Araştırma Makalesi
BibTex RIS Kaynak Göster

Hibrit Araçların Yakıt Tüketimine Farklı Yakıtların Etkisi

Yıl 2025, Cilt: 25 Sayı: 5, 1230 - 1238

Öz

Enerji kaynaklarının kullanımı her geçen gün artmaktadır. Buna bağlı olarak dünyanın dört bir yanındaki araştırmacılar tarafından farklı enerji kaynakları arayışı devam etmektedir. Özellikle son yıllarda fosil yakıtlara alternatif enerji kaynakları arayışı artmıştır. Hibrit araç üretimi arttıkça hibrit araçlarda kullanılabilecek yakıtların bulunabilirliği araştırılmaktadır. Çalışmamızın konusu olan hibrit araçlar için doğal gazın kullanılabilirliğinin içten yanmalı motorlar üzerindeki etkileri incelenmiştir. Çalışmada AVL Cruise programı kullanılarak sayısal analizler yapılmıştır. Analizlerde doğalgazın özellikleri benzinin özellikleri ile karşılaştırılmıştır. Çalışmaya konu olan hibrit araç AVL programının kütüphanesinden seçilmiştir. Dört silindirli, dört zamanlı, 1,5 L buji ateşlemeli içten yanmalı motor seçilmiştir. 10 kW gücünde, nominal voltajı 144 V ve maksimum akımı 150 A olan bir elektrik motoru uygulanmıştır. Analiz sonuçlarına göre, benzinin aynı sürüş mesafesinde doğalgaza göre kütle olarak %12,5 daha az yakıt tükettiği gözlemlenmiştir.

