Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Cytotoxic and Apoptotic Effects of Methotrexate and Carvacrol Combination in Lung Cancer Cancer Cells

Yıl 2025, Cilt: 25 Sayı: 5, 990 - 1000, 01.10.2025
https://doi.org/10.35414/akufemubid.1617388

Öz

Bu çalışmanın amacı, bir kemoterapi ilacı olan metotreksatın (MTX) tek başına ve doğal olarak oluşan bir monoterpenoid fenol olan karvakrol ile birlikte uygulamasının akciğer kanseri hücrelerindeki sitotoksik ve apoptotik etkilerini karşılaştırmaktır. Hücre canlılığı, A-549 hücrelerine MTX tek başına ve karvakrol ile birlikte 48 saat uygulandıktan sonra 3-(4,5-dimetil-2-tiyazolil)-2,5-difenil-2H-tetrazoliumbromid (MTT) testi ile değerlendirilmiştir. Laktat dehidrogenaz (LDH) aktivite testi, MTX tek başına veya karvakrol ile kombinasyon halinde uygulandıktan sonra, A-549 hücrelerinde LDH aktivitesindeki değişiklikler tespit edilerek membran hasarına yol açıp açmadığı değerlendirilmiştir. Hücrelerdeki kaspaz-3 enzim aktivitesindeki değişiklikler, apoptotik etkiyi göstermek için ölçülmüştür. Ayrıca, MTX'in, tek başına ve karvakrol ile birlikte, oksidatif stresin uyarılmasında bir rol oynayıp oynamadığını belirlemek amacıyla glutatyon peroksidaz aktivitesindeki değişiklikler incelenmiştir. Çalışmada, MTX ve karvakrolun kombinasyon halinde 48 saatlik uygulamasının, MTX tek başına uygulamasından daha fazla hücre proliferasyonunu engellediği ve daha güçlü bir sitotoksik etki gösterdiği gözlemlenmiştir. Ayrıca, bu kombinasyon uygulaması membran hasarının bir göstergesi olan LDH aktivitesinde ve apoptoz yolunda görev alan bir enzim olan kaspaz-3 aktivitesinde daha fazla artışa yol açmıştır. Bu çalışmanın sonuçları, MTX ve karvakrol kombinasyonunun, MTX tek başına ugulamasına göre LDH aktivitesinde ve kaspaz-3 aktivitesinde daha büyük bir artışa neden olarak daha belirgin membran hasarı ve apoptotik etki oluşturduğunu göstermektedir. Bu nedenle, kombinasyon uygulaması akciğer kanserinde MTX ile ilişkili yan etkilerin hafifletilmesi için bir strateji olarak değerlendirilebilir.

