Araştırma Makalesi
BibTex RIS Kaynak Göster

Mayıs 2024 Gannon Süperfırtınası: Yer Tabanlı Manyetometre Ölçümlerinden Elde Edilen Bulgular

Yıl 2025, Cilt: 25 Sayı: 5, 1193 - 1201, 01.10.2025
https://doi.org/10.35414/akufemubid.1625167

Öz

10-11 Mayıs 2024 tarihlerinde, son yılların en güçlü jeomanyetik fırtınalarından biri dünya genelinde etkili olmuştur. Kaynak aktif bölge (AR 13664) kaynaklı gezegenler arası koronal kütle atımları (ICME), güneş enerjili parçacıkları Dünya'ya yönlendirmiştir. Yoğun güneş patlamalarının tetiklediği bu fırtına, Kp indeksinde 9 seviyesine ulaşmış (ölçekteki en yüksek seviye) ve olağan yüksek enlemlerin çok ötesinde görülebilen aurora genişlemelerine neden olmuştur. Fırtınanın benzeri görülmemiş gücü, özellikle tipik aurora bölgelerinin çok ötesindeki bölgelerde uzay hava olaylarının geniş kapsamlı etkilerini değerlendirmek için yer tabanlı ekipmanlarla jeomanyetik rahatsızlıkların izlenmesinin gerekliliğini vurgulamaktadır. Bu çalışmada, Kuzey Yarımküre'de orta enlemlerde (30°-60°K) bulunan birkaç gözlemevinden elde edilen jeomanyetik veriler, G5 seviyesindeki Gannon fırtınasını analiz etmek için kullanılmıştır. Bu gözlemler, ani fırtına başlangıçları (SSC'ler), Bozulma Fırtına-Zaman (Dst) indeksindeki uzun süreli negatif sapmalar ve yoğunlaşmış iyonosferik akımları gösteren yerel manyetik dalgalanmalar dahil olmak üzere jeomanyetik değişimlerin tespit edilmesini sağlamaktadır. Ayrıca, auroral elektrojet gücü ve jeomanyetik bozuklukların asimetrik dağılımı, güçlü jeomanyetik fırtına sırasında iyonosferik ve manyetosferik süreçlerin mekansal ve zamansal evrimine ilişkin önemli bilgiler sunmaktadır. Bu bulgular, fırtınanın etkilerinin mekansal değişkenliğini ve zamansal eşzamanlılığını vurgulamakta ve orta enlem gözlemevlerinin aşırı jeomanyetik olaylar sırasında iyonosferik ve manyetosferik tepkileri yakalamadaki kritik rolünü göstermektedir.