Kaynakça

  • Ahmed A., Yelamali P., Udayakumar R., 2020. Modelling and simulation of hybrid technology in vehicles. Energy Reports. Volume 6, Supplement 2, Pages 589-594. https://doi.org/10.1016/j.egyr.2019.11.123
  • Arat H. T., 2019. Alternative fuelled hybrid electric vehicle (AF-HEV) with hydrogen enriched internal combustion engine. International Journal of Hydrogen Energy. Volume 44, Issue 34, Pages 19005-19016. https://doi.org/10.1016/j.ijhydene.2018.12.219
  • Arat H. T., Tanç B., Yönet N., Baltacıoğlu E., 2018. Comparative Simulation Analyses On Energy Flow Characteristics of Different Hev Configurations. 16th International Conference On Clean Energy.
  • AVL-CRUISE Users Guide, AVL, V2015.
  • Beatrice C., Capasso C., Doulgeris S., Samaras Z., Veneri O., 2024. Hybrid Storage System Management For Hybrid Electric Vehicles Under Real Operating Conditions. Applied Energy. Volume 354, Part B, 122170. https://doi.org/10.1016/j.apenergy.2023.122170
  • Benajes J., Garcia A., Serrano J. M., Boggio S. M., 2019. Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Conversion and Management. Volume 190, 73-90. https://doi.org/10.1016/j.enconman.2019.04.010
  • Boretti A., 2025. Electric turbochargers in hydrogen internal combustion engines powered hybrid electric vehicles: Advancing performance, efficiency, and sustainability. International Journal of Hydrogen Energy. Volume 103, 690-700. https://doi.org/10.1016/j.ijhydene.2025.01.225
  • Climent H., Dolz V., Pla B., Dominguez D. G., 2022. Analysis on the potential of EGR strategy to reduce fuel consumption in hybrid powertrains based on advanced gasoline engines under simulated driving cycle conditions. Energy Conversion and Management. Volume 266, 115830. https://doi.org/10.1016/j.enconman.2022.115830
  • Dogdu M. F., Reyhancan I. A., 2024. The comparison of gasoline powered vehicle and serial hybrid vehicle on emissions. Heliyon. Volume 10, Issue 9. https://doi.org/10.1016/j.heliyon.2024.e28532
  • Duy V. N., Duc K. N., Van N. C., 2021. Real-time driving cycle measurements of fuel consumption and pollutant emissions of a bi-fuel LPG-gasoline motorcycle. Energy Conversion and Management: X. Volume 12, 100135. https://doi.org/10.1016/j.ecmx.2021.100135
  • Fontaras G., Zacharof N. G., Ciuffo B., 2017. Fuel consumption and CO2 emissions from passenger cars in Europe – Laboratory versus real-world emissions. Volume 60, 97-131. https://doi.org/10.1016/j.pecs.2016.12.004
  • Gürsürer K. M., 2009. Avrupa Şehir Çevrimiile Amerika Şehir Çevriminin Arasındaki Farkların Deneysel Olarak İncelenmesi. Yüksek Lisans Tezi, İstanbul Technical University, Institute of Science and Technology, 87.
  • Taghavifar H., 2023. The influence of different fuels and injection methods of RCCI and DCI in hybrid ICE-Battery vehicle performance. Fuel. Volume 340, 127467. https://doi.org/10.1016/j.fuel.2023.127467
  • He L., You Y., Zheng X., Zhang S., Li Z., Zhang Z., Wu Y., Hao J., 2022. The impacts from cold start and road grade on real-world emissions and fuel consumption of gasoline, diesel and hybrid-electric light-duty passenger vehicles. Science of The Total Environment. Volume 851, Part 1, 158045. https://doi.org/10.1016/j.scitotenv.2022.158045
  • Jeong J. W., Woo S., Koo B., Lee K., 2025. Analysis of hybrid electric vehicle performance and emission applied to LPG fuel system. Fuel. Volume 380, 133225. https://doi.org/10.1016/j.fuel.2024.133225
  • Ji C., Yu M., Wang S., Zhang B., Cong x., Feng Y., Lin S., 2016. The optimization of on-board H2 generator control strategy and fuel consumption of an engine under the NEDC condition with start-stop system and H2 start. International Journal of Hydrogen Energy. Volume 41, Issue 42, 19256-19264. https://doi.org/10.1016/j.ijhydene.2016.08.127
  • Markov K., 2019. A Review of The Possibility for Using of Alternative Fuels and Biofuels in Hybrid Vehicles. Proceedings Of University of Ruse, Volume 58, Book 4, FRI-2.203-1-TMS-12X.
  • Öner C., Öztürk G., Tanyeri B., 2022. Investigation of the Effect of Using Ultrasonic Fuel System on Exhaust Emissions in a Spark Ignition Engine. Afyon Kocatepe University Journal of Science and Engineering. Volume 22, 055902 ,1214-1224. https://doi.org/10.35414/akufemubid.1024495
  • Pandian S., Palanivelu A., 2025. An efficient energy management of a hybrid electric vehicle using hybrid QNN-GOA technique. Journal of Energy Storage. Volume 106, 114827. https://doi.org/10.1016/j.est.2024.114827
  • Paykani A., Tabar M., T., S., 2011. A comparative study of hybrid electric vehicle fuel consumption over diverse driving cycles. Theoretical and Applied Mechanics Letters. Volume 1, Issue 5, 052005. https://doi.org/10.1063/2.1105205
  • Prati M. V., Costagliola M. A., 2022. Real driving emissions of Euro 6 electric/gasoline hybrid and natural gas vehicles. Transportation Research Part D: Transport and Environment. Volume 113, December 2022, 103509. https://doi.org/10.1016/j.trd.2022.103509
  • Rashid M. I. M., Danial H., 2017. ADVISOR Simulation and Performance Test of Split Plug-in Hybrid Electric Vehicle Conversion. Energy Procedia. Volume 105, May 2017, Pages 1408-1413. https://doi.org/10.1016/j.egypro.2017.03.524
  • Shen C., Shan P., Gao T., 2011. A Comprehensive Overview of Hybrid Electric Vehicles. International Journal of Vehicular Technology. Volume 2011, Article ID 571683, 7 pages. https://doi.org/10.1155/2011/571683
  • Shivappriya S.N., Gowrishankar T., Stoian G., Anitha J., Hemanth D., J., 2025. Enhancing performance of Parallel Hybrid Electric Vehicles using Powell's Artificial Bee Colony method. Heliyon. Volume 11, Issue 3, e42325. https://doi.org/10.1016/j.heliyon.2025.e42325
  • Tanç B., 2024. Simulational energy analyses of different transmission (automated manuel transmission vs continuously variable transmission) selection effects on fuel cell hybrid electric vehicles’ energetic performance. International Journal of Hydrogen Energy. Volume 75, 506-514. https://doi.org/10.1016/j.ijhydene.2024.02.360
  • Torres J., R., Liu J., Khattak A., 2019. Fuel consumption for various driving styles in conventional and hybrid electric vehicles: Integrating driving cycle predictions with fuel consumption optimization. International Journal of Sustainable Transportation. Volume 13, Issue 2, Pages 123-137. https://doi.org/10.1080/15568318.2018.1445321
  • Yao A., Wu J., 2024. Sustaining power distribution network submerged in plug-in hybrid CNG-electric vehicles for future green transportation: A risk-constrained analysis. Sustainable Cities and Society. Volume 111, 105416. https://doi.org/10.1016/j.scs.2024.105416
  • Yavuz İ., Özek A., 2020. Effect Of Friction Coefficient Of Different Curve Diameters On Wheel Speeds For Electronic Differential. Afyon Kocatepe University Journal of Science and Engineering. Volume 20, 065904, 1138-1146. https://doi.org/10.35414/akufemubid.684869
  • Yönet N., Uludamar E., 2024. Effect Of Recycled Polyethylene Catalyst for Mediterranean Pine Seed Shell Biomass Pyrolysis On Hydrogen And Methane Production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Volume 46, 6555-6565. https://doi.org/10.1080/15567036.2024.2349710
  • Yönet N., Tanç B., Arat H. T., 2017. Effects of using different electric motors on hybrid engine’s performance. 6 th International Conference on Renewable Fuels Combustion and Fire.
  • Zhang X., Zhang S., Zhao Y., Liu J., Kong X., Zhang S., Wen M., Liu H., 2023. Effects of different additives on physicochemical properties of gasoline and vehicle performance. Fuel Processing Technology. Volume 242, 107668. https://doi.org/10.1016/j.fuproc.2023.107668