Proje Numarası

--------------

Kaynakça

  • Akhlaq, A., Ashraf, M., Omer, M.O. and Altaf, I., 2023. Carvacrol-fabricated chitosan nanoparticle synergistic potential with topoisomerase inhibitors on breast and cervical cancer cells. Acs Omega, 8, 31826-31838.
  • Aristatile, B., Al-Numair, K.S., Al-Assaf, A.H. and Pugalendi, K.V., 2011. Pharmacological effect of carvacrol on D-galactosamine-induced mitochondrial enzymes and DNA damage by single-cell gel electrophoresis. Journal of Natural Medicines, 65, 568-577. https://doi.org/10.1007/s11418-011-0544-8
  • Aristatile, B., Al‐Numair, K.S., Veeramani, C. and Pugalendi, K.V., 2009. Effect of carvacrol on hepatic marker enzymes and antioxidant status in d‐galactosamine‐induced hepatotoxicity in rats. Fundamental & Clinical Pharmacology, 23, 757-765. https://doi.org/10.1111/j.1472-8206.2009.00721.x
  • Arunasree, K.M., 2010. Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine, 17, 581-588. https://doi.org/10.1016/j.phymed.2009.12.008
  • Azimi, S., Esmaeil Lashgarian, H., Ghorbanzadeh, V., Moradipour, A., Pirzeh, L. and Dariushnejad, H., 2022. 5-FU and the dietary flavonoid carvacrol: a synergistic combination that induces apoptosis in MCF-7 breast cancer cells. Medical Oncology, 39, 253. https://doi.org/10.1007/s12032-022-01863-0
  • Babiak, R.M., Campello, A.P., Carnieri, E.G. and Oliveira, M.B., 1998. Methotrexate: pentose cycle and oxidative stress. Cell Biochemistry and Function: Cellular biochemistry and its modulation by active agents or disease, 16, 283-293. https://doi.org/10.1002/(SICI)1099-0844(1998120)16:4<283::AID-CBF801>3.0.CO;2-E Bara, C., Maillar, D.H., Briand, N. and Celerier, P., 2003. Methotrexate for bullous pemphigoid: preliminary study. Archives of Dermatology, 139, 1506-1507. https://doi.org/10.1001/archderm.139.11.1506-b
  • Bayoumi, H.M., Alkhatib, M.H. and Al-Seeni, M.N., 2021. Carvacrol effect on topotecan cytotoxicity in various human cancer cells in vitro. Pharmacia, 68, 353-363. https://doi.org/10.3897/pharmacia.68.e65878
  • Bourré-Tessier, J. and Haraoui, B., 2010. Methotrexate drug interactions in the treatment of rheumatoid arthritis: a systematic review. The Journal of Rheumatology, 37, 1416-1421. https://doi.org/10.3899/jrheum.090153
  • Bozkurt, M., Em, S., Oktayoglu, P., Turkcu, G., Yuksel, H., Sarıyldz, M.A., Caglayan, M., Batmaz, İ., Nas, K., Bozkurt, Y. and Kuyumcu, M., 2014. Carvacrol prevents methotrexate-induced renal oxidative injury and renal damage in rats. Clinical and Investigative Medicine, 37, E19-E25. https://doi.org/10.25011/cim.v37i1.20865
  • Bradford, M.M., 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1006/abio.1976.9999
  • Brock, S. and Jenning, H.R., 2004. Fatal acute encephalomyelitis after a single dose of intrathecal methotrexate. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 24, 673-476. https://doi.org/10.1592/phco.24.6.673.34742
  • Chen, C., Tian, L., Zhang, M., Sun, Q., Zhang, X., Li, X., Cao, X., Li, X. and Hao, L., 2013. Protective effect of amifostine on high-dose methotrexate-induced small intestinal mucositis in mice. Digestive Diseases and Sciences, 58, 3134-3143. https://doi.org/10.1007/s10620-013-2826-3
  • Ciralik, H., Bulbuloglu, E., Cetinkaya, A., Kurutas, E.B., Celik, M. and Polat, A., 2006. Effects of N-acetylcysteine on methotrexate-induced small intestinal damage in rats. Mount Sinai Journal of Medicine, 73, 1086-1092. https://doi.org/10.1093/ndt/gfl420
  • Dadhania, V.P., Tripathi, D.N., Vikram, A., Ramarao, P. and Jena, G.B., 2010. Intervention of alpha-lipoic acid ameliorates methotrexate-induced oxidative stress and genotoxicity: A study in rat intestine. Chemico-Biological Interactions, 183, 85-97. https://doi.org/10.1016/j.cbi.2009.10.020
  • Dawson, J.K., Clewes, A.R. and Hendry, J., 2004. Pulmonary effects of low-dose methotrexate therapy. Clinical Pulmonary Medicine, 11, 307-317. https://doi.org/10.1097/01.cpm.0000140182.17091.ef Demiryilmaz, I., Sener, E., Cetin, N., Altuner, D., Suleyman, B., Albayrak, F., Akcay, F. and Suleyman, H., 2012. Biochemically and histopathologically comparative review of thiamine’s and thiamine pyrophosphate’s oxidative stress effects generated with methotrexate in rat liver. Medical Science Monitor: International medical journal of experimental and clinical research, 18, BR475- BR481. https://doi.org/10.12659/msm.883591
  • Devrim, E., Cetin, R., Kilicoglu, B., Imge Ergüder, B., Avcı, A. and Durak, İ., 2005. Methotrexate causes oxidative stress in rat kidney tissues. Renal failure, 27, 771-773. https://doi.org/10.1080/08860220500244823
  • Ebrahimi, R., Sepand, M.R., Seyednejad, S.A., Omidi, A., Akbariani, M., Gholami, M. and Sabzevari, O., 2019. Ellagic acid reduces methotrexate-induced apoptozis and mitocondrial dysfunction via up-regulating Nrf2 expression and inhibiting the IKBα/NFKB in rats. DARU Journal of Pharmaceutical Sciences, 27, 721-733. https://doi.org/10.1007/s40199-019-00309-9
  • Edris, A.E., 2007. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21, 308-323. https://doi.org/10.1002/ptr.2072
  • Fan, C., Georgiou, K.R., King, T.J. and Xian, C.J., 2011. Methotrexate toxicity in growing long bones of young rats: a model for studying cancer chemotherapy-induced bone growth defects in children. BioMed Research International, 2011, 903097. https://doi.org/10.1155/2011/903097
  • Flohe, L. and Gunzler, W.A., 1984. Assays of glutathione peroxidase. Methods in Enzymology, 105, 115-121. https://doi.org/10.1016/S0076-6879(84)05015-1
  • Ghorbanzadeh, V., Aljaf, K.A.H., Wasman, H.M., Pirzeh, L., Azimi, S. And Dariushnejad, H., 2022. Carvacrol enhance apoptotic effect of 5-FU on MCF-7 cell line via inhibiting P-glycoprotein: an in-silco and in-vitro study. Drug Research, 72, 203-208. https://doi.org/10.1055/a-1766-5491
  • Gilling, D.H., Kitajima, M., Torrey, J.R. and Bright, K.R., 2014. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. Journal of Applied Microbiology, 116, 1149-1163. https://doi.org/10.1111/jam.12453
  • Gurib-Fakim, A., 2006. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine, 27, 1-93. https://doi.org/10.1016/j.mam.2005.07.008
  • Harila-Saari, A.H., Huuskonen, U.E., Tolonen, U., Vainionpää, L.K. and Lanning, B.M., 2001. Motor nervous pathway function is impaired after treatment of childhood acute lymphoblastic leukemia: A study with motor evoked potentials. Medical and Pediatric Oncology, 36, 345-351. https://doi.org/10.1002/mpo.1084
  • Howard, S.C., McCormick, J., Pui, C.H., Buddington, R.K. and Harvey, R.D., 2016. Preventing and managing toxicities of high-dose methotrexate. The Oncologist, 21, 1471-1482. https://doi.org/10.1634/theoncologist.2015-0164