Kaynakça

  • Akasofu, S.I., 1981. Relationship between the AE and Dst indices during geomagnetic storms. Journal of Geophysical Research, 86, 4820-4822. https://doi.org/10.1029/JA086iA06p04820 Baker, D.N., Kanekal, S.G., Li, X., Monk, S.P, Goldstein, J., and Burch, J., 2004. An extreme distortion of the Van Allen belt arising from the ‘Hallowe’en’ solar storm in 2003. Nature, 432(7019), 878–881. https://doi.org/10.1038/nature03116
  • Bartels, J., Heck, N. H. and Johnston, H. F., 1939. The three-hour-range index measuring geomagnetic activity. Terrestrial Magnetism and Atmospheric Electricity, 44(4), 411–454. https://doi.org/10.1029/TE044i004p00411
  • Collado-Villaverde, A., Muñoz, P., and Cid, C., 2024. Classifying and bounding geomagnetic storms based on the SYM‑H and ASY‑H indices. Natural Hazards, 120,1141-1162. https://doi.org/10.1007/s11069-023-06241-1
  • Curto, J. J. and Marsal, S., 2007. Quality control of Ebro magnetic observatory using momentary values. Earth Planets Space, 59, 1187–1196. https://doi.org/10.1186/BF03352066
  • Daglis, I.A. 2006. Ring Current Dynamics. In: Baker, D.N., Klecker, B., Schwartz, S.J., Schwenn, R., and Von Steiger, R. (eds) Solar Dynamics and Its Effects on the Heliosphere and Earth. Space Sciences Series of ISSI, 22. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69532-7_13
  • Dubyagin, S., Ganushkina, N., Kubyshkina, M., and Liemohn, M., 2014. Contribution from different current systems to SYM and ASY midlatitude indices, Journal of Geophysical Research: Space Physics, 119(9), 7243–7263. https://doi.org/10.1002/2014JA020122
  • Foster, J. C., Erickson, P. J., Nishimura, Y., Zhang, S. R., Bush, D. C., Coster, A. J., et al., 2024. Imaging the May 2024 extreme aurora with ionospheric total electron content. Geophysical Research Letters, 51, e2024GL111981. https://doi.org/10.1029/2024GL111981
  • Gillies, D.M., St.-Maurice J.P., McWilliams, K.A. and Milan, S., 2012. Global-scale observations of ionospheric convection variation in response to sudden increases in the solar wind dynamic pressure. Journal of Geophysical Research, 117, A04209. https://doi.org/10.1029/2011JA017255
  • Gonzalez, W.D., Echer, E., Clua-Gonzalez, A.L. and Tsurutani, B.T., 2007. Interplanetary origin of intense geomagnetic storms (Dst < −100 nT) during solar cycle 23. Geophysical Research Letters, 34 (6), L06101. https://doi.org/10.1029/2006GL028879
  • Gosling, J.T., Bame, S.J., McComas, D.J. and Phillips, J.L., 1990. Coronal mass ejections and large geomagnetic storms. Geophysical Research Letters, 17 (7), 901-904. https://doi.org/10.1029/GL017i007p00901
  • Grandin, M., Bruus, E., Ledvina, V. E., Partamies, N., Barthelemy, M., Martinis, C., Dayton-Oxland, R., Gallardo-Lacourt, B., Nishimura, Y., Herlingshaw, K., Thomas, N., Karvinen, E., Lach, D., Spijkers, M., and Bergstrand, C., 2024. The geomagnetic superstorm of 10 May 2024: Citizen science observations, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2174
  • Kwak, Y.S., Kim, J.H., Kim, S., Miyashita, Y., Yang, T., Park, S.-H., Lim, E.-K., Jung, J., Kam, H., Lee, J., et al., 2024. Observational Overview of the May 2024 G5-Level Geomagnetic Storm: From Solar Eruptions to Terrestrial Consequences, Journal of Astronomy and Space Sciences, 41 (3), 171–194. https://doi.org/10.5140/JASS.2024.41.3.171
  • Lakhina, G.S. and Tsurutani, B., 2016. Geomagnetic storms: Historical perspective to modern view. Geoscience Letters, 3, 5. https://doi.org/10.1186/s40562-016-0037-4
  • Makarov, G.A., 2022. Geomagnetic indices ASY-H and SYM-H and their relation to interplanetary parameters. Solar-Terrestrial Physics, 8(4), 36–43. https://doi.org/10.12737/stp-84202203
  • Parker, W. E. and Linares, R., 2024. Satellite Drag Analysis During the May 2024 Geomagnetic Storm. Journal of Spacecraft and Rockets, 61(5). https://doi.org/10.2514/1.a36164
  • Schwenn, R., 2006. Space Weather: The Solar Perspective, Living Reviews in Solar Physics, 3, 2. http://www.livingreviews.org/lrsp-2006-2
  • Singh, P., Sinha, A.K., Pathan, B.M. and Rawat, R., 2012. Solar flare effect on low latitude asymmetric indices, J. Journal of Atmospheric and Solar-Terrestrial Physics, 77, 119-124. https://doi.org/10.1016/j.jastp.2011.12.010
  • Singh, R., Scipión, D.E., Kuyeng, K., Condor, P., De La Jara, C., Velasquez, J.P., Flores, R. and Ivan, E., 2024. Ionospheric disturbances observed over the Peruvian sector during the Mother's Day Storm (G5-level) on 10–12 May 2024. Journal of Geophysical Research: Space Physics, 129 (11), e2024JA033003. https://doi.org/10.1029/2024JA033003
  • Spogli, L., Alberti, T., Bagiacchi, P., Cafarella, L., Cesaroni, C., Cianchini, G., Coco, I., Di Mauro, D., Ghidoni, R., Giannattasio, F., Ippolito, A., Marcocci, C., Pezzopane, M., Pica, E., Pignalberi, A., Perrone, L., Romano, V., Sabbagh, D., Scotto, C., Spadoni, S., Tozzi, R. and Viola, M., 2024. The effects of the May 2024 Mother’s Day superstorm over the Mediterranean sector: from data to public communication, Annals of Geophysics, 67(2), PA218. https://doi.org/10.4401/ag-9117
  • Thomsen, M.F., 2004. Why Kp is such a good measure of magnetospheric convection. Space Weather, 2(11), S11004 https://doi.org/10.1029/2004SW000089
  • Tulasi Ram, S., Veenadhari, B., Dimri, A. P., Bulusu, J., Bagiya, M., Gurubaran, S., et al., 2024. Super‐intense geomagnetic storm on 10–11 May 2024: Possible mechanisms and impacts. Space Weather, 22 (12), e2024SW004126. https://doi.org/10.1029/2024SW004126
  • Watari, S., 2017. Geomagnetic storms of cycle 24 and their solar sources. Earth, Planet and Space, 69, 70. https://doi.org/10.1186/s40623-017-0653-z
  • Wu, Y., Xu, W., Chen, G. et al., 2008. Ground magnetic characteristics of the storm-time ring current Asymmetry. Science in China Series D: Earth Sciences, 51, 686–693. https://doi.org/10.1007/s11430-008-0045-0
  • Yamazaki, Y., Matzka, J., Stolle, C., Kervalishvili, G., Rauberg, J., Bronkalla, O., et al., 2022. Geomagnetic activity index Hpo. Geophysical Research Letters, 49 (10), e2022GL098860. https://doi.org/10.1029/2022GL098860
  • Yamazaki, Y., Matzka, J., Siqueira da Silva, M.V., Kervalishvili, G.N., Korte, M. and Rauberg, J., 2024. Assessment of Geomagnetic Activity for the Kp=9 “Gannon Storm” in May 2024 Based on Version 3.0 Hpo Indices. ESS Open Archive, http://dx.doi.org/10.22541/essoar.171838396.68563140/v1

