecules, 250, 126242. https://doi.org/10.1016/j.ijbiomac.2023.126242
  • Geyik, G. and Işıklan, N., 2020a. pH/temperature‐responsive poly(dimethylaminoethyl methacrylate) grafted κ‐carrageenan copolymer: Synthesis and physicochemical properties. Journal of Applied Polymer Science, 137(48), 49596. https://doi.org/10.1002/app.49596
  • Geyik, G. and Işıklan, N., 2020b. Synthesis, characterization and swelling performance of a temperature/pH-sensitive κ-carrageenan graft copolymer. International Journal of Biological Macromolecules, 152, 359-370. https://doi.org/10.1016/j.ijbiomac.2020.02.129
  • Geyik, G. and Işıklan, N., 2023. Chemical modification of κ-carrageenan with poly(2-hydroxypropylmethacrylamide) through microwave induced graft copolymerization: Characterization and swelling features. International Journal of Biological Macromolecules, 235, 123888. https://doi.org/10.1016/j.ijbiomac.2023.126242
  • Haoue, S., Derdar, H., Belbachir, M. and Harrane, A., 2020. Polymerization of ethylene glycol dimethacrylate (EGDM), using an Algerian clay as eco-catalyst (maghnite-H+ and Maghnite-Na+). Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 221-230. https://doi.org/10.9767/bcrec.15.1.6297.221-230
  • Horiike, S., Matsuzawa, S. and Yamaura, K., 2002. Preparation of chemically crosslinked gels with maleate‐denatured poly (vinyl alcohol) and its application to drug release. Journal of Applied Polymer Science, 84(6), 1178-1184. https://doi.org/10.1002/app.10411
  • İnal, M., Işıklan, N. and Yiğitoğlu, M., 2017. Preparation and characterization of pH-sensitive alginate-g-poly (N-vinyl-2-pyrrolidone)/gelatin blend beads. Journal of Industrial and Engineering Chemistry, 52, 128-137. https://doi.org/10.1016/j.jiec.2017.03.034
  • Işıklan, N. and Altınışık, Z., 2018. Temperature‐responsive alginate‐g‐poly (N, N‐diethylacrylamide) copolymer: Synthesis, characterization, and swelling behavior. Journal of Applied Polymer Science, 135(38), 46688. https://doi.org/10.1002/app.46688
  • Işıklan, N., Hussien, N. A. and Türk, M., 2021. Synthesis and drug delivery performance of gelatin-decorated magnetic graphene oxide nanoplatform. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 616, 126256. https://doi.org/10.1016/j.colsurfa.2021.126256
  • Işıklan, N. and Kazan, H., 2018. Thermoresponsive and biocompatible poly(vinyl alcohol)‐graft‐poly(N, N‐diethylacrylamide) copolymer: microwave‐assisted synthesis, characterization, and swelling behavior. Journal of Applied Polymer Science, 135(12), 45969. https://doi.org/10.1002/app.45969
  • Işıklan, N. and Küçükbalcı, G., 2012. Microwave-induced synthesis of alginate–graft-poly(N-isopropylacrylamide) and drug release properties of dual pH-and temperature-responsive beads. European Journal of Pharmaceutics and Biopharmaceutics, 82(2), 316-331. https://doi.org/10.1016/j.ejpb.2012.07.015
  • Işıklan, N. and Küçükbalcı, G., 2016. Synthesis and characterization of pH-and temperature-sensitive materials based on alginate and poly (N-isopropylacrylamide/acrylic acid) for drug delivery. Polymer Bulletin, 73, 1321-1342. https://doi.org/10.1007/s00289-015-1550-x
  • Işıklan, N. and Tokmak, Ş., 2019. Development of thermo/pH-responsive chitosan coated pectin-graft-poly (N, N-diethyl acrylamide) microcarriers. Carbohydrate Polymers, 218, 112-125. https://doi.org/10.1016/j.carbpol.2019.04.068
  • Işıklan, N., Kurşun, F. and İnal, M., 2010. Graft copolymerization of itaconic acid onto sodium alginate using benzoyl peroxide. Carbohydrate Polymers, 79(3), 665-672. https://doi.org/10.1016/j.carbpol.2009.09.021
  • Kumar, D., Pandey, J., Raj, V. and Kumar, P., 2017. A review on the modification of polysaccharide through graft copolymerization for various potential applications. The Open Medicinal ChemistryJjournal, 11, 109. https://doi.org/10.2174/1874104501711010109
  • Karaman, D. Ş., ve Pamukçu, A., 2022). Polietilen Glikol Dimetakrilat Doku İskeletlerinin Dentritik Gözenekleri Genişletilmiş Mezogözenekli Silika Nanoparçacıklar ile Katkılandırılması ve In Vitro İncelemeleri. Konya Journal of Engineering Sciences, 10(1), 229-239. https://doi.org/10.36306/konjes.1027750
  • Kurşun, F., 2016. Poli(vinil alkol)-aşı-poli(N-izopropilakrilamid) ve poli(vinil alkol)-aşı-poli(N-hidroksimetilakrilamid) kopolimerlerinin sentezi, karakterizasyonu ve pervaporasyon, evapomasyon, sıcaklık farklı evapomasyonda kullanımı. Doktora Tezi, Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü, Kırıkkale, 188.