  • Huang, F., Wu, X.N., Chen, J.I.E., Wang, W.X. and Lu, Z.F., 2014. Resveratrol reverses multidrug resistance in human breast cancer doxorubicin-resistant cells. Experimental and Therapeutic Medicine, 7, 1611-1616. https://doi.org/10.3892/etm.2014.1662
  • Jahovic N, Sener G, Cevik H, Ersoy, Y., Arbak, S. and Yeğen, B.Ç., 2004. Amelioration of methotrexate-induced enteritis by melatonin in rats. Cell Biochemistry and Function: Cellular biochemistry and its modulation by active agents or disease, 22, 169-178. https://doi.org/10.1002/cbf.1071
  • Koppelmann, T., Pollak, Y., Mogilner, J., Bejar, J., Coran, A.G. and Sukhotnik I., 2012. Dietary L-arginine supplementation reduces Methotrexate-induced intestinal mucosal injury in rat. BMC Gastroenterology, 12, 1-9. https://doi.org/10.1186/1471-230x-12-41
  • Krajinovic M, Robaey P, Chiasson S, Lemieux-Blanchard, E., Rouillard, M., Primeau, M., Bournissen, F.G. and Moghrabi, A., 2005. Polymorphisms of genes controlling homocysteine levels and IQ score following the treatment for childhood ALL. Pharmacogenomics, 6, 293-302. https://doi.org/10.1517/14622416.6.3.293
  • Linnebank, M., Pels, H., Kleczar, N., Farmand, S., Fliessbach, K., Urbach, H., Orlopp, K., Klockgether, T., Schmidt-Wolf, I.G.H. and Schlegel, U., 2005. MTX-induced white matter changes are associated with polymorphisms of methionine metabolism. Neurology, 64, 912-913. https://doi.org/10.1055/s-2005-919231
  • Madhavi, D.L. and Salunkhe, D.K., 1995. Toxicological Aspects of Food Antioxidants. In: Madavi DL, Deshpande SS, Salunkhe DK (eds.), Food Antioxidants; New York, Dekker, 267. https://doi.org/10.1201/9781482273175-12
  • Marchese, A., Orhan, I.E., Daglia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S.F., Gortzi, O., Izadi, M. and Nabavi, S.M., 2018a. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chemistry, 210, 402-414. https://doi.org/10.1016/j.foodchem.2016.04.111
  • Marchese, A., Arciola, C.R., Coppo, E., Barbieri, R., Barreca, D., Chebaibi, S., Sobarzo-Sánchez, E., Fazel Nabavi, S., Mohammad Nabavi, S. and Daglia, M., 2018b. The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: mechanisms, synergies and bio-inspired anti-infective materials. Biofouling, 34, 630-656. https://doi.org/10.1080/08927014.2018.1480756
  • Miketova, P., Kaemingk, K., Hockenberry, M., Pasvogel, A., Hutter, J., Krull, K. and Moore, I.M., 2005. Oxidative changes in cerebral spinal fluid Phosphatidylc holine during treatment for acute lymphoblastic leukemia. Biological Research for Nursing, 6, 187-195. https://doi.org/10.1177/1099800404271916
  • Miyazono, Y., Gao, F. and Horie, T., 2004. Oxidative stress contributes to methotrexate-induced small intestinal toxicity in rats. Scandinavian Journal of Gastroenterology, 39, 1119-1127. https://doi.org/10.1080/00365520410003605
  • Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  • Newman, D.J. and Cragg, G.M., 2020. Natural products as sources of new drugs over the nearly four decades from 1981 to 2019. Journal of Natural Products, 83, 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285
  • Phillips, D.C., Woollard, K.J. and Griffiths, H.R., 2003. The anti-inflammatory actions of methotrexate are critically dependent upon the production of reactive oxygen species. British Journal of Pharmacology, 138, 501-511. https://doi.org/10.1038/sj.bjp.0705054
  • Pistritto, G., Trisciuoglio, D., Ceci, C., Garufi, A. and D’Orazi, G., 2016. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging, 8, 603-619. https://doi.org/10.18632/aging.100934
  • Rondon, F., Mendez, O., Spinel, N., Ochoa, C., Saavedra, C., Penaranda, E., Garcia-Valladares, I., Espinoza, L.R. and Iglesias-Gamarra, A., 2011. Methotrexate-induced pulmonary toxicity in psoriatic arthritis (PsA): case presentation and literature review. Clinical Rheumatology, 30, 1379-1384. https://doi.org/10.1007/s10067-011-1765-7
  • Samarghandian, S., Farkhondeh, T., Samini, F. and Borji, A., 2016. Protective Effects of carvacrol against oxidative stress induced by chronic stress in rat's brain, liver, and kidney. Biochemistry Research International, 2016, 2645237. https://doi.org/10.1155/2016/2645237
  • Schmıegelow, K., 2009. Advances in individual prediction of methotrexate toxicity: a review. British Journal of Haematology, 146, 489-503. https://doi.org/10.1111/j.1365-2141.2009.07765.x
  • Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A., 2022. Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. https://doi.org/10.3322/caac.21708
  • Şen, H.S., Şen, V., Bozkurt, M., Türkçü, G., Güzel, A., Sezgi, C., Abakay, Ö. and Kaplan, I., 2014. Carvacrol and pomegranate extract in treating methotrexate-induced lung oxidative injury in rats. Medical Science Monitor, 20, 1983-1990. https://doi.org/10.12659/msm.890972
  • Sharifi-Rad, M., Varoni, E.M., Iriti, M., Martorell, M., Setzer, W. N., del Mar Contreras, M., Salehi, B., Soltani‐Nejad, A., Rajabi, S., Tajbakhsh, M. and Sharifi‐Rad, J., 2018. Carvacrol and human health: A comprehensive review. Phytotherapy Research, 32, 1675-1687. https://doi.org/10.1002/ptr.6103
  • Suntres, Z.E., Coccimiglio, J. and Alipour, M., 2015. The bioactivity and toxicological actions of carvacrol. Critical Reviews in Food Science and Nutrition, 55, 304-318. https://doi.org/10.1080/10408398.2011.653458
  • Toullec, A., Gerald, D., Despouy, G., Bourachot, B., Cardon, M., Lefort, S., Richardson, M., Rigaill, G., Parrini, M.C., Lucchesi, C., Bellanger, D., Stern, M.H., Dubois, T., Sastre-Garau, X., Delattre, O., Vincent-Salomon, A. and Mechta‐Grigoriou, F., 2010. Oxidative stress promotes myofibroblast differentiation and tumour spreading. European Journal of Cancer Supplements, 8, 124. https://doi.org/10.1016/s1359-6349(10)70252-4
  • Uzar, E., Koyuncuoglu, H.R., Uz, E., Yilmaz, H.R., Kutluhan, S., Kilbas, S. and Gultekin, F., 2006a. The activities of antioxidant enzymes and the level of malondialdehyde in cerebellum of rats subjected to methotrexate: protective effect of caffeic acid phenethyl ester. Molecular and Cellular Biochemistry, 291, 63-68. https://doi.org/10.1007/s11010-006-9196-5
  • Uzar, E., Sahin, O., Koyuncuoglu, H.R., Uz, E., Bas, O., Kilbas, S., Yilmaz, H.R., Yurekli, V.A., Kucuker, H. and Songur, A., 2006b. The activity of adenosine deaminase and the level of nitric oxide in spinal cord of methotrexate administered rats: Protective effect of caffeic acid phenethyl ester. Toxicology, 218, 125-133. https://doi.org/10.1016/j.tox.2005.10.014
  • Yousef, E.H., El-Magd, N.F.A. and El Gayar, A.M., 2023. Carvacrol enhances anti-tumor activity and mitigates cardiotoxicity of sorafenib in thioacetamide-induced hepatocellular carcinoma model through inhibiting TRPM7. Life Sciences, 324, 121735. https://doi.org/10.1016/j.lfs.2023.121735