May 2024 Gannon Superstorm: Insights from Ground-based Magnetometer Measurements

Yıl 2025, Cilt: 25 Sayı: 5, 1193 - 1201, 01.10.2025
https://doi.org/10.35414/akufemubid.1625167

Öz

On May 10–11, 2024, one of the strongest geomagnetic storms in recent years swept across the planet. Several interplanetary coronal mass ejections (ICMEs) originated from the source active region (AR 13664), propelling solar energetic particles toward Earth. Triggered by intense solar eruptions, the storm reached a Kp index of 9 (the highest on the scale), causing a remarkable expansion of auroras visible far beyond their usual high latitudes. The unprecedented strength of the storm highlights the necessity of monitoring geomagnetic disturbances using ground-based instruments to assess the far-reaching impacts of space weather events, especially in regions well beyond the typical auroral zones. In this study, geomagnetic data from several observatories located in mid-latitudes (30°-60°N) in the Northern Hemisphere were therefore utilized to analyze the G5-level super-intense Gannon storm. These observations enable the detection of geomagnetic variations, including sudden storm commencements (SSCs), prolonged negative excursions in the Disturbance Storm-Time (Dst) index, as well as localized magnetic fluctuations indicative of intensified ionospheric currents. Additionally, the auroral electrojet strength and the asymmetric distribution of geomagnetic disturbances provide critical insights into the spatial and temporal evolution of ionospheric and magnetospheric processes during the extreme geomagnetic storm, helping to understand its impacts on mid-latitude regions. The results highlight the spatial variability and temporal synchronicity of the impacts of the storm, demonstrating the crucial role of mid-latitude observatories in capturing ionospheric and magnetospheric responses during extreme geomagnetic events.