  • Kurşun, F., 2020. Application of PVA-b-NaY zeolite mixture membranes in pervaporation method. Journal of Molecular Structure, 1201, 127170. https://doi.org/10.1016/j.molstruc.2019.127170
  • Kurşun, F. and Işıklan, N., 2016. Development of thermo-responsive poly (vinyl alcohol)-g-poly (N-isopropylacrylamide) copolymeric membranes for separation of isopropyl alcohol/water mixtures via pervaporation. Journal of Industrial and Engineering Chemistry, 41, 91-104. https://doi.org/10.1016/j.jiec.2016.07.011
  • Küçükbalci, G., 2011. Sıcaklık ve ph duyarlı aljinat bazlı mikrokürelerin tasarımı ve indometasin salımında kullanımı. Yüksek Lisans Tezi, Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü, Kırıkkale, 148.
  • Laurienzo, P., Malinconico, M., Motta, A., and Vicinanza, A., 2005. Synthesis and characterization of a novel alginate–poly (ethylene glycol) graft copolymer. Carbohydrate Polymers, 62(3), 274-282. https://doi.org/10.1016/j.carbpol.2005.08.005
  • Lin, M.C., Tai, H.Y., Ou, T.C. and Don, T.M., 2012. Preparation and characterization of UV-sensitive chitosan for UV-cure with poly (ethylene glycol) dimethacrylate. Cellulose, 19, 1689-1700. https://doi.org/10.1007/s10570-012-9758-5
  • Maji, B. and Maiti, S., 2021. Chemical modification of xanthan gum through graft copolymerization: Tailored properties and potential applications in drug delivery and wastewater treatment. Carbohydrate Polymers, 251, 117095. https://doi.org/10.1016/j.carbpol.2020.117095
  • Marcasuzaa, P., Reynaud, S., Ehrenfeld, F., Khoukh, A. and Desbrieres, J., 2010. Chitosan-graft-polyaniline-based hydrogels: elaboration and properties. Biomacromolecules, 11(6), 1684-1691. https://doi.org/10.1021/bm100379z
  • Park, I. K., Kim, T. H., Park, Y. H., Shin, B. A., Choi, E. S., Chowdhury, E. H., and Cho, C. S., 2001. Galactosylated chitosan-graft-poly (ethylene glycol) as hepatocyte-targeting DNA carrier. Journal of Controlled Release, 76(3), 349-362. https://doi.org/10.1016/S0168-3659(01)00448-5
  • Park, M. S., Choi, Y., Lee, K. B., and Kim, J. H., 2018. Synthesis of PVA-g-POEM graft copolymers and their use in highly permeable thin film composite membranes. Chemical Engineering Journal, 346, 739-747. https://doi.org/10.1016/j.cej.2018.04.036
  • Prabaharan, M., Grailer, J. J., Steeber, D. A., and Gong, S., 2008. Stimuli‐responsive chitosan‐graft‐poly (N‐vinylcaprolactam) as a promising material for controlled hydrophobic drug delivery. Macromolecular Bioscience, 8(9), 843-851. https://doi.org/10.1002/mabi.200800010
  • Singh, R. P., Nayak, B. R., Biswal, D. R., Tripathy, T., Banik, K., 2003. Biobased polymeric flocculants for industrial effluent treatment. Materials Research Innovations, 7(5), 331-340. https://doi.org/10.1007/s10019-003-0273-z
  • Singh, V., Tiwari, A., Tripathi, D. N. and Sanghi, R., 2006. Microwave enhanced synthesis of chitosan-graft-polyacrylamide. Polymer, 47(1), 254-260. https://doi.org/10.1016/j.polymer.2005.10.101
  • Spagnol, C., Rodrigues, F. H., Pereira, A. G., Fajardo, A. R., Rubira, A. F., and Muniz, E. C., 2012. Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly (acrylic acid). Carbohydrate Polymers, 87(3), 2038-2045. https://doi.org/10.1016/j.carbpol.2011.10.017
  • Sreenivasan, K., 1997. On the restriction of the release of water‐soluble component from polyvinyl alcohol film by blending β‐cyclodextrin. Journal of Applied Polymer Science, 65(9), 1829-1832. https://doi.org/10.1002/(SICI)1097-4628(19970829)65:9%3C1829::AID-APP20%3E3.0.CO;2-G
  • Şanlı, O., Ay, N. and Işıklan, N., 2007. Release characteristics of diclofenac sodium from poly (vinyl alcohol)/sodium alginate and poly (vinyl alcohol)-grafted-poly (acrylamide)/sodium alginate blend beads. European Journal of Pharmaceutics and Biopharmaceutics, 65(2), 204-214. https://doi.org/10.1016/j.ejpb.2006.08.004
  • Şanlı, O. and Işıklan, N., 2006. Controlled release formulations of carbaryl based on copper alginate, barium alginate, and alginic acid beads. Journal of Applied Polymer Science, 102(5), 4245-4253. https://doi.org/10.1002/app.24882
  • Şanlı, O., Karaca, İ. and Işıklan, N., 2009. Preparation, characterization, and salicylic acid release behavior of chitosan/poly (vinyl alcohol) blend microspheres. Journal of Applied Polymer Science, 111(6), 2731-2740. https://doi.org/10.1002/app.29319
  • Şimşek, Ş., 2007. Büyüme hormonu (somatotropin) içeren biyolojik olarak parçalanabilen mikrokürelerin hazırlanması. Doktora Tezi, Marmara Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 222.