Akciğer Kanseri Hücrelerinde Metotreksat ve Karvakrol Kombinasyonunun Sitotoksik ve Apoptotik Etkilerinin Değerlendirilmesi

Yıl 2025, Cilt: 25 Sayı: 5, 990 - 1000, 01.10.2025
https://doi.org/10.35414/akufemubid.1617388

Öz

The aim of this study is to compare the cytotoxic and apoptotic effects of methotrexate (MTX),one of chemotherapy drug, alone application with the combined application of MTX and carvacrol, a naturally occurring monoterpenoid phenol, in lung cancer cells. Cell viability was assessed using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliumbromide (MTT) assay after A-549 cells were treated with MTX alone and in combination with carvacrol for 48 h. Lactate dehydrogenase (LDH) activity test was employed to assess whether MTX alone or in combination with carvacrol treatments, induced membrane damage by detecting changes in LDH activity in A-549 cells. Caspase-3 enzyme activity changes in cells were measured to show the apoptotic effect. By examining the alterations in glutathione peroxidase activity, an attempt was made to determine whether MTX, alone and in combination with carvacrol, played a role in inducing oxidative stress. It was observed that the combined application of MTX and carvacrol for 48 h inhibited cell proliferation more than MTX alone treatment, demonstrating a stronger cytotoxic effect. Additionally, it caused a greater increase in LDH activity, a marker of membrane damage, and also led to a higher increase in caspase-3 activity, an enzyme involved in the apoptotic pathway. The results of this study show that the combined application of MTX and carvacrol leads to a greater increase in LDH activity and caspase-3 activity compared to MTX alone treatment, indicating more significant membrane damage and apoptotic effects. Therefore, combined treatment could be considered a strategy for alleviating the side effects associated with MTX in lung cancer.