Kaynakça

  • Akasofu, S.I., 1981. Relationship between the AE and Dst indices during geomagnetic storms. Journal of Geophysical Research, 86, 4820-4822. https://doi.org/10.1029/JA086iA06p04820 Baker, D.N., Kanekal, S.G., Li, X., Monk, S.P, Goldstein, J., and Burch, J., 2004. An extreme distortion of the Van Allen belt arising from the ‘Hallowe’en’ solar storm in 2003. Nature, 432(7019), 878–881. https://doi.org/10.1038/nature03116
  • Bartels, J., Heck, N. H. and Johnston, H. F., 1939. The three-hour-range index measuring geomagnetic activity. Terrestrial Magnetism and Atmospheric Electricity, 44(4), 411–454. https://doi.org/10.1029/TE044i004p00411
  • Collado-Villaverde, A., Muñoz, P., and Cid, C., 2024. Classifying and bounding geomagnetic storms based on the SYM‑H and ASY‑H indices. Natural Hazards, 120,1141-1162. https://doi.org/10.1007/s11069-023-06241-1
  • Curto, J. J. and Marsal, S., 2007. Quality control of Ebro magnetic observatory using momentary values. Earth Planets Space, 59, 1187–1196. https://doi.org/10.1186/BF03352066
  • Daglis, I.A. 2006. Ring Current Dynamics. In: Baker, D.N., Klecker, B., Schwartz, S.J., Schwenn, R., and Von Steiger, R. (eds) Solar Dynamics and Its Effects on the Heliosphere and Earth. Space Sciences Series of ISSI, 22. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69532-7_13
  • Dubyagin, S., Ganushkina, N., Kubyshkina, M., and Liemohn, M., 2014. Contribution from different current systems to SYM and ASY midlatitude indices, Journal of Geophysical Research: Space Physics, 119(9), 7243–7263. https://doi.org/10.1002/2014JA020122
  • Foster, J. C., Erickson, P. J., Nishimura, Y., Zhang, S. R., Bush, D. C., Coster, A. J., et al., 2024. Imaging the May 2024 extreme aurora with ionospheric total electron content. Geophysical Research Letters, 51, e2024GL111981. https://doi.org/10.1029/2024GL111981
  • Gillies, D.M., St.-Maurice J.P., McWilliams, K.A. and Milan, S., 2012. Global-scale observations of ionospheric convection variation in response to sudden increases in the solar wind dynamic pressure. Journal of Geophysical Research, 117, A04209. https://doi.org/10.1029/2011JA017255
  • Gonzalez, W.D., Echer, E., Clua-Gonzalez, A.L. and Tsurutani, B.T., 2007. Interplanetary origin of intense geomagnetic storms (Dst < −100 nT) during solar cycle 23. Geophysical Research Letters, 34 (6), L06101. https://doi.org/10.1029/2006GL028879
  • Gosling, J.T., Bame, S.J., McComas, D.J. and Phillips, J.L., 1990. Coronal mass ejections and large geomagnetic storms. Geophysical Research Letters, 17 (7), 901-904. https://doi.org/10.1029/GL017i007p00901
  • Grandin, M., Bruus, E., Ledvina, V. E., Partamies, N., Barthelemy, M., Martinis, C., Dayton-Oxland, R., Gallardo-Lacourt, B., Nishimura, Y., Herlingshaw, K., Thomas, N., Karvinen, E., Lach, D., Spijkers, M., and Bergstrand, C., 2024. The geomagnetic superstorm of 10 May 2024: Citizen science observations, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2174
  • Kwak, Y.S., Kim, J.H., Kim, S., Miyashita, Y., Yang, T., Park, S.-H., Lim, E.-K., Jung, J., Kam, H., Lee, J., et al., 2024. Observational Overview of the May 2024 G5-Level Geomagnetic Storm: From Solar Eruptions to Terrestrial Consequences, Journal of Astronomy and Space Sciences, 41 (3), 171–194. https://doi.org/10.5140/JASS.2024.41.3.171
  • Lakhina, G.S. and Tsurutani, B., 2016. Geomagnetic storms: Historical perspective to modern view. Geoscience Letters, 3, 5. https://doi.org/10.1186/s40562-016-0037-4
  • Makarov, G.A., 2022. Geomagnetic indices ASY-H and SYM-H and their relation to interplanetary parameters. Solar-Terrestrial Physics, 8(4), 36–43. https://doi.org/10.12737/stp-84202203
  • Parker, W. E. and Linares, R., 2024. Satellite Drag Analysis During the May 2024 Geomagnetic Storm. Journal of Spacecraft and Rockets, 61(5). https://doi.org/10.2514/1.a36164
  • Schwenn, R., 2006. Space Weather: The Solar Perspective, Living Reviews in Solar Physics, 3, 2. http://www.livingreviews.org/lrsp-2006-2
  • Singh, P., Sinha, A.K., Pathan, B.M. and Rawat, R., 2012. Solar flare effect on low latitude asymmetric indices, J. Journal of Atmospheric and Solar-Terrestrial Physics, 77, 119-124. https://doi.org/10.1016/j.jastp.2011.12.010
  • Singh, R., Scipión, D.E., Kuyeng, K., Condor, P., De La Jara, C., Velasquez, J.P., Flores, R. and Ivan, E., 2024. Ionospheric disturbances observed over the Peruvian sector during the Mother's Day Storm (G5-level) on 10–12 May 2024. Journal of Geophysical Research: Space Physics, 129 (11), e2024JA033003. https://doi.org/10.1029/2024JA033003
  • Spogli, L., Alberti, T., Bagiacchi, P., Cafarella, L., Cesaroni, C., Cianchini, G., Coco, I., Di Mauro, D., Ghidoni, R., Giannattasio, F., Ippolito, A., Marcocci, C., Pezzopane, M., Pica, E., Pignalberi, A., Perrone, L., Romano, V., Sabbagh, D., Scotto, C., Spadoni, S., Tozzi, R. and Viola, M., 2024. The effects of the May 2024 Mother’s Day superstorm over the Mediterranean sector: from data to public communication, Annals of Geophysics, 67(2), PA218. https://doi.org/10.4401/ag-9117
  • Thomsen, M.F., 2004. Why Kp is such a good measure of magnetospheric convection. Space Weather, 2(11), S11004 https://doi.org/10.1029/2004SW000089
  • Tulasi Ram, S., Veenadhari, B., Dimri, A. P., Bulusu, J., Bagiya, M., Gurubaran, S., et al., 2024. Super‐intense geomagnetic storm on 10–11 May 2024: Possible mechanisms and impacts. Space Weather, 22 (12), e2024SW004126. https://doi.org/10.1029/2024SW004126
  • Watari, S., 2017. Geomagnetic storms of cycle 24 and their solar sources. Earth, Planet and Space, 69, 70. https://doi.org/10.1186/s40623-017-0653-z
  • Wu, Y., Xu, W., Chen, G. et al., 2008. Ground magnetic characteristics of the storm-time ring current Asymmetry. Science in China Series D: Earth Sciences, 51, 686–693. https://doi.org/10.1007/s11430-008-0045-0
  • Yamazaki, Y., Matzka, J., Stolle, C., Kervalishvili, G., Rauberg, J., Bronkalla, O., et al., 2022. Geomagnetic activity index Hpo. Geophysical Research Letters, 49 (10), e2022GL098860. https://doi.org/10.1029/2022GL098860
  • Yamazaki, Y., Matzka, J., Siqueira da Silva, M.V., Kervalishvili, G.N., Korte, M. and Rauberg, J., 2024. Assessment of Geomagnetic Activity for the Kp=9 “Gannon Storm” in May 2024 Based on Version 3.0 Hpo Indices. ESS Open Archive, http://dx.doi.org/10.22541/essoar.171838396.68563140/v1
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Özlem Hacıoğlu 0000-0002-0747-6752