Effect of Different Fuels on Fuel Consumption of Hybrid Vehicles

Yıl 2025, Cilt: 25 Sayı: 5, 1230 - 1238

Öz

The use of energy resources is increasing day by day. Accordingly, the search for different energy sources continues by researchers all over the world. In particular, the search for alternative energy sources to fossil fuels has increased in recent years. As the production of hybrid vehicles increases, the availability of fuels that can be used in hybrid vehicles is being investigated. For the hybrid vehicles, which are the subject of our study, the effects of the availability of natural gas on internal combustion engines were examined. In the study, numerical analyses were carried out by using AVL Cruise program. In the analyses, the properties of natural gas were compared with the properties of gasoline. The hybrid vehicle subject to the study was selected from the library of the AVL program. A four-cylinder, four-stroke, 1.5 L spark ignition internal combustion engine was selected. An electric motor with 10 kW power, nominal voltage 144 V and maximum current 150 A was applied. According to results of the analyses, it has been observed that gasoline consumes 12.5% less fuel as mass than natural gas at the same driving distance.

Kaynakça

  • Ahmed A., Yelamali P., Udayakumar R., 2020. Modelling and simulation of hybrid technology in vehicles. Energy Reports. Volume 6, Supplement 2, Pages 589-594. https://doi.org/10.1016/j.egyr.2019.11.123
  • Arat H. T., 2019. Alternative fuelled hybrid electric vehicle (AF-HEV) with hydrogen enriched internal combustion engine. International Journal of Hydrogen Energy. Volume 44, Issue 34, Pages 19005-19016. https://doi.org/10.1016/j.ijhydene.2018.12.219
  • Arat H. T., Tanç B., Yönet N., Baltacıoğlu E., 2018. Comparative Simulation Analyses On Energy Flow Characteristics of Different Hev Configurations. 16th International Conference On Clean Energy.
  • AVL-CRUISE Users Guide, AVL, V2015.
  • Beatrice C., Capasso C., Doulgeris S., Samaras Z., Veneri O., 2024. Hybrid Storage System Management For Hybrid Electric Vehicles Under Real Operating Conditions. Applied Energy. Volume 354, Part B, 122170. https://doi.org/10.1016/j.apenergy.2023.122170
  • Benajes J., Garcia A., Serrano J. M., Boggio S. M., 2019. Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Conversion and Management. Volume 190, 73-90. https://doi.org/10.1016/j.enconman.2019.04.010
  • Boretti A., 2025. Electric turbochargers in hydrogen internal combustion engines powered hybrid electric vehicles: Advancing performance, efficiency, and sustainability. International Journal of Hydrogen Energy. Volume 103, 690-700. https://doi.org/10.1016/j.ijhydene.2025.01.225
  • Climent H., Dolz V., Pla B., Dominguez D. G., 2022. Analysis on the potential of EGR strategy to reduce fuel consumption in hybrid powertrains based on advanced gasoline engines under simulated driving cycle conditions. Energy Conversion and Management. Volume 266, 115830. https://doi.org/10.1016/j.enconman.2022.115830
  • Dogdu M. F., Reyhancan I. A., 2024. The comparison of gasoline powered vehicle and serial hybrid vehicle on emissions. Heliyon. Volume 10, Issue 9. https://doi.org/10.1016/j.heliyon.2024.e28532
  • Duy V. N., Duc K. N., Van N. C., 2021. Real-time driving cycle measurements of fuel consumption and pollutant emissions of a bi-fuel LPG-gasoline motorcycle. Energy Conversion and Management: X. Volume 12, 100135. https://doi.org/10.1016/j.ecmx.2021.100135
  • Fontaras G., Zacharof N. G., Ciuffo B., 2017. Fuel consumption and CO2 emissions from passenger cars in Europe – Laboratory versus real-world emissions. Volume 60, 97-131. https://doi.org/10.1016/j.pecs.2016.12.004
  • Gürsürer K. M., 2009. Avrupa Şehir Çevrimiile Amerika Şehir Çevriminin Arasındaki Farkların Deneysel Olarak İncelenmesi. Yüksek Lisans Tezi, İstanbul Technical University, Institute of Science and Technology, 87.
  • Taghavifar H., 2023. The influence of different fuels and injection methods of RCCI and DCI in hybrid ICE-Battery vehicle performance. Fuel. Volume 340, 127467. https://doi.org/10.1016/j.fuel.2023.127467
  • He L., You Y., Zheng X., Zhang S., Li Z., Zhang Z., Wu Y., Hao J., 2022. The impacts from cold start and road grade on real-world emissions and fuel consumption of gasoline, diesel and hybrid-electric light-duty passenger vehicles. Science of The Total Environment. Volume 851, Part 1, 158045. https://doi.org/10.1016/j.scitotenv.2022.158045