Proje Numarası

--------------

Kaynakça

  • Akhlaq, A., Ashraf, M., Omer, M.O. and Altaf, I., 2023. Carvacrol-fabricated chitosan nanoparticle synergistic potential with topoisomerase inhibitors on breast and cervical cancer cells. Acs Omega, 8, 31826-31838.
  • Aristatile, B., Al-Numair, K.S., Al-Assaf, A.H. and Pugalendi, K.V., 2011. Pharmacological effect of carvacrol on D-galactosamine-induced mitochondrial enzymes and DNA damage by single-cell gel electrophoresis. Journal of Natural Medicines, 65, 568-577. https://doi.org/10.1007/s11418-011-0544-8
  • Aristatile, B., Al‐Numair, K.S., Veeramani, C. and Pugalendi, K.V., 2009. Effect of carvacrol on hepatic marker enzymes and antioxidant status in d‐galactosamine‐induced hepatotoxicity in rats. Fundamental & Clinical Pharmacology, 23, 757-765. https://doi.org/10.1111/j.1472-8206.2009.00721.x
  • Arunasree, K.M., 2010. Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine, 17, 581-588. https://doi.org/10.1016/j.phymed.2009.12.008
  • Azimi, S., Esmaeil Lashgarian, H., Ghorbanzadeh, V., Moradipour, A., Pirzeh, L. and Dariushnejad, H., 2022. 5-FU and the dietary flavonoid carvacrol: a synergistic combination that induces apoptosis in MCF-7 breast cancer cells. Medical Oncology, 39, 253. https://doi.org/10.1007/s12032-022-01863-0
  • Babiak, R.M., Campello, A.P., Carnieri, E.G. and Oliveira, M.B., 1998. Methotrexate: pentose cycle and oxidative stress. Cell Biochemistry and Function: Cellular biochemistry and its modulation by active agents or disease, 16, 283-293. https://doi.org/10.1002/(SICI)1099-0844(1998120)16:4<283::AID-CBF801>3.0.CO;2-E Bara, C., Maillar, D.H., Briand, N. and Celerier, P., 2003. Methotrexate for bullous pemphigoid: preliminary study. Archives of Dermatology, 139, 1506-1507. https://doi.org/10.1001/archderm.139.11.1506-b
  • Bayoumi, H.M., Alkhatib, M.H. and Al-Seeni, M.N., 2021. Carvacrol effect on topotecan cytotoxicity in various human cancer cells in vitro. Pharmacia, 68, 353-363. https://doi.org/10.3897/pharmacia.68.e65878
  • Bourré-Tessier, J. and Haraoui, B., 2010. Methotrexate drug interactions in the treatment of rheumatoid arthritis: a systematic review. The Journal of Rheumatology, 37, 1416-1421. https://doi.org/10.3899/jrheum.090153
  • Bozkurt, M., Em, S., Oktayoglu, P., Turkcu, G., Yuksel, H., Sarıyldz, M.A., Caglayan, M., Batmaz, İ., Nas, K., Bozkurt, Y. and Kuyumcu, M., 2014. Carvacrol prevents methotrexate-induced renal oxidative injury and renal damage in rats. Clinical and Investigative Medicine, 37, E19-E25. https://doi.org/10.25011/cim.v37i1.20865
  • Bradford, M.M., 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1006/abio.1976.9999
  • Brock, S. and Jenning, H.R., 2004. Fatal acute encephalomyelitis after a single dose of intrathecal methotrexate. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 24, 673-476. https://doi.org/10.1592/phco.24.6.673.34742
  • Chen, C., Tian, L., Zhang, M., Sun, Q., Zhang, X., Li, X., Cao, X., Li, X. and Hao, L., 2013. Protective effect of amifostine on high-dose methotrexate-induced small intestinal mucositis in mice. Digestive Diseases and Sciences, 58, 3134-3143. https://doi.org/10.1007/s10620-013-2826-3
  • Ciralik, H., Bulbuloglu, E., Cetinkaya, A., Kurutas, E.B., Celik, M. and Polat, A., 2006. Effects of N-acetylcysteine on methotrexate-induced small intestinal damage in rats. Mount Sinai Journal of Medicine, 73, 1086-1092. https://doi.org/10.1093/ndt/gfl420
  • Dadhania, V.P., Tripathi, D.N., Vikram, A., Ramarao, P. and Jena, G.B., 2010. Intervention of alpha-lipoic acid ameliorates methotrexate-induced oxidative stress and genotoxicity: A study in rat intestine. Chemico-Biological Interactions, 183, 85-97. https://doi.org/10.1016/j.cbi.2009.10.020
  • Dawson, J.K., Clewes, A.R. and Hendry, J., 2004. Pulmonary effects of low-dose methotrexate therapy. Clinical Pulmonary Medicine, 11, 307-317. https://doi.org/10.1097/01.cpm.0000140182.17091.ef Demiryilmaz, I., Sener, E., Cetin, N., Altuner, D., Suleyman, B., Albayrak, F., Akcay, F. and Suleyman, H., 2012. Biochemically and histopathologically comparative review of thiamine’s and thiamine pyrophosphate’s oxidative stress effects generated with methotrexate in rat liver. Medical Science Monitor: International medical journal of experimental and clinical research, 18, BR475- BR481. https://doi.org/10.12659/msm.883591
  • Devrim, E., Cetin, R., Kilicoglu, B., Imge Ergüder, B., Avcı, A. and Durak, İ., 2005. Methotrexate causes oxidative stress in rat kidney tissues. Renal failure, 27, 771-773. https://doi.org/10.1080/08860220500244823