Elif Çiftçi 0009-0002-4391-0058

Erken Görünüm Tarihi 18 Eylül 2025
Yayımlanma Tarihi 1 Ekim 2025
Gönderilme Tarihi 22 Ocak 2025
Kabul Tarihi 3 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 5

Kaynak Göster

APA Hacıoğlu, Ö., & Çiftçi, E. (2025). May 2024 Gannon Superstorm: Insights from Ground-based Magnetometer Measurements. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(5), 1193-1201. https://doi.org/10.35414/akufemubid.1625167
AMA Hacıoğlu Ö, Çiftçi E. May 2024 Gannon Superstorm: Insights from Ground-based Magnetometer Measurements. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ekim 2025;25(5):1193-1201. doi:10.35414/akufemubid.1625167
Chicago Hacıoğlu, Özlem, ve Elif Çiftçi. “May 2024 Gannon Superstorm: Insights from Ground-based Magnetometer Measurements”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, sy. 5 (Ekim 2025): 1193-1201. https://doi.org/10.35414/akufemubid.1625167.
EndNote Hacıoğlu Ö, Çiftçi E (01 Ekim 2025) May 2024 Gannon Superstorm: Insights from Ground-based Magnetometer Measurements. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 5 1193–1201.
IEEE Ö. Hacıoğlu ve E. Çiftçi, “May 2024 Gannon Superstorm: Insights from Ground-based Magnetometer Measurements”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 5, ss. 1193–1201, 2025, doi: 10.35414/akufemubid.1625167.
ISNAD Hacıoğlu, Özlem - Çiftçi, Elif. “May 2024 Gannon Superstorm: Insights from Ground-based Magnetometer Measurements”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/5 (Ekim2025), 1193-1201. https://doi.org/10.35414/akufemubid.1625167.
JAMA Hacıoğlu Ö, Çiftçi E. May 2024 Gannon Superstorm: Insights from Ground-based Magnetometer Measurements. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:1193–1201.
MLA Hacıoğlu, Özlem ve Elif Çiftçi. “May 2024 Gannon Superstorm: Insights from Ground-based Magnetometer Measurements”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 5, 2025, ss. 1193-01, doi:10.35414/akufemubid.1625167.
Vancouver Hacıoğlu Ö, Çiftçi E. May 2024 Gannon Superstorm: Insights from Ground-based Magnetometer Measurements. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(5):1193-201.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.