  • Jeong J. W., Woo S., Koo B., Lee K., 2025. Analysis of hybrid electric vehicle performance and emission applied to LPG fuel system. Fuel. Volume 380, 133225. https://doi.org/10.1016/j.fuel.2024.133225
  • Ji C., Yu M., Wang S., Zhang B., Cong x., Feng Y., Lin S., 2016. The optimization of on-board H2 generator control strategy and fuel consumption of an engine under the NEDC condition with start-stop system and H2 start. International Journal of Hydrogen Energy. Volume 41, Issue 42, 19256-19264. https://doi.org/10.1016/j.ijhydene.2016.08.127
  • Markov K., 2019. A Review of The Possibility for Using of Alternative Fuels and Biofuels in Hybrid Vehicles. Proceedings Of University of Ruse, Volume 58, Book 4, FRI-2.203-1-TMS-12X.
  • Öner C., Öztürk G., Tanyeri B., 2022. Investigation of the Effect of Using Ultrasonic Fuel System on Exhaust Emissions in a Spark Ignition Engine. Afyon Kocatepe University Journal of Science and Engineering. Volume 22, 055902 ,1214-1224. https://doi.org/10.35414/akufemubid.1024495
  • Pandian S., Palanivelu A., 2025. An efficient energy management of a hybrid electric vehicle using hybrid QNN-GOA technique. Journal of Energy Storage. Volume 106, 114827. https://doi.org/10.1016/j.est.2024.114827
  • Paykani A., Tabar M., T., S., 2011. A comparative study of hybrid electric vehicle fuel consumption over diverse driving cycles. Theoretical and Applied Mechanics Letters. Volume 1, Issue 5, 052005. https://doi.org/10.1063/2.1105205
  • Prati M. V., Costagliola M. A., 2022. Real driving emissions of Euro 6 electric/gasoline hybrid and natural gas vehicles. Transportation Research Part D: Transport and Environment. Volume 113, December 2022, 103509. https://doi.org/10.1016/j.trd.2022.103509
  • Rashid M. I. M., Danial H., 2017. ADVISOR Simulation and Performance Test of Split Plug-in Hybrid Electric Vehicle Conversion. Energy Procedia. Volume 105, May 2017, Pages 1408-1413. https://doi.org/10.1016/j.egypro.2017.03.524
  • Shen C., Shan P., Gao T., 2011. A Comprehensive Overview of Hybrid Electric Vehicles. International Journal of Vehicular Technology. Volume 2011, Article ID 571683, 7 pages. https://doi.org/10.1155/2011/571683
  • Shivappriya S.N., Gowrishankar T., Stoian G., Anitha J., Hemanth D., J., 2025. Enhancing performance of Parallel Hybrid Electric Vehicles using Powell's Artificial Bee Colony method. Heliyon. Volume 11, Issue 3, e42325. https://doi.org/10.1016/j.heliyon.2025.e42325
  • Tanç B., 2024. Simulational energy analyses of different transmission (automated manuel transmission vs continuously variable transmission) selection effects on fuel cell hybrid electric vehicles’ energetic performance. International Journal of Hydrogen Energy. Volume 75, 506-514. https://doi.org/10.1016/j.ijhydene.2024.02.360
  • Torres J., R., Liu J., Khattak A., 2019. Fuel consumption for various driving styles in conventional and hybrid electric vehicles: Integrating driving cycle predictions with fuel consumption optimization. International Journal of Sustainable Transportation. Volume 13, Issue 2, Pages 123-137. https://doi.org/10.1080/15568318.2018.1445321
  • Yao A., Wu J., 2024. Sustaining power distribution network submerged in plug-in hybrid CNG-electric vehicles for future green transportation: A risk-constrained analysis. Sustainable Cities and Society. Volume 111, 105416. https://doi.org/10.1016/j.scs.2024.105416
  • Yavuz İ., Özek A., 2020. Effect Of Friction Coefficient Of Different Curve Diameters On Wheel Speeds For Electronic Differential. Afyon Kocatepe University Journal of Science and Engineering. Volume 20, 065904, 1138-1146. https://doi.org/10.35414/akufemubid.684869
  • Yönet N., Uludamar E., 2024. Effect Of Recycled Polyethylene Catalyst for Mediterranean Pine Seed Shell Biomass Pyrolysis On Hydrogen And Methane Production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Volume 46, 6555-6565. https://doi.org/10.1080/15567036.2024.2349710
  • Yönet N., Tanç B., Arat H. T., 2017. Effects of using different electric motors on hybrid engine’s performance. 6 th International Conference on Renewable Fuels Combustion and Fire.
  • Zhang X., Zhang S., Zhao Y., Liu J., Kong X., Zhang S., Wen M., Liu H., 2023. Effects of different additives on physicochemical properties of gasoline and vehicle performance. Fuel Processing Technology. Volume 242, 107668. https://doi.org/10.1016/j.fuproc.2023.107668
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Nuri Yönet 0009-0001-5121-7854