  • Ebrahimi, R., Sepand, M.R., Seyednejad, S.A., Omidi, A., Akbariani, M., Gholami, M. and Sabzevari, O., 2019. Ellagic acid reduces methotrexate-induced apoptozis and mitocondrial dysfunction via up-regulating Nrf2 expression and inhibiting the IKBα/NFKB in rats. DARU Journal of Pharmaceutical Sciences, 27, 721-733. https://doi.org/10.1007/s40199-019-00309-9
  • Edris, A.E., 2007. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21, 308-323. https://doi.org/10.1002/ptr.2072
  • Fan, C., Georgiou, K.R., King, T.J. and Xian, C.J., 2011. Methotrexate toxicity in growing long bones of young rats: a model for studying cancer chemotherapy-induced bone growth defects in children. BioMed Research International, 2011, 903097. https://doi.org/10.1155/2011/903097
  • Flohe, L. and Gunzler, W.A., 1984. Assays of glutathione peroxidase. Methods in Enzymology, 105, 115-121. https://doi.org/10.1016/S0076-6879(84)05015-1
  • Ghorbanzadeh, V., Aljaf, K.A.H., Wasman, H.M., Pirzeh, L., Azimi, S. And Dariushnejad, H., 2022. Carvacrol enhance apoptotic effect of 5-FU on MCF-7 cell line via inhibiting P-glycoprotein: an in-silco and in-vitro study. Drug Research, 72, 203-208. https://doi.org/10.1055/a-1766-5491
  • Gilling, D.H., Kitajima, M., Torrey, J.R. and Bright, K.R., 2014. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. Journal of Applied Microbiology, 116, 1149-1163. https://doi.org/10.1111/jam.12453
  • Gurib-Fakim, A., 2006. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine, 27, 1-93. https://doi.org/10.1016/j.mam.2005.07.008
  • Harila-Saari, A.H., Huuskonen, U.E., Tolonen, U., Vainionpää, L.K. and Lanning, B.M., 2001. Motor nervous pathway function is impaired after treatment of childhood acute lymphoblastic leukemia: A study with motor evoked potentials. Medical and Pediatric Oncology, 36, 345-351. https://doi.org/10.1002/mpo.1084
  • Howard, S.C., McCormick, J., Pui, C.H., Buddington, R.K. and Harvey, R.D., 2016. Preventing and managing toxicities of high-dose methotrexate. The Oncologist, 21, 1471-1482. https://doi.org/10.1634/theoncologist.2015-0164
  • Huang, F., Wu, X.N., Chen, J.I.E., Wang, W.X. and Lu, Z.F., 2014. Resveratrol reverses multidrug resistance in human breast cancer doxorubicin-resistant cells. Experimental and Therapeutic Medicine, 7, 1611-1616. https://doi.org/10.3892/etm.2014.1662
  • Jahovic N, Sener G, Cevik H, Ersoy, Y., Arbak, S. and Yeğen, B.Ç., 2004. Amelioration of methotrexate-induced enteritis by melatonin in rats. Cell Biochemistry and Function: Cellular biochemistry and its modulation by active agents or disease, 22, 169-178. https://doi.org/10.1002/cbf.1071
  • Koppelmann, T., Pollak, Y., Mogilner, J., Bejar, J., Coran, A.G. and Sukhotnik I., 2012. Dietary L-arginine supplementation reduces Methotrexate-induced intestinal mucosal injury in rat. BMC Gastroenterology, 12, 1-9. https://doi.org/10.1186/1471-230x-12-41
  • Krajinovic M, Robaey P, Chiasson S, Lemieux-Blanchard, E., Rouillard, M., Primeau, M., Bournissen, F.G. and Moghrabi, A., 2005. Polymorphisms of genes controlling homocysteine levels and IQ score following the treatment for childhood ALL. Pharmacogenomics, 6, 293-302. https://doi.org/10.1517/14622416.6.3.293
  • Linnebank, M., Pels, H., Kleczar, N., Farmand, S., Fliessbach, K., Urbach, H., Orlopp, K., Klockgether, T., Schmidt-Wolf, I.G.H. and Schlegel, U., 2005. MTX-induced white matter changes are associated with polymorphisms of methionine metabolism. Neurology, 64, 912-913. https://doi.org/10.1055/s-2005-919231
  • Madhavi, D.L. and Salunkhe, D.K., 1995. Toxicological Aspects of Food Antioxidants. In: Madavi DL, Deshpande SS, Salunkhe DK (eds.), Food Antioxidants; New York, Dekker, 267. https://doi.org/10.1201/9781482273175-12
  • Marchese, A., Orhan, I.E., Daglia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S.F., Gortzi, O., Izadi, M. and Nabavi, S.M., 2018a. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chemistry, 210, 402-414. https://doi.org/10.1016/j.foodchem.2016.04.111
  • Marchese, A., Arciola, C.R., Coppo, E., Barbieri, R., Barreca, D., Chebaibi, S., Sobarzo-Sánchez, E., Fazel Nabavi, S., Mohammad Nabavi, S. and Daglia, M., 2018b. The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: mechanisms, synergies and bio-inspired anti-infective materials. Biofouling, 34, 630-656. https://doi.org/10.1080/08927014.2018.1480756