  • Toumi, S., Yahoum, M. M., Lefnaoui, S. and Hadjsadok, A., 2021. Synthesis, characterization and potential application of hydrophobically modified carrageenan derivatives as pharmaceutical excipients. Carbohydrate Polymers, 251, 116997. https://doi.org/10.1016/j.carbpol.2020.116997
  • Tripathy, T. and Singh, R., 2000. High performance flocculating agent based on partially hydrolysed sodium alginate–g–polyacrylamide. European Polymer Journal, 36(7), 1471-1476. https://doi.org/10.1016/S0014-3057(99)00201-3
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fiziksel Kimya (Diğer), Polimer Bilimi ve Teknolojileri
Bölüm Makaleler
Yazarlar

Gülcan Geyik 0000-0003-4558-9288

Erken Görünüm Tarihi 28 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 7 Mayıs 2024
Kabul Tarihi 18 Eylül 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 1

Kaynak Göster

APA Geyik, G. (2025). Etilen Glikol Dimetakrilatın, Sodyum Aljinat, Kitosan ve Polivinil Alkol Üzerine Farklı Başlatıcılar Kullanılarak Aşılanması ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(1), 59-69.
AMA Geyik G. Etilen Glikol Dimetakrilatın, Sodyum Aljinat, Kitosan ve Polivinil Alkol Üzerine Farklı Başlatıcılar Kullanılarak Aşılanması ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ocak 2025;25(1):59-69.
Chicago Geyik, Gülcan. “Etilen Glikol Dimetakrilatın, Sodyum Aljinat, Kitosan Ve Polivinil Alkol Üzerine Farklı Başlatıcılar Kullanılarak Aşılanması Ve Karakterizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, sy. 1 (Ocak 2025): 59-69.
EndNote Geyik G (01 Ocak 2025) Etilen Glikol Dimetakrilatın, Sodyum Aljinat, Kitosan ve Polivinil Alkol Üzerine Farklı Başlatıcılar Kullanılarak Aşılanması ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 1 59–69.
IEEE G. Geyik, “Etilen Glikol Dimetakrilatın, Sodyum Aljinat, Kitosan ve Polivinil Alkol Üzerine Farklı Başlatıcılar Kullanılarak Aşılanması ve Karakterizasyonu”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 1, ss. 59–69, 2025.
ISNAD Geyik, Gülcan. “Etilen Glikol Dimetakrilatın, Sodyum Aljinat, Kitosan Ve Polivinil Alkol Üzerine Farklı Başlatıcılar Kullanılarak Aşılanması Ve Karakterizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/1 (Ocak 2025), 59-69.
JAMA Geyik G. Etilen Glikol Dimetakrilatın, Sodyum Aljinat, Kitosan ve Polivinil Alkol Üzerine Farklı Başlatıcılar Kullanılarak Aşılanması ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:59–69.
MLA Geyik, Gülcan. “Etilen Glikol Dimetakrilatın, Sodyum Aljinat, Kitosan Ve Polivinil Alkol Üzerine Farklı Başlatıcılar Kullanılarak Aşılanması Ve Karakterizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 1, 2025, ss. 59-69.
Vancouver Geyik G. Etilen Glikol Dimetakrilatın, Sodyum Aljinat, Kitosan ve Polivinil Alkol Üzerine Farklı Başlatıcılar Kullanılarak Aşılanması ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(1):59-6.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.