Erinç Uludamar 0000-0001-5247-5057

Erken Görünüm Tarihi 18 Eylül 2025
Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 5 Aralık 2024
Kabul Tarihi 8 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 5

Kaynak Göster

APA Yönet, N., & Uludamar, E. (2025). Effect of Different Fuels on Fuel Consumption of Hybrid Vehicles. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(5), 1230-1238.
AMA Yönet N, Uludamar E. Effect of Different Fuels on Fuel Consumption of Hybrid Vehicles. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Eylül 2025;25(5):1230-1238.
Chicago Yönet, Nuri, ve Erinç Uludamar. “Effect of Different Fuels on Fuel Consumption of Hybrid Vehicles”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, sy. 5 (Eylül 2025): 1230-38.
EndNote Yönet N, Uludamar E (01 Eylül 2025) Effect of Different Fuels on Fuel Consumption of Hybrid Vehicles. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 5 1230–1238.
IEEE N. Yönet ve E. Uludamar, “Effect of Different Fuels on Fuel Consumption of Hybrid Vehicles”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 5, ss. 1230–1238, 2025.
ISNAD Yönet, Nuri - Uludamar, Erinç. “Effect of Different Fuels on Fuel Consumption of Hybrid Vehicles”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/5 (Eylül2025), 1230-1238.
JAMA Yönet N, Uludamar E. Effect of Different Fuels on Fuel Consumption of Hybrid Vehicles. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:1230–1238.
MLA Yönet, Nuri ve Erinç Uludamar. “Effect of Different Fuels on Fuel Consumption of Hybrid Vehicles”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 5, 2025, ss. 1230-8.
Vancouver Yönet N, Uludamar E. Effect of Different Fuels on Fuel Consumption of Hybrid Vehicles. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(5):1230-8.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.