  • Miketova, P., Kaemingk, K., Hockenberry, M., Pasvogel, A., Hutter, J., Krull, K. and Moore, I.M., 2005. Oxidative changes in cerebral spinal fluid Phosphatidylc holine during treatment for acute lymphoblastic leukemia. Biological Research for Nursing, 6, 187-195. https://doi.org/10.1177/1099800404271916
  • Miyazono, Y., Gao, F. and Horie, T., 2004. Oxidative stress contributes to methotrexate-induced small intestinal toxicity in rats. Scandinavian Journal of Gastroenterology, 39, 1119-1127. https://doi.org/10.1080/00365520410003605
  • Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  • Newman, D.J. and Cragg, G.M., 2020. Natural products as sources of new drugs over the nearly four decades from 1981 to 2019. Journal of Natural Products, 83, 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285
  • Phillips, D.C., Woollard, K.J. and Griffiths, H.R., 2003. The anti-inflammatory actions of methotrexate are critically dependent upon the production of reactive oxygen species. British Journal of Pharmacology, 138, 501-511. https://doi.org/10.1038/sj.bjp.0705054
  • Pistritto, G., Trisciuoglio, D., Ceci, C., Garufi, A. and D’Orazi, G., 2016. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging, 8, 603-619. https://doi.org/10.18632/aging.100934
  • Rondon, F., Mendez, O., Spinel, N., Ochoa, C., Saavedra, C., Penaranda, E., Garcia-Valladares, I., Espinoza, L.R. and Iglesias-Gamarra, A., 2011. Methotrexate-induced pulmonary toxicity in psoriatic arthritis (PsA): case presentation and literature review. Clinical Rheumatology, 30, 1379-1384. https://doi.org/10.1007/s10067-011-1765-7
  • Samarghandian, S., Farkhondeh, T., Samini, F. and Borji, A., 2016. Protective Effects of carvacrol against oxidative stress induced by chronic stress in rat's brain, liver, and kidney. Biochemistry Research International, 2016, 2645237. https://doi.org/10.1155/2016/2645237
  • Schmıegelow, K., 2009. Advances in individual prediction of methotrexate toxicity: a review. British Journal of Haematology, 146, 489-503. https://doi.org/10.1111/j.1365-2141.2009.07765.x
  • Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A., 2022. Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. https://doi.org/10.3322/caac.21708
  • Şen, H.S., Şen, V., Bozkurt, M., Türkçü, G., Güzel, A., Sezgi, C., Abakay, Ö. and Kaplan, I., 2014. Carvacrol and pomegranate extract in treating methotrexate-induced lung oxidative injury in rats. Medical Science Monitor, 20, 1983-1990. https://doi.org/10.12659/msm.890972
  • Sharifi-Rad, M., Varoni, E.M., Iriti, M., Martorell, M., Setzer, W. N., del Mar Contreras, M., Salehi, B., Soltani‐Nejad, A., Rajabi, S., Tajbakhsh, M. and Sharifi‐Rad, J., 2018. Carvacrol and human health: A comprehensive review. Phytotherapy Research, 32, 1675-1687. https://doi.org/10.1002/ptr.6103
  • Suntres, Z.E., Coccimiglio, J. and Alipour, M., 2015. The bioactivity and toxicological actions of carvacrol. Critical Reviews in Food Science and Nutrition, 55, 304-318. https://doi.org/10.1080/10408398.2011.653458
  • Toullec, A., Gerald, D., Despouy, G., Bourachot, B., Cardon, M., Lefort, S., Richardson, M., Rigaill, G., Parrini, M.C., Lucchesi, C., Bellanger, D., Stern, M.H., Dubois, T., Sastre-Garau, X., Delattre, O., Vincent-Salomon, A. and Mechta‐Grigoriou, F., 2010. Oxidative stress promotes myofibroblast differentiation and tumour spreading. European Journal of Cancer Supplements, 8, 124. https://doi.org/10.1016/s1359-6349(10)70252-4
  • Uzar, E., Koyuncuoglu, H.R., Uz, E., Yilmaz, H.R., Kutluhan, S., Kilbas, S. and Gultekin, F., 2006a. The activities of antioxidant enzymes and the level of malondialdehyde in cerebellum of rats subjected to methotrexate: protective effect of caffeic acid phenethyl ester. Molecular and Cellular Biochemistry, 291, 63-68. https://doi.org/10.1007/s11010-006-9196-5
  • Uzar, E., Sahin, O., Koyuncuoglu, H.R., Uz, E., Bas, O., Kilbas, S., Yilmaz, H.R., Yurekli, V.A., Kucuker, H. and Songur, A., 2006b. The activity of adenosine deaminase and the level of nitric oxide in spinal cord of methotrexate administered rats: Protective effect of caffeic acid phenethyl ester. Toxicology, 218, 125-133. https://doi.org/10.1016/j.tox.2005.10.014
  • Yousef, E.H., El-Magd, N.F.A. and El Gayar, A.M., 2023. Carvacrol enhances anti-tumor activity and mitigates cardiotoxicity of sorafenib in thioacetamide-induced hepatocellular carcinoma model through inhibiting TRPM7. Life Sciences, 324, 121735. https://doi.org/10.1016/j.lfs.2023.121735
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Makaleler
Yazarlar

Ayşe Erdoğan 0000-0001-7616-7673

Proje Numarası --------------
Erken Görünüm Tarihi 18 Eylül 2025
Yayımlanma Tarihi 1 Ekim 2025
Gönderilme Tarihi 10 Ocak 2025
Kabul Tarihi 19 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 5

Kaynak Göster

APA Erdoğan, A. (2025). Akciğer Kanseri Hücrelerinde Metotreksat ve Karvakrol Kombinasyonunun Sitotoksik ve Apoptotik Etkilerinin Değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(5), 990-1000. https://doi.org/10.35414/akufemubid.1617388
AMA Erdoğan A. Akciğer Kanseri Hücrelerinde Metotreksat ve Karvakrol Kombinasyonunun Sitotoksik ve Apoptotik Etkilerinin Değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ekim 2025;25(5):990-1000. doi:10.35414/akufemubid.1617388
Chicago Erdoğan, Ayşe. “Akciğer Kanseri Hücrelerinde Metotreksat ve Karvakrol Kombinasyonunun Sitotoksik ve Apoptotik Etkilerinin Değerlendirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, sy. 5 (Ekim 2025): 990-1000. https://doi.org/10.35414/akufemubid.1617388.
EndNote Erdoğan A (01 Ekim 2025) Akciğer Kanseri Hücrelerinde Metotreksat ve Karvakrol Kombinasyonunun Sitotoksik ve Apoptotik Etkilerinin Değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 5 990–1000.
IEEE A. Erdoğan, “Akciğer Kanseri Hücrelerinde Metotreksat ve Karvakrol Kombinasyonunun Sitotoksik ve Apoptotik Etkilerinin Değerlendirilmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 5, ss. 990–1000, 2025, doi: 10.35414/akufemubid.1617388.
ISNAD Erdoğan, Ayşe. “Akciğer Kanseri Hücrelerinde Metotreksat ve Karvakrol Kombinasyonunun Sitotoksik ve Apoptotik Etkilerinin Değerlendirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/5 (Ekim2025), 990-1000. https://doi.org/10.35414/akufemubid.1617388.
JAMA Erdoğan A. Akciğer Kanseri Hücrelerinde Metotreksat ve Karvakrol Kombinasyonunun Sitotoksik ve Apoptotik Etkilerinin Değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:990–1000.
MLA Erdoğan, Ayşe. “Akciğer Kanseri Hücrelerinde Metotreksat ve Karvakrol Kombinasyonunun Sitotoksik ve Apoptotik Etkilerinin Değerlendirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 5, 2025, ss. 990-1000, doi:10.35414/akufemubid.1617388.
Vancouver Erdoğan A. Akciğer Kanseri Hücrelerinde Metotreksat ve Karvakrol Kombinasyonunun Sitotoksik ve Apoptotik Etkilerinin Değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(5):990-1000.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.